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Highlights:  

 Development of a simplified population balance model to predict Sauter diameter. 

 Identification of the best kernels over 60 possible combinations. 

 Flows in a bubble column and a stirred tank are considered, leading to two different sets 

of PBM kernels. 

 Kernels suitable to both flows are also reported. 
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Abstract 

A simplified population balance model has been developed to predict the Sauter mean diameter, 

and to optimize any breakage and coalescence kernel. Firstly, the shortcut model is detailed, and 

the simplifying assumptions are argued. Then the model is applied in a comparison of 60 

combinations of a selection of classical breakage, collision frequency and coalescence efficiency 

kernels. The models are fitted and then compared with an experimental dataset measured in 

two different technologies of interest for biotechnology: bubble columns (Gemello et al., 2018), 

and stirred tanks (Cappello et al., 2020). The best kernels are identified for each flow 

configuration separately, and some kernels are identified as giving acceptable predictions 

simultaneously of both flows (average error on bubble size< 20%). 



 

Introduction 

 

The use of CFD to simulate two-fluid flows still faces the difficulty to predict representative 

bubble or droplet size distributions. Currently, the simulation of industrial reactors can only be 

considered using an Eulerian description of both phases, wherein the dispersed phase is 

described by its volume-averaged phase fraction. However, size distribution properties  

beginning with the Sauter mean diameter d32  are required to correctly predict the mean flow, 

as they condition interfacial forces, turbulence properties and all transport phenomena between 

phases. To overcome this issue, population balance models (PBM) are essential tools as they 

offer the possibility to predict size distributions and make CFD models fully predictive. But in 

practice, the use of PBM leads to different questions linked to a) the choice of the breakage and 

coalescence kernels, among dozens of possible choices (Liao & Lucas 2009, 2010) ; b) the quality 

of the calculation of the local gas fraction () and the dissipation rate (), which conditions the 

results of PBM models ; and c) the difficulty to validate PBM as experimental data under 

industrial relevant conditions are scarce. As a consequence, it still does not exists a real state-of-

the-art concerning PBM selection regarding its different applications. CFD users try to elaborate 

their own “best practices” guides including CFD closure laws, PBM and associated parameters fit. 

However, as validation steps require 3D multiphase simulations, the possibility to compare 

physical kernels is narrow and PBM models can hardly be extensively compared on a rational 

and objective way. 

 

The present study relates an attempt to develop a simple shortcut method able to discriminate 

the adequacy of kernel combinations in different kinds of bubbly flows. The theoretical 

background, the main assumptions and the numerical method are presented in the next section. 

Obviously the objective of the following simplified calculations is not to replace fully predictive 

CFD simulations coupled with PBM, but rather to help final users to make a choice before 



validation or final parameter fit with CFD. Some proposed assumptions are questionable and 

may impact the results of PBM. For this reason, only qualitative results and guiding ideas are 

expected from the proposed method. The governing principles of the shortcut method are:  

 Volume averaged gas holdup and dissipation rate are considered to screen PBM kernels. 

 The Quadrature Method of Moments (QMOM) formalism is followed, but only one 

moment (the 2nd) is solved. 

 Only the Sauter mean bubble size is calculated and used in the shortcut for breakage and 

coalescence calculations.  

 The final “stable” bubble size is computed. The bubble residence time is assumed to be 

higher than the transient time required to achieve the bubble stable size under a given 

set of hydrodynamic conditions. 

 

After being detailed, the method is applied on two different bubbly flows:  a bubble column and 

an aerated stirred tank. Results are compared with available experimental data of Gemello et al. 

(2018) and Cappello et al. (2020), in regard with the associated experimental uncertainty. Best 

kernel combinations, among a consequent but non-exhaustive panel of possibilities, are pointed 

out for each investigated case. Finally, the possibility to validate a common “robust” kernel for 

both cases is discussed.  

