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Elucidating the 1 H NMR relaxation mechanism in polydisperse polymers and bitumen using measurements, MD simulations, and models

The mechanism behind the 1 H NMR frequency dependence of T1 and the viscosity dependence of T2 for polydisperse polymers and bitumen remains elusive. We elucidate the matter through NMR relaxation measurements of polydisperse polymers over an extended range of frequencies (f0 = 0.01 ↔ 400 MHz) and viscosities (η = 385 ↔ 102, 000 cP) using T1 and T2 in static fields, T1 field-cycling relaxometry, and T1ρ in the rotating frame. We account for the anomalous behavior of the log-mean relaxation times T1LM ∝ f0 and T2LM ∝ (η/T ) -1/2 with a phenomenological model of 1 H-1 H dipole-dipole relaxation which includes a distribution in molecular correlation times and internal motions of the non-rigid polymer branches. We show that the model also accounts for the anomalous T1LM and T2LM in previously reported bitumen measurements. We find that molecular dynamics (MD) simulations of the T1 ∝ f0 dispersion and T2 of similar polymers simulated over a range of viscosities (η = 1 ↔ 1, 000 cP) are in good agreement with measurements and the model. The T1 ∝ f0 dispersion at high viscosities agrees with previously reported MD simulations of heptane confined in a polymer matrix, which suggests a common NMR relaxation mechanism between viscous polydisperse fluids and fluids under confinement, without the need to invoke paramagnetism. FIG. 1.
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I. INTRODUCTION

Among its many attributes, 1 H nuclear magnetic resonance (NMR) relaxation is a versatile non-destructive technique for measuring crude-oil viscosity and compo- * ps41@rice.edu sition, thus providing a unique contribution to the characterization of light crude-oils, heavy crude-oils, and bitumen . However, the 1 H NMR relaxation mechanism in crude oils at high viscosity such as heavy-oils and bitumen remains elusive and a topic of great debate.

One possible NMR relaxation mechanism in crude oils is surface paramagnetism [START_REF] Chen | Dispersion of T1 and T2 nuclear magnetic resonance relaxation in crude oils[END_REF][START_REF] Benamsili | Multidimensional nuclear magnetic resonance characterizations of dynamics and saturations of brine/crude oil/mud filtrate mixtures confined in rocks: The role of asphaltene[END_REF][START_REF] Korb | Relation and correlation between NMR relaxation times, diffusion coefficients, and viscosity of heavy crude oils[END_REF][START_REF] Vorapalawut | Probing dynamics and interaction of maltenes with asphaltene aggregates in crude oils by multiscale[END_REF][START_REF] Ordikhani-Seyedlar | Evidence of aromaticity-specific maltene NMR relaxation enhancement promoted by semi-immobilized radicals[END_REF], whereby the maltenes in the crude oils diffuse in and out of the asphaltene macro-aggregates, during which time they come into contact with the paramagnetic sites on the asphaltene surface. Another possible relaxation mechanism in crude oils is enhanced 1 H-1 H dipole-dipole relaxation [1-5, 9, 13, 25, 30, 31, 43, 44], whereby the relaxation of the maltenes is enhanced by confinement from the transient nano-pores of the asphaltene macro-aggregates. Similarly, 1 H-1 H dipole-dipole relaxation is also postulated to dominate for light hydrocarbons in the organic nano-pores of kerogen [START_REF] Washburn | Relaxation mechanisms and shales Concepts[END_REF][START_REF] Singer | Fluid typing and pore size in organic shale using 2D NMR in saturated kerogen isolates[END_REF][START_REF] Fleury | Characterization of shales using T1-T2 maps[END_REF][START_REF] Zhang | Nuclear magnetic resonance surface relaxation mechanisms of kerogen[END_REF][START_REF] Washburn | Detection of intermolecular homonuclear dipolar coupling in organic rich shale by transverse relaxation exchange[END_REF][START_REF] Tandon | Improved analysis of NMR measurement in organic-rich mudrocks through qunatifying hydrogen-kerogen interfacial relaxation mechanisms[END_REF][START_REF] Xie | Investigation of physical properties of hydrocarbons in unconventional mudstines using twodimensional NMR relaxometry[END_REF][START_REF] Parambathu | Molecular dynamics simulations of NMR relaxation and diffusion of heptane confined in a polymer matrix[END_REF]. In fact, crossed-linked asphaltenes have been shown to be a good model for kerogen when modeling of the equilibrium partitioning of hydrocarbons in nanoporous kerogen particles [START_REF] Liu | Thermodynamic modeling of the equilibrium partitioning of hydrocarbons in nanoporous kerogen particles[END_REF].

