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Highlights:

 Development of a simplified population balance model to predict Sauter diameter.

 Identification of the best kernels over 60 possible combinations.

 Flows in a bubble column and a stirred tank are considered, leading to two different sets of PBM kernels.

 Kernels suitable to both flows are also reported.

Introduction

The use of CFD to simulate two-fluid flows still faces the difficulty to predict representative bubble or droplet size distributions. Currently, the simulation of industrial reactors can only be considered using an Eulerian description of both phases, wherein the dispersed phase is described by its volume-averaged phase fraction. However, size distribution properties  beginning with the Sauter mean diameter d32  are required to correctly predict the mean flow, as they condition interfacial forces, turbulence properties and all transport phenomena between phases. To overcome this issue, population balance models (PBM) are essential tools as they offer the possibility to predict size distributions and make CFD models fully predictive. But in practice, the use of PBM leads to different questions linked to a) the choice of the breakage and coalescence kernels, among dozens of possible choices [START_REF] Liao | A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[END_REF][START_REF] Liao | A literature review on mechanisms and models for the coalescence process of fluid particles[END_REF] ; b) the quality of the calculation of the local gas fraction () and the dissipation rate (), which conditions the results of PBM models ; and c) the difficulty to validate PBM as experimental data under industrial relevant conditions are scarce. As a consequence, it still does not exists a real state-ofthe-art concerning PBM selection regarding its different applications. CFD users try to elaborate their own "best practices" guides including CFD closure laws, PBM and associated parameters fit.

However, as validation steps require 3D multiphase simulations, the possibility to compare physical kernels is narrow and PBM models can hardly be extensively compared on a rational and objective way.

The present study relates an attempt to develop a simple shortcut method able to discriminate the adequacy of kernel combinations in different kinds of bubbly flows. The theoretical background, the main assumptions and the numerical method are presented in the next section.

Obviously the objective of the following simplified calculations is not to replace fully predictive CFD simulations coupled with PBM, but rather to help final users to make a choice before validation or final parameter fit with CFD. Some proposed assumptions are questionable and may impact the results of PBM. For this reason, only qualitative results and guiding ideas are expected from the proposed method. The governing principles of the shortcut method are:  Volume averaged gas holdup and dissipation rate are considered to screen PBM kernels.

 The Quadrature Method of Moments (QMOM) formalism is followed, but only one moment (the 2 nd ) is solved.

 Only the Sauter mean bubble size is calculated and used in the shortcut for breakage and coalescence calculations.

 The final "stable" bubble size is computed. The bubble residence time is assumed to be higher than the transient time required to achieve the bubble stable size under a given set of hydrodynamic conditions.

After being detailed, the method is applied on two different bubbly flows: a bubble column and an aerated stirred tank. Results are compared with available experimental data of [START_REF] Gemello | Hydrodynamics and bubble size in bubble columns: Effects of contaminants and spargers[END_REF] and [START_REF] Cappello | Bubble size and liquid-side mass transfer coefficient measurements in aerated stirred tank reactors with non-Newtonian liquids[END_REF], in regard with the associated experimental uncertainty. Best kernel combinations, among a consequent but non-exhaustive panel of possibilities, are pointed out for each investigated case. Finally, the possibility to validate a common "robust" kernel for both cases is discussed.

Method

QMOM framework

The Quadrature Method of Moments is a powerful method that allows to calculate accurately a given number of moments of the Bubble Size Distribution (BSD) [START_REF] Marchisio | Quadrature Method of Moments for Population-Balance Equations[END_REF]Petitti et al., 2010 ;[START_REF] Buffo | Multivariate Quadrature-Based Moments Methods for turbulent polydisperse gas-liquid systems[END_REF]). The BSD is not discretized in classes of bubble sizes -which is very heavy in term of CPU time, but only the n-th first moments of the BSD are transported.

Based on the knowledge of the first 2Nq moments of the BSD, different algorithms lead to the calculation, at each time, of the Nq abscissa of the quadrature approximation:

∑ (1)
where is k th moment of the BSD, are the Nq abscissa of the quadrature approximation [START_REF] Mcgraw | Description of Aerosol Dynamics by the Quadrature Method of Moments[END_REF]. are the weights of the quadrature approximation. A good compromise between accuracy and CPU-time consumption consists to use the 6 th first moments of the BSD (k=0 to 5), and thus to approximate the BSD by 3 nodes (L1, L2, L3) with associated weights. The dynamic evolution of moments is governed by the following balance:
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where ( ) denotes the collision frequency between 2 bubble nodes, and ( ) its associated coalescence efficiency. is the breakage kernel (breakage frequency model). ̅ is the k th moment of the daughter size distribution . ̅ impacts the production rate of mk associated to production of daughter bubbles during the breakage of a bubble of diameter . ̅ writes as follows:

̅ ∫ (3)
is the daughter bubbles size distribution for a bubble subject to breakage of size . One can identify in Eq.2 death and birth terms associated with breakage and coalescence events.