 

Method 

 

QMOM framework 

 

The Quadrature Method of Moments is a powerful method that allows to calculate accurately a 

given number of moments of the Bubble Size Distribution (BSD) (Marchisio et al., 2003 ; Petitti 

et al., 2010 ; Buffo et al. 2013). The BSD is not discretized in classes of bubble sizes – which is 

very heavy in term of CPU time, but only the n-th first moments of the BSD are transported. 



Based on the knowledge of the first 2Nq moments of the BSD, different algorithms lead to the 

calculation, at each time, of the Nq abscissa of the quadrature approximation:  
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where    is kth moment of the BSD,    are the Nq abscissa of the quadrature approximation 

(McGraw, 1997).    are the weights of the quadrature approximation. A good compromise 

between accuracy and CPU-time consumption consists to use the 6th first moments of the BSD 

(k=0 to 5), and thus to approximate the BSD by 3 nodes (L1, L2, L3) with associated weights. The 

dynamic evolution of moments is governed by the following balance:  
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where   (     ) denotes the collision frequency between 2 bubble nodes, and  (     ) its 

associated coalescence efficiency.       is the breakage kernel (breakage frequency model).  ̅ 
  is 

the kth moment of the daughter size distribution .  ̅ 
  impacts the production rate of mk 

associated to production of daughter bubbles during the breakage of a bubble of diameter   .  ̅ 
  

writes as follows:  
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        is the daughter bubbles size distribution for a bubble subject to breakage of size   . One 

can identify in Eq.2 death and birth terms associated with breakage and coalescence events. 

Table 1 reports 5 classical breakage models, 4 collision frequency models and 3 coalescence 

efficiency models that are considered in the present work. Details of the models are available in 

literature (Liao & Lucas, 2009,2010).  



 

Table 1: population balance models used in the study. B: breakage, CF: collision frequency, CE: coalescence 

efficiency 

 

 

A selection of kernels based on the adequacy of their initial conditions of use is commendable 

but too restrictive in practice. PBM kernels are generally developed in a specific scope, within a 

given range of physical properties. But they are later applied on miscellaneous systems and 

operating conditions, sometimes far-off their initial range of validation. In the present study, it 

was preferred to not presuppose the adequacy (or inadequacy) of kernels, as is often the case in 

industry, with very partial knowledge on physical or interface properties. 

 



Model simplifications 

 

QMOM models are a very good alternative to the method of classes, especially if the full BSD is 

not especially required.  This is the case when d32 is sufficient to describe hydrodynamics and 

transfer mechanisms. As d32=m3/m2, and as m3 is directly linked to the volume averaged gas 

fraction (       ). If  is calculated by a two-fluid model or known by other means, the only 

missing moment to estimate d32 is m2. Furthermore, in practice BSD is not measurable, especially 

when the gas volume fraction  is higher than 1-2%. The two accessible properties of BSD are  

and d32. Recent advances allow to measure accurately d32 in turbulent bubbly flows with a novel 

optical probe technique, even at high gas fraction (Raimundo et al., 2016), but no information is 

given about other moments as neither BSD nor chord size distributions are measured. 

Besides, Lane et al. (2005), suggest to solve one equation to estimate a bubble density number. 

The solved equation is based on breakage and coalescence rates involving only one node 

quadrature. A similar idea is followed in the present work, and only d32 is considered as a node 

of the BSD. So   =  =d32, and    and    does not exist anymore (w2=w3=0). Besides w1 is directly 

linked to the gas volume fraction:   =           . As only one node is considered, only one 

moment is computed, thus only the m2 equation is solved in the present work, as m3 is deduced 

from .  Other moments are not considered. 

Eq.2 takes the reduced form: 
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Another strong assumption consists to solve Eq.4 at steady state       ⁄      The 

assumptions listed above state that under given flow conditions, the PBM reaches quickly a 

stable d32 which is representative of the volume average bubble size. This assumption is in 

agreement with recent observations in bubble columns (Gemello et al., 2018), where a stable 

bubble size was observed at a distance of 25cm from the gas distributor. The same assumption is 



more discussable in the case of stirred tanks, but QMOM calculations lead to stable bubble sizes 

after a few seconds, and this time is considered low compared to the residence time of bubbles 

at any scale. Cappello et al. (2020) found very similar average bubble sizes in stirred tanks of 

height 0.3m and 0.6m, at equal power input and Vsg, showing that the residence time is sufficient 

at the smaller scale to reach a stable Sauter mean diameter. 