In order to investigate the NMR relaxation mechanism in heavy-oils and bitumen, we previously reported a series of NMR measurements on polydisperse polymers and polymer-heptane mixes [START_REF] Singer | NMR relaxation of polymer-alkane mixes, a model system for crude oils[END_REF][START_REF] Singer | Interpretation of NMR relaxation in bitumen and organic shale using polymerheptane mixes[END_REF]. Polymers are known to have similar rheology as heavy oils [START_REF] Abivin | Thermal behavior and viscoelasticity of heavy oils[END_REF], making them good models for studying the rheology of viscous fluids. These polymers also have negligible amounts of paramagnetics impurities (< 100 ppm according to EPR), which makes them a good model for studying 1 H-1 H dipoledipole relaxation with measurements and molecular dynamics (MD) simulations. Many studies have been reported on the 1 H-1 H dipole-dipole relaxation of monodis-perse polymers, including field-cycling relaxometry [START_REF] Kariyo | From a simple liquid to a polymer melt: NMR relaxometry study of polybutadiene[END_REF][START_REF] Kariyo | From simple liquid to polymer melt. glassy and polymer dynamics studied by fast field cycling NMR relaxometry: Rouse regime[END_REF][START_REF] Kruk | Field-cycling NMR relaxometry of viscous liquids and polymers Prog[END_REF] and multiple-quantum techniques [START_REF] Graf | Chain-order effects in polymer melts probed by 1 H double-quantum NMR spectroscopy[END_REF][START_REF] Chávez | Time-domain NMR observation of entangled polymer dynamics: Universal behavior of flexible homopolymers and applicability of the tube model[END_REF][START_REF] Chávez | Time-domain NMR observation of entangled polymer dynamics: Analytical theory of signal functions[END_REF][START_REF] Mordvinkin | Microscopic observation of the segmental orientation autocorrelation function for entangled and constrained polymer chains[END_REF], from which a wealth of information about the molecular dynamics of monodisperse polymers is obtained. In our case, we use polydisperse polymers since bitumen and heavy-oils are highly polydisperse fluids. Furthermore, the polydisperse polymers are viscosity standards designed to have minimal shear-rate dependence on viscosity, which is important when comparing with NMR relaxation which is measured at zero shear-rate.

We previously showed that at high viscosities, the log-mean relaxation time T 1LM for the polydisperse polymers becomes independent of viscosity and proportional to frequency T 1LM ∝ f 0 [START_REF] Singer | NMR relaxation of polymer-alkane mixes, a model system for crude oils[END_REF][START_REF] Singer | Interpretation of NMR relaxation in bitumen and organic shale using polymerheptane mixes[END_REF]. This behavior presents significant deviations from the traditional Bloembergen, Purcell and Pound (BPP) model for 1 H-1 H dipole-dipole relaxation of monodisperse hard-spheres [START_REF] Bloembergen | Relaxation effects in nuclear magnetic resonance absorption[END_REF] where T 1,BPP ∝ f 2 0 η/T is predicted at high viscosities. Furthermore for the polydisperse polymers, we find that the "plateau" value normalized to f 0 = 2.3 MHz, T 1LM × 2.3/f 0 ≃ 3 ms, is the same as previously reported bitumen data. This implies that the relaxation mechanism is independent of the paramagnetic concentration, and therefore that 1 H-1 H dipole-dipole relaxation dominates over paramagnetism at high viscosities.