Table 1 reports 5 classical breakage models, 4 collision frequency models and 3 coalescence efficiency models that are considered in the present work. Details of the models are available in literature [START_REF] Liao | A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[END_REF][START_REF] Liao | A literature review on mechanisms and models for the coalescence process of fluid particles[END_REF]. A selection of kernels based on the adequacy of their initial conditions of use is commendable but too restrictive in practice. PBM kernels are generally developed in a specific scope, within a given range of physical properties. But they are later applied on miscellaneous systems and operating conditions, sometimes far-off their initial range of validation. In the present study, it was preferred to not presuppose the adequacy (or inadequacy) of kernels, as is often the case in industry, with very partial knowledge on physical or interface properties.

Model simplifications

QMOM models are a very good alternative to the method of classes, especially if the full BSD is not especially required. This is the case when d32 is sufficient to describe hydrodynamics and transfer mechanisms. As d32=m3/m2, and as m3 is directly linked to the volume averaged gas fraction (

). If  is calculated by a two-fluid model or known by other means, the only missing moment to estimate d32 is m2. Furthermore, in practice BSD is not measurable, especially when the gas volume fraction  is higher than 1-2%. The two accessible properties of BSD are  and d32. Recent advances allow to measure accurately d32 in turbulent bubbly flows with a novel optical probe technique, even at high gas fraction [START_REF] Raimundo | A new technique for in-situ measurements of bubble characteristics in bubble columns operated in the heterogeneous regime[END_REF], but no information is given about other moments as neither BSD nor chord size distributions are measured.

Besides, [START_REF] Lane | Numerical modelling of gas-liquid flow in stirred tanks[END_REF], suggest to solve one equation to estimate a bubble density number.

The solved equation is based on breakage and coalescence rates involving only one node quadrature. A similar idea is followed in the present work, and only d32 is considered as a node of the BSD. So = =d32, and and does not exist anymore (w2=w3=0). Besides w1 is directly linked to the gas volume fraction: = . As only one node is considered, only one moment is computed, thus only the m2 equation is solved in the present work, as m3 is deduced from . Other moments are not considered.

Eq.2 takes the reduced form:

[ ( ) ⁄ ] (4) 
Another strong assumption consists to solve Eq.4 at steady state ⁄ The assumptions listed above state that under given flow conditions, the PBM reaches quickly a stable d32 which is representative of the volume average bubble size. This assumption is in agreement with recent observations in bubble columns [START_REF] Gemello | Hydrodynamics and bubble size in bubble columns: Effects of contaminants and spargers[END_REF], where a stable bubble size was observed at a distance of 25cm from the gas distributor. The same assumption is more discussable in the case of stirred tanks, but QMOM calculations lead to stable bubble sizes after a few seconds, and this time is considered low compared to the residence time of bubbles at any scale. [START_REF] Cappello | Bubble size and liquid-side mass transfer coefficient measurements in aerated stirred tank reactors with non-Newtonian liquids[END_REF] found very similar average bubble sizes in stirred tanks of height 0.3m and 0.6m, at equal power input and Vsg, showing that the residence time is sufficient at the smaller scale to reach a stable Sauter mean diameter.

The last assumption consists to consider volume averaged values of  and  to calculate the mean bubble diameter. Concerning bubble columns, this assumption has already been validated

during the study of [START_REF] Gemello | Modelling of the hydrodynamics of bubble columns using a two-fluid model coupled with a population balance approach[END_REF], who found close results comparing a 0D approach with QMOM to a fully coupled CFD/QMOM modelling. Concerning stirred tanks the assumption is once again more questionable as heterogeneities of dissipation rate are potentially more pronounced. However, it is known for decades that mass transfer inside stirred tanks does not depend on the size of the vessels, neither on the impeller geometry, but it rather depends on average turbulent dissipation rate and superficial gas velocity Vsg [START_REF] Garcia-Ochoa | Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview[END_REF][START_REF] Gabelle | Effect of Tank Size on kLa and Mixing Time in Aerated Stirred Reactors With Non-Newtonian Fluids[END_REF]. As the bubble size is the major physical length that governs mass transfer, it strengthens the idea that the average bubble size is governed by average dissipation rate and gas holdup. Finally, one may keep in mind that the model of Coulaloglou & Tavlarides was initially developed in 0D, which did not prevent it from becoming a reference for PBM. Passing from 0D to CFD may require a parameter tuning in some cases to overcome the non-linear effect of the dissipation rate on the Sauter mean diameter.