The last assumption consists to consider volume averaged values of  and  to calculate the 

mean bubble diameter. Concerning bubble columns, this assumption has already been validated 

during the study of Gemello (2018), who found close results comparing a 0D approach with 

QMOM to a fully coupled CFD/QMOM modelling. Concerning stirred tanks the assumption is 

once again more questionable as heterogeneities of dissipation rate are potentially more 

pronounced. However, it is known for decades that mass transfer inside stirred tanks does not 

depend on the size of the vessels, neither on the impeller geometry, but it rather depends on 

average turbulent dissipation rate and superficial gas velocity Vsg (Garcia Ochoa & Gomez, 2009 ; 

Gabelle et al., 2011). As the bubble size is the major physical length that governs mass transfer, it 

strengthens the idea that the average bubble size is governed by average dissipation rate and 

gas holdup. Finally, one may keep in mind that the model of Coulaloglou & Tavlarides was 

initially developed in 0D, which did not prevent it from becoming a reference for PBM. Passing 

from 0D to CFD may require a parameter tuning in some cases to overcome the non-linear effect 

of the dissipation rate on the Sauter mean diameter. 

 

Starting from Eq.4, considering the steady state and homogeneous hydrodynamics conditions 

lead to the following expression: 
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where  ̅  is the contribution of daughter bubbles to the production of m2. It is strongly linked to 

the daughter size distribution as smaller bubbles induce more surface per unit of volume of gas. 

Considering the case of binary breakup, several cases are considered. In Table 2,  ̅ 
 expressions 

are established for different   shapes: asymetric law of Laakkonen (2006), parabolic bell, 

inverse bell (U shape), and flat shape. Associated analytical expressions of  ̅ 
  are all 

proportional to   
 . As a consequence  ̅ 

 
  
 ⁄  ratios only depend on the considered   shape, and 

(   ̅   ⁄ ) term in Eq.5 is a constant. Therefore, for a given set of PBM kernels, changing the   

function and one parameter in one of the models will lead to exactly the same results on d32. For 

example if we use the   law of Laakkonen and the collision model of Wang with the constant 

C2’=0.17, results are exactly the same than with the   bell shape and C2’=0.24. 

 

Table 2: Considered  Models of binary daughter size distribution 

 

 

For one condition of gas volume fraction and dissipation rate, Eq.5 has only one unknown 

variable (L) that can be easily solved with an iterative method. In order to fit a PBM kernel to 

experimental data, a possibility consists to modify the first constant in one of the PB models. For 

example the first constant of the collision frequency model could be adjusted. But instead of 

changing a constant, a correction factor cf is introduced in the numerator of Eq.5. The cf 

parameter can be adjusted to minimize the average error between a set of experimental data 

and the related bubble size predictions. For instance, to fit the predicted bubble size at a known 

value L, under given conditions (, ), the following explicit expression can be used:  
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Alternatively, cf can be estimated to minimize the average error of prediction over a dataset of 

experimental measurements, as reported in the Results section. The introduction of the cf 

coefficient amounts to modify only one of the first constants of any model reported in Table 1, as 

the C1 constant of the breakage model of Coulaloglou and Tavlarides for instance. But the fit of 

internal constants as C2 in the same model is not considered in the frame of the present study. 

 

Experimental data 

 

The experimental data of Gemello et al. (2018), dedicated to bubble columns, are used to 

estimate the relevance of the proposed method, called “1Eq. model” in the following. Sauter 

mean diameters are measured in a column of 0.4m of diameter with a dual-probe cross-

correlation method. Demineralized water is used for experiments, and an air flow rate 

corresponding to a Vsg from 3 to 35cm/s is used. Details are available in the cited article. In order 

to compute the model, the dissipation rate is required. A first possibility is to use the results of 

CFD simulations to estimate . Here the simulations results of Gemello et al. (2019) are used. 3D 

simulations were performed with the Euler-Euler model of Ansys Fluent 18.0. The RNG k- 

turbulence model was used. A 40,000 cells mesh was selected after a mesh-dependency study. 