This then lead us to develop a phenomenological model based on 1 H-1 H dipole-dipole relaxation which accounts for T 1LM plateau at high viscosities by lowering the frequency exponent in the BPP model [START_REF] Singer | NMR relaxation of polymer-alkane mixes, a model system for crude oils[END_REF][START_REF] Singer | Interpretation of NMR relaxation in bitumen and organic shale using polymerheptane mixes[END_REF]. Lowering the frequency exponent implies a distribution in molecular correlation times of the viscous fluid, which is a similar approach to the phenomenological Cole-Davidson function [START_REF] Davidson | Dielectric relaxation in glycerol, propylene glycol, and n-propanol[END_REF][START_REF] Lindsey | Detailed comparison of the WilliamsWatts and ColeDavidson functions[END_REF] commonly used for dielectric and NMR data of glycerol [START_REF] Flämig | NMR relaxometry: The canonical case glycerol[END_REF] and monodisperse polymers [START_REF] Kruk | Field-cycling NMR relaxometry of viscous liquids and polymers Prog[END_REF]. Our model also includes the presence of internal motions of the polymer branches through the Lipari-Szabo model [START_REF] Lipari | Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity[END_REF][START_REF] Lipari | Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results[END_REF].

In this study, we further test our model on polydisperse polymers using T 1 field cycling relaxometry and T 1ρ relaxation in the rotating frame. In the absence of paramagnetic impurities, we report on the anomalous viscosity dependence T 2LM ∝ (η/T ) -1/2 for the polydisperse polymers at high viscosity, where a similar anomalous behavior was previously reported for bitumen [START_REF] Yang | Viscosity evaluation for NMR well logging of live heavy oils[END_REF][START_REF] Kausik | Frequency and temperature dependence of 2D NMR T1-T2 maps of shale[END_REF]. This again presents a significant departure from BPP where T 2,BPP ∝ (η/T ) -1 is predicted at high viscosities. We report on MD simulations of T 1 and T 2 by 1 H-1 H dipoledipole relaxation of the polymer with viscosities in the range η = 1 ↔ 1,000 cP. The MD simulations show that T 1 ∝ f 0 at high frequencies (f 0 100 MHz), specifically T 1 × 2.3/f 0 ≃ 3 ms, in good agreement with measurements and our model at high viscosity. The MD simulations also confirm the dominance of intra-molecular over inter-molecular 1 H-1 H relaxation at high viscosity, which was previously only assumed to be the case.

II. METHODOLOGY

A. Experimental

The polymers used in this study are listed in Table I. The average molecular weight M w and poly-dispersivity index M w /M n were measured using gel permeation chromatography (GPC) using an Agilent Technologies 1200 module. The data in Table I indicate that the polymers are highly dispersive, up to M w /M n ≃ 3.11 in the case of B360000 poly(isobutene). The large polydispersivity of the polymers make them ideal for comparing with crude-oils, which are also highly dispersed as evidenced by their wide T 2 distributions [START_REF] Freedman | A new NMR method of fluid characterization in reservoir rocks: Experimental confirmation and simulation results[END_REF]. In the case of the three poly(isobutene) polymers in Table I, the viscosity fit well to the functional form η ≃ A M α w [START_REF] Holden | Viscosity of polyisoprene[END_REF], with α ≃ 2.4 and A ≃ 1.07 × 10 -4 in units of (cP) and (g/mol) at ambient [START_REF] Singer | Interpretation of NMR relaxation in bitumen and organic shale using polymerheptane mixes[END_REF]. An illustration of a section of poly(isobutene) is shown in Fig. 2, which was used for molecular dynamics (MD) simulations.

Name

Composition η (25 The viscosity measurements were made using a Brookfield AMETEK viscometer. The viscosities did not depend on shear-rate (within experimental uncertainties), thereby making them suitable viscosity "standards" for comparing with NMR measurements which are measured at zero shear-rate. The viscosity measurements were made at both ambient temperature (≃ 25 A 1 GHz electron paramagnetic resonance (EPR) apparatus was used to measure the concentration of paramagnetic ions plus the (weight equivalent) concentration of free radicals (i.e. unpaired valence electrons), which both contribute to NMR paramagnetic relaxation. The EPR data on the Brookfield viscosity standards indicated < 100 ppm paramagnetic impurities (i.e. the signal was below the detection limit of the apparatus). The paramagnetic concentration in the polymers is at least an order of magnitude less than the estimated ≃ 1,000 ppm for Athabasca bitumen [START_REF] Singer | Interpretation of NMR relaxation in bitumen and organic shale using polymerheptane mixes[END_REF][START_REF] Zhao | Composition and size distribution of coherent nanostructures in Athabasca bitumen and Maya crude oil[END_REF].