Starting from Eq.4, considering the steady state and homogeneous hydrodynamics conditions lead to the following expression:

( ) ̅ ⁄ (5)
where ̅ is the contribution of daughter bubbles to the production of m2. It is strongly linked to the daughter size distribution as smaller bubbles induce more surface per unit of volume of gas.

Considering the case of binary breakup, several cases are considered. In Table 2, ̅ expressions are established for different shapes: asymetric law of [START_REF] Laakkonen | Validation of bubble breakage,coalescence and mass transfer models for gas-liquid dispersion in agitated vessel[END_REF], parabolic bell, inverse bell (U shape), and flat shape. Associated analytical expressions of ̅ are all proportional to . As a consequence ̅ ⁄ ratios only depend on the considered shape, and

( ̅ ⁄
) term in Eq.5 is a constant. Therefore, for a given set of PBM kernels, changing the function and one parameter in one of the models will lead to exactly the same results on d32. For example if we use the law of Laakkonen and the collision model of Wang with the constant C2'=0.17, results are exactly the same than with the bell shape and C2'=0.24.

Table 2: Considered Models of binary daughter size distribution

For one condition of gas volume fraction and dissipation rate, Eq.5 has only one unknown variable (L) that can be easily solved with an iterative method. In order to fit a PBM kernel to experimental data, a possibility consists to modify the first constant in one of the PB models. For example the first constant of the collision frequency model could be adjusted. But instead of changing a constant, a correction factor cf is introduced in the numerator of Eq.5. The cf parameter can be adjusted to minimize the average error between a set of experimental data and the related bubble size predictions. For instance, to fit the predicted bubble size at a known value L, under given conditions (, ), the following explicit expression can be used:

( ̅ ⁄ ) ( ) (6) 
Alternatively, cf can be estimated to minimize the average error of prediction over a dataset of experimental measurements, as reported in the Results section. The introduction of the cf coefficient amounts to modify only one of the first constants of any model reported in Table 1, as the C1 constant of the breakage model of Coulaloglou and Tavlarides for instance. But the fit of internal constants as C2 in the same model is not considered in the frame of the present study.

Experimental data

The experimental data of [START_REF] Gemello | Hydrodynamics and bubble size in bubble columns: Effects of contaminants and spargers[END_REF], dedicated to bubble columns, are used to estimate the relevance of the proposed method, called "1Eq. model" in the following. Sauter turbulence model was used. A 40,000 cells mesh was selected after a mesh-dependency study.

More details are furnished in the cited paper, but one important information to know is that no specific source terms associated to the presence of bubbles (so called Bubble Induced Turbulence) were introduced in k and  equations. However, as pointed out by authors the results are sensitive to the turbulence modelling, and can lead to important differences on . To overcome this issue, another solution consists to use a theoretical estimation of  in bubble columns. The theoretical value of  is calculated by a simple energy balance on the potential energy of gas: , though other authors suggest alternative theoretical formulations [START_REF] Roels | Power dissipation and heat production in bubble columns: approach based on nonequilibrium thermodynamics[END_REF]. Both possibilities, CFD and theoretical calculations, are explored to estimate .

Experimental data of [START_REF] Cappello | Bubble size and liquid-side mass transfer coefficient measurements in aerated stirred tank reactors with non-Newtonian liquids[END_REF] are used to investigate the case of stirred reactors.

The same bubble size measurement method were used as before, with the same water quality, which makes common data processing very consistent. Average bubble sizes are measured in a standard stirred tank of 0.3m of diameter, equipped with a Rushton turbine. The average dissipation rate is estimated from the Power number, measured as 5.5, and using the model of [START_REF] Gabelle | Effect of Tank Size on kLa and Mixing Time in Aerated Stirred Reactors With Non-Newtonian Fluids[END_REF] to estimate the loss of power induced by the presence of gas phase (also called Relative Power Demand). Table 3 reports a summary of experimental data used in the present study. made some reproducibility tests on the cross-correlation method and found a standard deviation of 3%. In the present study a global error of +/-10% is considered.

Results

Results are organized in 3 parts. First the 1Eq. model is compared with full QMOM simulations.

Then the 1Eq. model is used to compare possible combinations of PBM models separately in a bubble column and a stirred tank. Finally the use of a common set of models is considered to predict bubble size simultaneously for both considered flows.