More details are furnished in the cited paper, but one important information to know is that no 

specific source terms associated to the presence of bubbles (so called Bubble Induced 

Turbulence) were introduced in k and  equations. However, as pointed out by authors the 

results are sensitive to the turbulence modelling, and can lead to important differences on . To 

overcome this issue, another solution consists to use a theoretical estimation of  in bubble 

columns. The theoretical value of  is calculated by a simple energy balance on the potential 

energy of gas:        , though other authors suggest alternative theoretical formulations 



(Roels & Heijnen, 1980). Both possibilities, CFD and theoretical calculations, are explored to 

estimate . 

Experimental data of Cappello et al. (2020) are used to investigate the case of stirred reactors. 

The same bubble size measurement method were used as before, with the same water quality, 

which makes common data processing very consistent. Average bubble sizes are measured in a 

standard stirred tank of 0.3m of diameter, equipped with a Rushton turbine. The average 

dissipation rate is estimated from the Power number, measured as 5.5, and using the model of 

Gabelle et al. (2011) to estimate the loss of power induced by the presence of gas phase (also 

called Relative Power Demand). Table 3 reports a summary of experimental data used in the 

present study. 

 

Table 3: Experimental Data 

 

 



 

Raimundo et al. (2016) estimated the global uncertainty of the cross-correlation method in the 

range of 10 to 15%, by comparison with other methods. Furthermore, Cappello et al. (2020) 

made some reproducibility tests on the cross-correlation method and found a standard 

deviation of 3%. In the present study a global error of +/-10% is considered. 

 

Results 

 

Results are organized in 3 parts. First the 1Eq. model is compared with full QMOM simulations. 

Then the 1Eq. model is used to compare possible combinations of PBM models separately in a 

bubble column and a stirred tank. Finally the use of a common set of models is considered to 

predict bubble size simultaneously for both considered flows. 

 

1Eq. model compared to QMOM 

 

QMOM simulations are based on a 0D 1st order explicit method with a time step of 0.01s. A 

physical time of 15s is considered to insure the convergence of moments, which is generally 

achieved after 3 to 5s of simulated time. The initialization of the 6 moments is based on a 

lognormal distribution, based on d32=0.008m and a variance of 0.04. The Wheeler algorithm 

(Marchisio & Fox, 2013) is used to calculate the weights    and abscissa    of the quadrature 

approximation from the    to    moments. The 1Eq. model uses an initial Sauter mean 

diameter of 8mm. An explicit first order method is used to solve Eq.4 during 15s to achieve 

stable result, with a time step of 0.01s. Alternatively an iterative method can be used to solve 

Eq.5, leading to exactly the same results. The comparison between d32 models is done with the 

following kernel: breakage model of Laakkonen (bLa), coalescence frequency of Wang (cfW), 

coalescence efficiency of Lehr (ceLe), and the daughter size distribution of Laakkonen. No 



correction factor (cf) is applied here. 28 arbitrary flow conditions are used for this comparison: 

 = 5%, 10%, 20% and 40% and  = 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4 m2/s3.  

 

The parity diagram between both models results is reported on Figure 1. The average error of 

the 1Eq. model compared with QMOM is 2.9%, which represents approximately 0.2mm for a 

bubble diameter of 8mm. Therefore, this difference is considered to be sufficiently low to 

validate the use of the 1Eq. model to compare kernels.  

 

 

Figure 1: Parity diagram of the 1Eq. model Versus the QMOM model. 

 

Different benefits are associated with the use of the 1Eq. model. First, the calculation time 

associated to this method is lower than with the QMOM, as no reconstruction algorithm is used. 

The 1Eq. model is approximately 80 times faster than the QMOM with the Wheeler 

reconstruction algorithm. This could make a difference in case of multi-variable optimization. 