1 H NMR T 1 and T 2 measurements at a resonance frequency of ω 0 /2π = f 0 = 2.3 MHz were made with a GeoSpec2 from Oxford Instruments, with a 29 mm diameter probe. The samples were measured at ambient conditions (≃ 25 • C) and after temperature equilibration to ≃ 30 • C. Additional measurements at ≃ 35 • C were made by turning off the chiller and equilibrating to the magnet temperature. T 1 and T 2 measurements at f 0 = 22 MHz and ≃ 30 • C were made with a special spectrometer from MR Cores at Core Laboratories, with a 30 mm diameter probe. T 1 and T 2 measurements at f 0 = 400 MHz at ≃ 25 tra, with a 18 mm diameter probe. The T 1ρ measurements in the rotating frame [START_REF] Kimmich | NMR Tomography, Diffusometry and Relaxometry[END_REF][START_REF] Steiner | NMR relaxometry: Spin lattice relaxation times in the laboratory frame versus spin lattice relaxation times in the rotating frame[END_REF] were made with a spin-locking frequency ω 1 /2π = f 1 = 1.7 kHz ↔ 42 kHz. Field cycling measurements were made on a Stelar fast field-cycling (FC) relaxometer from f 0 = 0.01 ↔ 30 MHz at 38.4 • C, with a 10 mm diameter probe. All of the above T 2 measurements were measured using a CPMG sequence with echo spacings of T E = 0.1 ms or less, except at f 0 = 400 MHz where T 2 was estimated from T 2 ≃ 1/π∆f , where ∆f is the width of the NMR spectrum. The hydrogen index (HI ≃ 1.17) of the polymers is discussed in [START_REF] Singer | Interpretation of NMR relaxation in bitumen and organic shale using polymerheptane mixes[END_REF].

The T 1 , T 1ρ , and T 2 distributions of the pure polymers were determined using inverse Laplace transforms [START_REF] Venkataramanan | Solving fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions[END_REF][START_REF] Song | T1-T2 correlation spectra obtained using fast two-dimensional laplace inversion[END_REF]. The FC T 1 distributions shown in Figs. 3 and4 tend to narrow with increasing frequency due to larger (absolute) longitudinal cross-relaxation [START_REF] Kalk | Proton magnetic relaxation and spin diffusion in proteins[END_REF][START_REF] Kowalewski | Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications[END_REF] (a.k.a. spin-diffusion). Figs. 3 and4 also show the finite ramptime of 3 ms required to ramp the field up and down. While in theory this does not effect the T 1 acquisition [START_REF] Kimmich | Field-cycling NMR relaxometry Prog[END_REF], it has been noted that it does effect broad T 1 distributions with fast relaxing components [START_REF] Roos | The "long tail" of the protein tumbling correlation function: observation by 1 H NMR relaxometry in a wide frequency and concentration range[END_REF][START_REF] Ward-Williams | Insights into functionality-specific adsorption dynamics and stable reaction intermediates using fast field cycling NMR[END_REF]. Our relaxation model indicates that this is likely the case for the 102,000 cP polymer, where the log-mean T 1LM is most likely overestimated by a factor ≃ 2 1/2 at low frequencies. The T 1ρ distributions at f 1 = 1.7 kHz and f 1 = 42 kHz are shown in Fig. 5, alongside the T 2 distribution. T 1ρ and T 2 distributions tend to narrow with increasing viscosity, which is opposite to the trend in polydispersivity index M w /M n in Table I. The narrowing may therefore be a result of larger transverse cross-relaxation (in the low frequency limit) with increasing viscosity (i.e. increasing correlation time) [START_REF] Kowalewski | Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications[END_REF]. In the case of the most viscous polymer, Fig. 5 shows that T 1ρ increases when going from f 1 = 1.7 kHz to 42 kHz, indicating the presence of molecular correlation times shorter than τ (2ω 1 ) -1 ≃ 1 µs.