1Eq. model compared to QMOM

QMOM simulations are based on a 0D 1 st order explicit method with a time step of 0.01s. A physical time of 15s is considered to insure the convergence of moments, which is generally achieved after 3 to 5s of simulated time. The initialization of the 6 moments is based on a lognormal distribution, based on d32=0.008m and a variance of 0.04. The Wheeler algorithm (Marchisio & Fox, 2013) is used to calculate the weights and abscissa of the quadrature approximation from the to moments. The 1Eq. model uses an initial Sauter mean diameter of 8mm. An explicit first order method is used to solve Eq.4 during 15s to achieve stable result, with a time step of 0.01s. Alternatively an iterative method can be used to solve Eq.5, leading to exactly the same results. The comparison between d32 models is done with the following kernel: breakage model of Laakkonen (bLa), coalescence frequency of Wang (cfW), coalescence efficiency of Lehr (ceLe), and the daughter size distribution of Laakkonen. No correction factor (cf) is applied here. 28 arbitrary flow conditions are used for this comparison:  = 5%, 10%, 20% and 40% and  = 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4 m 2 /s 3 .

The parity diagram between both models results is reported on Figure 1. The average error of the 1Eq. model compared with QMOM is 2.9%, which represents approximately 0.2mm for a bubble diameter of 8mm. Therefore, this difference is considered to be sufficiently low to validate the use of the 1Eq. model to compare kernels. Different benefits are associated with the use of the 1Eq. model. First, the calculation time associated to this method is lower than with the QMOM, as no reconstruction algorithm is used.

The 1Eq. model is approximately 80 times faster than the QMOM with the Wheeler reconstruction algorithm. This could make a difference in case of multi-variable optimization.

The simplicity of the 1Eq. model is also advantageous in case of implementation in a CFD code.

Secondly, for a given set of PBM kernels, the estimation of the correction factor cf that optimizes predictions is fast and simple as discussed above. And at last, the effect of breakage and coalescence kernels on d32 is explicitly described: the Eq.5 can be recombined as the dimensionless ratio between the breakage frequency g(L) and the coalescence frequency ⁄ , both in s -1 :

( ) ⁄ ( ̅ ⁄ ) ( ) ⁄ (7)
The left hand term is the ratio between coalescence and breakage frequencies. The right hand term is a function of the daughter size distribution and its effect on the interfacial area. Left term of Eq.7, is likewise the ratio between characteristic times of breakage and coalescence ⁄ .

Finally, by multiplying Eq.4 by , the stable bubble size is the one that equalizes the rate of increase of interfacial area due to breakage ⁄ with the rate of interfacial area loss due to coalescence ( ) in m 2 .m -3 .s -1 . The 1Eq. model is used to compare the 60 possible combinations of models reported in Table 1. As discussed in the last section, the choice of the daughter size distribution model  changes the fit of the correction factor cf, but not the calculations of d32. Therefore, all calculations are performed with the daughter size distribution model of Laakkonen.

However, it is very important to notice that the 1Eq. model does not replace the full QMOM. As only the m2 transport equation is solved, the estimation of other moments of the BSD, possible from  and d32, is subject to caution. No information about the BSD is predicted apart the Sauter mean diameter. For this reason, the 1Eq. model can be considered for many applications as a preliminary shortcut before using a QMOM or multiclass method.

For each combination of models, the correction factor cf is computed in order to optimize the fit with the considered dataset. The fit process is as follows. a)cf is equal to 1 initially. b) the Sauter mean diameter is computed for each condition of the dataset. c) cf is replaced by the ratio ̅̅̅̅̅̅̅̅̅ ̅̅̅̅̅̅̅̅̅ ⁄ and the step b) is repeated. ̅̅̅̅̅̅̅̅̅ is the average Sauter diameter over the experimental dataset, and ̅̅̅̅̅̅̅̅̅ is the average of the calculated Sauter diameters over the same dataset. the Sauter mean diameters are updated until cf is stable, with an evolution lower than 10 -5 between two iterations. A ratio ̅̅̅̅̅̅̅̅̅ ̅̅̅̅̅̅̅̅̅ ⁄ < 1 indicates that too big bubbles are predicted in average and that a lower value of cf may lead to more realistic results.

For Bubble columns, the fit is done while considering consecutively the dissipation rate estimated by CFD, or by the theoretical approach as discussed earlier. For each case, the 10 best fits are reported in Table 4. In agreement with the experimental uncertainty, the ranking between models that exhibits less than 10% of the root mean square error is subject to caution. 