The simplicity of the 1Eq. model is also advantageous in case of implementation in a CFD code. 

Secondly, for a given set of PBM kernels, the estimation of the correction factor cf that optimizes 

predictions is fast and simple as discussed above. And at last, the effect of breakage and 

coalescence kernels on d32 is explicitly described: the Eq.5 can be recombined as the 



dimensionless ratio between the breakage frequency g(L) and the coalescence frequency 

                       ⁄ , both in s-1:  

 

         (    )⁄
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 )⁄             (7) 

 

The left hand term is the ratio between coalescence and breakage frequencies. The right hand 

term is a function of the daughter size distribution and its effect on the interfacial area. Left term 

of Eq.7, is likewise the ratio between characteristic times of breakage and coalescence     ⁄ . 

Finally, by multiplying Eq.4 by , the stable bubble size is the one that equalizes the rate of 

increase of interfacial area due to breakage 
  

 
         ⁄     with the rate of interfacial area 

loss due to coalescence 
    

   
      (   

 

 ) in m2.m-3.s-1. The 1Eq. model is used to compare the 

60 possible combinations of models reported in Table 1. As discussed in the last section, the 

choice of the daughter size distribution model  changes the fit of the correction factor cf, but 

not the calculations of d32. Therefore, all calculations are performed with the daughter size 

distribution model of Laakkonen.  

However, it is very important to notice that the 1Eq. model does not replace the full QMOM. As 

only the m2 transport equation is solved, the estimation of other moments of the BSD, possible 

from  and d32, is subject to caution. No information about the BSD is predicted apart the Sauter 

mean diameter. For this reason, the 1Eq. model can be considered for many applications as a 

preliminary shortcut before using a QMOM or multiclass method.  

For each combination of models, the correction factor cf is computed in order to optimize the fit 

with the considered dataset. The fit process is as follows. a)cf is equal to 1 initially. b) the Sauter 

mean diameter is computed for each condition of the dataset. c) cf is replaced by the ratio 

          
̅̅ ̅̅ ̅̅ ̅̅ ̅         

̅̅ ̅̅ ̅̅ ̅̅ ̅⁄  and the step b) is repeated.        
̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average Sauter diameter over the 

experimental dataset, and         
̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average of the calculated Sauter diameters over the 

same dataset. the Sauter mean diameters are updated until cf is stable, with an evolution lower 



than 10-5 between two iterations. A ratio        
̅̅ ̅̅ ̅̅ ̅̅ ̅         

̅̅ ̅̅ ̅̅ ̅̅ ̅⁄  < 1 indicates that too big bubbles are 

predicted in average and that a lower value of cf may lead to more realistic results.  

For Bubble columns, the fit is done while considering consecutively the dissipation rate 

estimated by CFD, or by the theoretical approach as discussed earlier. For each case, the 10 best 

fits are reported in Table 4. In agreement with the experimental uncertainty, the ranking 

between models that exhibits less than 10% of the root mean square error is subject to caution. 

 

Table 4: Results of the parameter fit best 10 combinations for each dataset) 

 

 

 

Case of a bubble column 

 

Concerning the investigated bubble column, the best results are obtained with the following 

kernel: Laakkonen model for breakage, Wang or Prince & Blanch models for collision frequency, 

and Lehr or Chesters models for coalescence efficiency. These conclusions meet the ones of 

Gemello et al. (2019) using CFD and QMOM. Gemello et al. (2019) found that coalescence 

efficiency models based on film drainage theory are not appropriate due to the fall of the 

coalescence rate with Vsg, and pointed out the relevance of the association of the Laakkonen 

model (breakage) with the Wang model (coalescence frequency) and Lehr model (coalescence 

efficiency). The latter combination is also found as the most appropriate in the present study, 



which reinforces previous conclusions of Gemello et al., as a wider screening of models is 

performed here. The Figure 2 illustrates the error associated with the combinations when errors 

are below 180%. 5 combinations exhibit an error below the experimental uncertainty of 10%. 