The log-mean values T 1LM , T 1ρLM and T 2LM of the distributions are used for data analysis and fitting to the model, where for example T 1LM = exp ln T 1 , which is justified from the constituent viscosity model [START_REF] Freedman | A new NMR method of fluid characterization in reservoir rocks: Experimental confirmation and simulation results[END_REF]. As shown in the Supporting Information, the effects of dissolved oxygen on T 1 as a function of frequency were measured for n-heptane, and the concentration of dissolved oxygen C O2 in the polymer-heptane mix was predicted by MD simulations. The results indicate that the effects of dissolved oxygen on T 1 (and T 2 ) are negligible for all the polymers at all frequencies.

B. Relaxation model

The underlying expressions for T 1 , T 2 and T 1ρ in an isotropic system are given by [START_REF] Mcconnell | The Theory of Nuclear Magnetic Relaxation in Liquids[END_REF][START_REF] Cowan | Nuclear Magnetic Resonance and Relaxation[END_REF]:

1 T 1 = J(ω 0 ) + 4J(2ω 0 ), 1 T 2 = 3 2 J(0) + 5 2 J(ω 0 ) + J(2ω 0 ), (1) 
1

T 1ρ = 3 2 J(2ω 1 ) + 5 2 J(ω 0 ) + J(2ω 0 ).
J(ω 0 ) is the spectral density at the resonance frequency ω 0 = 2πf 0 . The expression for T 1 in the rotating frame, T 1ρ , is similar to T 2 except that the zero-frequency term J(0) is replaced by J(2ω 1 ) where ω 1 = 2πf 1 is the spinlocking frequency [START_REF] Kimmich | NMR Tomography, Diffusometry and Relaxometry[END_REF]. Note that Eq. 1 does not assume a model for the spectral density J(ω).

BPP model

The BPP model for the spectral-density J BPP (ω) for intra-molecular 1 H-1 H dipole-dipole relaxation is given by the following [START_REF] Bloembergen | Relaxation effects in nuclear magnetic resonance absorption[END_REF]:

J BPP (ω) = 1 3 ∆ω 2 R 2τ η 1 + (ωτ η ) 2 , (2) 
τ η = 4π 3k B R 3 η T , (3) 
∆ω 2 R = 9 20 
µ 0 4π 2 2 γ 4 1 N N i =j 1 r 6 ij . (4) 
The BPP model assumes the Stokes-Einstein-Debye relation for hard spheres, where τ η is the rotational correlation-time, η/T is viscosity over temperature, and R is the Stokes radius. The constant ∆ω 2 R is the "secondmoment" (i.e. the strength) of the intra-molecular 1 H-1 H dipole-dipole interactions (where r ij is the 1 H-1 H distance between pairs i and j). Note that the BPP model is only valid in the motional-narrowing regime where ∆ω R τ η ≪ 1 [START_REF] Cowan | Nuclear Magnetic Resonance and Relaxation[END_REF], which is assumed to be the case throughout.

The BPP model introduces the important concept of the fast-motion (i.e. low viscosity) regime (ω 0 τ η ≪ 0.615) where T 1 /T 2 = 1:

T 1,BPP = T 2,BPP ∝ η T -1
for ω 0 τ η ≪ 0.615 [START_REF] Zhang | Some exceptions to default NMR rock and fluid properties[END_REF] and the slow-motion (i.e. high viscosity) regime (ω 0 τ η ≫ 0.615) where T 1 /T 2 > 1:

T 1,BPP ∝ f 2 0 η T for ω 0 τ η ≫ 0.615 (6) 
T 2,BPP ∝ η T -1
for ω 0 τ η ≫ 0.615.

2. New relaxation model

The BPP model fails for polydisperse polymers and bitumen at high-viscosity. In particular, BPP predicts that T 1 ∝ f 2 0 η/T at high-viscosities, while measurements clearly indicate that T 1LM ∝ f 0 is independent of viscosity. As such, a phenomenological model was developed where the frequency exponent in Eq. 2 is lowered from the BPP value (ωτ ) 2 to (ωτ ) 1 . This has the effect of dropping τ η (and therefore η/T ) out of the equation in the slow-motion regime (ω 0 τ η ≫ 1) [START_REF] Singer | NMR relaxation of polymer-alkane mixes, a model system for crude oils[END_REF][START_REF] Singer | Interpretation of NMR relaxation in bitumen and organic shale using polymerheptane mixes[END_REF]. In the Supporting Information, we show that our model for the frequency exponent (ωτ ) 1 is similar to the limiting case of the phenomenological Cole-Davidson function commonly used for dielectric data for glycerol [START_REF] Davidson | Dielectric relaxation in glycerol, propylene glycol, and n-propanol[END_REF][START_REF] Lindsey | Detailed comparison of the WilliamsWatts and ColeDavidson functions[END_REF], as well as for NMR data of glycerol and monodisperse polymers [START_REF] Kruk | Field-cycling NMR relaxometry of viscous liquids and polymers Prog[END_REF].