Case of a stirred reactor

The same procedure of cf computing, as described above for the bubble column, is now carried out for an aerated stirred tank, with the dataset of [START_REF] Cappello | Bubble size and liquid-side mass transfer coefficient measurements in aerated stirred tank reactors with non-Newtonian liquids[END_REF]. Figure 4 reports, in the case of stirred tanks, the errors associated to the 33 best kernel combinations. Unshowned combinations lead to errors >200%. The first combinations exhibit very similar deviations from experiments (comprises between 6.8% to 9.2%), all being within the experimental uncertainty.

The classical breakage model of Coulaloglou & Tavlarides is confirmed as relevant, but a significant constant adjustment has to be done (cf deviates strongly from 1). Concerning coalescence, the same models than for bubble columns are found as relevant. 

Combined cases

Best kernels for each flow configuration are different, so finally a parameter fit was processed in order to investigate the possibility of identifying a kernel adapted to both experimental data simultaneously. Two combinations of models appear relevant: bLa, cfPB, ceC (mean error of 16.9%, cf=0.26), and bLa, cfW, ceLe (mean error of 17.9%, cf=2.37). The best fit is reported on the parity diagram in Figure 6. Mean errors are higher than the experimental error (10%), and 2.5 to 3 times higher than those associated to a separated fit on each flow configuration.

Although the results cannot be generalized to any bubbly flows, these 2 models combinations appear as able to cover various hydrodynamic regimes, and can thus be considered as relatively robust. Internal parameters of kernels has not been adjusted to optimize results, and it cannot be excluded that that such an additional parameter fit could improve results. 

Conclusion

On the basis of QMOM theoretical background, a simple model has been developed to predict stable Sauter mean diameters in bubbly flows. The model can be used to quickly optimize any set of population balance models, and to screen optimized kernels in any set of experimental conditions. The model delivers Sauter mean diameter very close to the ones obtained with the more rigorous QMOM method (less than 3% of difference), but it does not provide for any other characteristic of the bubble size distribution. It has been applied to identify, among 60 possible combinations, the better kernel combinations for two types of reactors operated under various flow conditions: a bubble column and an aerated stirred tank. Besides two different kernel combinations have been found to deliver rather good predictions simultaneously on both considered cases. The collision frequency modes of [START_REF] Prince | Bubble coalescence and break-up in air sparged bubble columns[END_REF] and its variant developed by [START_REF] Wang | Population balance model for gas-liquid flows: Influence of bubble coalescence and breakup models[END_REF] are found as relevant for both flows. The coalescence efficiency models of [START_REF] Lehr | A transport equation for the interfacial area density applied to bubble columns[END_REF] and [START_REF] Chesters | The modeling of coalescence processes in fluid-liquid dispersions:A review of current understanding[END_REF] 

  mean diameters are measured in a column of 0.4m of diameter with a dual-probe crosscorrelation method. Demineralized water is used for experiments, and an air flow rate corresponding to a Vsg from 3 to 35cm/s is used. Details are available in the cited article. In order to compute the model, the dissipation rate is required. A first possibility is to use the results of CFD simulations to estimate . Here the simulations results of[START_REF] Gemello | Population balance modelling of bubble columns under the heterogeneous flow regime[END_REF] are used. 3D simulations were performed with the Euler-Euler model of Ansys Fluent 18.0. The RNG k-
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  Prince & Blanch and Wang models concerning coalescence frequency, and Lehr and Chesters models concerning coalescence efficiency. The four best model combinations are reported on Figure 5 and compared to experimental results at stirring rates of 700 and 900 RPM, respectively.
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 6 Figure 6: Parity diagram of the global dataset (bubble column + stirred tank), with the breakage model of Laakkonen, collision frequency model of Prince & Blanch and coalescence efficiency of Chesters (cf=0.26).
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  are also found as the best choices to fit the experimental data used in this study. Concerning breakage frequency, the model of[START_REF] Laakkonen | Validation of bubble breakage,coalescence and mass transfer models for gas-liquid dispersion in agitated vessel[END_REF] gives the best results for the bubble column, while the model of[START_REF] Coulaloglou | Description of interaction processesin agitated liquidliquid dispersions[END_REF] is preferred for the data concerning the stirred tank. Results obtained on the bubble column, with the 1Eq. model, confirm those obtained previously by[START_REF] Gemello | Population balance modelling of bubble columns under the heterogeneous flow regime[END_REF], based on the coupling of QMOM with 3D CFD simulations. A first perspective of the 1Eq. model concerns its implementation in CFD codes to simulate stirred reactors and bubble columns, and to compare results with CFD/QMOM simulations. Another perspective would be to investigate of the effect physical properties (rheology, interfacial properties) on bubble sizes, and the way to implement them on population balance models. kinematic viscosity of the liquid phase, m 2 s -1 G density of the gas phase, kg.m -3 L density of the liquid phase, kg.m
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