Figure 3 reports results on bubble columns for both  calculations. All reported combinations 

stand within the experimental error bar, excepted at low Vsg. 

 

 

Figure 2: Error associated to 40 kernel combinations (case of bubble columns). 

 

Figure 3: Comparison of d32 between experiments and best PBM combinations in the bubble 

column, as functions of Vsg. Left:  computed from CFD simulations of Gemello et al. (2019), right: 

Theoretical calculation of . The error bars of +/- 10% are reported on experimental data. 

 



Case of a stirred reactor 

 

The same procedure of cf computing, as described above for the bubble column, is now carried 

out for an aerated stirred tank, with the dataset of Cappello et al. (2020). Figure 4 reports, in the 

case of stirred tanks, the errors associated to the 33 best kernel combinations. Unshowned 

combinations lead to errors >200%. The first combinations exhibit very similar deviations from 

experiments (comprises between 6.8% to 9.2%), all being within the experimental uncertainty. 

The classical breakage model of Coulaloglou & Tavlarides is confirmed as relevant, but a 

significant constant adjustment has to be done (cf deviates strongly from 1). Concerning 

coalescence, the same models than for bubble columns are found as relevant. Prince & Blanch 

and Wang models concerning coalescence frequency, and Lehr and Chesters models concerning 

coalescence efficiency. The four best model combinations are reported on Figure 5 and 

compared to experimental results at stirring rates of 700 and 900 RPM, respectively.  

  

 

Figure 4: Error associated to 33 kernel combinations (case of a stirred tank). 

 



 

Figure 5: Comparison of d32 between experiments and best PBM combinations in a stirred tank, as 

functions of Vsg. Left: stirring rate of 700 RPM, right: stirring rate of 900 RPM. Same symbols on 

both graphs. The error bars of +/- 10% are reported on experimental data. 

 

A conclusion concerning model selection, when operated separately on a bubble column and a 

stirred reactor, is that two different breakage models are selected: the model of Laakkonen for 

the bubble column, and the model of Coulaloglou & Tavlarides for the stirred reactor.  

 

Finally, while using the 1Eq. model, there is no need to associate cf  to a modification of breakage 

or coalescence kernel as both phenomena are assumed in equilibrium. But further use in CFD or 

transient simulations may require to associate the parameter fit to a specific model. Gemello et 

al. (2019) fitted the first constant of the collision frequency model and obtained satisfying 

results, even in the part of the column where bubble size is governed by the breakage rate. For 

this reason, if necessary, it is preferred to associate the fit of the cf coefficient to the first 

constant of the collision frequency model. 

 

Combined cases 

 

Best kernels for each flow configuration are different, so finally a parameter fit was processed in 

order to investigate the possibility of identifying a kernel adapted to both experimental data 



simultaneously. Two combinations of models appear relevant: bLa, cfPB, ceC (mean error of 

16.9%, cf=0.26), and bLa, cfW, ceLe (mean error of 17.9%, cf=2.37). The best fit is reported on 

the parity diagram in Figure 6. Mean errors are higher than the experimental error (10%), and 

2.5 to 3 times higher than those associated to a separated fit on each flow configuration. 

Although the results cannot be generalized to any bubbly flows, these 2 models combinations 

appear as able to cover various hydrodynamic regimes, and can thus be considered as relatively 

robust. Internal parameters of kernels has not been adjusted to optimize results, and it cannot 

be excluded that that such an additional parameter fit could improve results. 

 

 

Figure 6: Parity diagram of the global dataset (bubble column + stirred tank), with the breakage 

model of Laakkonen, collision frequency model of Prince & Blanch and coalescence efficiency of 

Chesters (cf=0.26). 

 

 

Conclusion 

 

On the basis of QMOM theoretical background, a simple model has been developed to predict 

stable Sauter mean diameters in bubbly flows. The model can be used to quickly optimize any 



set of population balance models, and to screen optimized kernels in any set of experimental 

conditions. The model delivers Sauter mean diameter very close to the ones obtained with the 

more rigorous QMOM method (less than 3% of difference), but it does not provide for any other 

characteristic of the bubble size distribution. It has been applied to identify, among 60 possible 

combinations, the better kernel combinations for two types of reactors operated under various 

flow conditions: a bubble column and an aerated stirred tank. Besides two different kernel 

combinations have been found to deliver rather good predictions simultaneously on both 

considered cases. The collision frequency modes of Prince & Blanch (1990) and its variant 

developed by Wang et al. (2005) are found as relevant for both flows. The coalescence efficiency 

models of Lehr & Mewes (1999) and Chesters (1991) are also found as the best choices to fit the 

experimental data used in this study. Concerning breakage frequency, the model of Laakkonen et 

al. (2006) gives the best results for the bubble column, while the model of Coulaloglou & 

Tavlarides (1977) is preferred for the data concerning the stirred tank. Results obtained on the 

bubble column, with the 1Eq. model, confirm those obtained previously by Gemello et al. (2019), 

based on the coupling of QMOM with 3D CFD simulations. A first perspective of the 1Eq. model 

concerns its implementation in CFD codes to simulate stirred reactors and bubble columns, and 

to compare results with CFD/QMOM simulations. Another perspective would be to investigate of 

the effect physical properties (rheology, interfacial properties) on bubble sizes, and the way to 

implement them on population balance models. 

  



 

Nomenclature 

Notation 

 ̅ 
  kth moment of , mk 

cf correction factor, - 

d32 Sauter mean diameter, m 

       
̅̅ ̅̅ ̅̅ ̅̅ ̅ average experimental Sauter mean diameter, m 

        
̅̅ ̅̅ ̅̅ ̅̅ ̅ average calculated Sauter mean diameter, m 

g gravity acceleration, m s−2 

g breakage kernel, s−1  

   collision frequency, m3 s−1 

k order of moment 

Li node of the quadrature approximation, m 

mk moment of order k of the BSD, mk-3 

Nq order of the quadrature approximation - 

ucrit critical velocity, m.s-1 

Vsg superficial gas velocity, m.s-1 

wi weights of the quadrature approximation, m-3 

 

Greek symbols 

 gas volume fraction, - 

  daughter distribution function, - 

max maximal value of gas volume fraction, - 

 turbulence dissipation rate, m2 s−3 

  coalescence efficiency, - 

 kinematic viscosity of the liquid phase, m2 s-1  

G density of the gas phase, kg.m-3 



L density of the liquid phase, kg.m-3 

 surface tension, N.m-1 

   characteristic breakage time, s 

   characteristic coalescence time, s 
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Tables captions 

 

Table 1: Population balance models used in the study. B: breakage, CF: collision frequency, CE: coalescence 

efficiency 

 

Table 2: Considered  Models of binary daughter size distribution 

 

Table 3: Experimental Data 

 

Table 4: Results of the parameter fit (best 10 combinations for each dataset) 

 

Figures captions 

 

Figure 1: Parity diagram of the 1Eq. model Versus the QMOM model. 

 

Figure 2: Error associated to 40 kernel combinations (case of bubble columns). 

 



Figure 3: Comparison of d32 between experiments and best PBM combinations in bubble columns, as 

functions of Vsg. Left:  computed from CFD simulations of Gemello et al. (2019), right: Theoretical 

calculation of . The error bars of +/- 10% are reported on experimental data. 

 

Figure 4: Error associated to 33 kernel combinations (case of stirred tanks). 

 

Figure 5:  Comparison of d32 between experiments and best PBM combinations in a stirred tank, as 

functions of Vsg. Left: Stirring rate of 700 RPM, right: Stirring rate of 900 RPM. Same symbols on 

both graphs. The error bars of +/- 10% are reported on experimental data. 

 

Figure 6: Parity diagram of the global dataset (bubble column+stirred tank), with the Breakage 

model of Laakkonen, Collision frequency model of Prince & Blanch and coalescence efficiency of 

Chesters (cf=0.26). 

 