The consequence of changing the frequency exponent is to introduce a distribution P R (τ ) in local rotational correlation times τ . This is justified by Woessner's theories which show that as the molecule becomes less spherical, the internal motions in the molecule become more complex, and the distribution in correlation times becomes more pronounced [START_REF] Woessner | Spin relaxation processes in a twoproton system undergoing anisotropic reorientation[END_REF][START_REF] Woessner | Nuclear magnetic dipole-dipole relaxation in molecules with internal motion[END_REF]. We also note that according to Woessner's theories, simple fluids show a large distribution in correlation times when their motion is restricted by nano-confinement [START_REF] Orazio | Molecular diffusion and nuclearmagnetic-resonance relaxation of water in unsaturated porous silica glass[END_REF].

Besides changing the frequency exponent, our model also allows for the existence of internal motions of nonrigid polymers using the Lipari-Szabo (LS) model [START_REF] Lipari | Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity[END_REF][START_REF] Lipari | Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results[END_REF]. Changing the frequency exponent to (ωτ η ) 1 in the BPP model and applying the LS model results in the following spectral density:

J P (ω) = 1 3 ∆ω 2 R S 2 2τ R 1 + ωτ R + 1 -S 2 2τ L 1 + ωτ L ( 8 
)
where the subscript P in J P (ω) refers to the "Plateau", and τ R ≫ τ L is assumed. τ R is defined as the slow rotational correlation-time of the whole polymer molecule, which depends on viscosity. The order parameter S 2 is a measure of the rigidity of the polymer molecule, where S 2 = 1 for completely rigid molecules with no internal motion of the polymer branches, and S 2 = 0 for completely non-rigid molecules with full internal motion of the polymer branches. τ L is the local correlation-time, which characterizes the fast τ L (≃ 10's ps) motions of the polymer branches. Eq. 8 predicts the following expression in the slowmotion (ωτ R ≫ 1) regime:

J P (ω) ≃ 1 3 ∆ω 2 R S 2 2 ω + 1 -S 2 2τ L + . . . (9) 
which leads to the following approximation for T 1LM :

1 T 1LM ≃ 2∆ω 2 R S 2 ω 0 1 + 5 3 1 -S 2 S 2 ω 0 τ L + . . . . (10) 
In other words, the leading order term is T 1LM ∝ f 0 , which is independent of viscosity. A deviation from linearity T 1LM ∝ f 0 occurs at high frequencies when ω 0 τ L ≃ 1. This turns out to be more prominent for bitumen than for the polydisperse polymers, where τ L is larger for bitumen (see below). We note that the temperature dependence of τ L is most likely present but much less than the temperature dependence of τ R (which depends on viscosity). Eq. 8 also predicts the following approximation for T 2LM in the slow-motion regime:

1 T 2LM ≃ 10 3 ∆ω 2 R S 2 τ R + . . . , (11) 
where [START_REF] Korb | Relation and correlation between NMR relaxation times, diffusion coefficients, and viscosity of heavy crude oils[END_REF][START_REF] Kausik | Frequency and temperature dependence of 2D NMR T1-T2 maps of shale[END_REF], which relates τ R to the Stokes-Einstein-Debye correlation time τ η ∝ η/T (Eq. 3) at high viscosities. τ 0 is a constant, which leads to the prediction that

τ R = (τ η τ 0 ) 1/2 . The phenomenological relation τ R = (τ η τ 0 ) 1/2 is intro- duced in
T 2LM ∝ τ -1 R ∝ (η/T ) -1/2
, in agreement with previously published bitumen data [START_REF] Yang | Viscosity evaluation for NMR well logging of live heavy oils[END_REF][START_REF] Kausik | Frequency and temperature dependence of 2D NMR T1-T2 maps of shale[END_REF] and the polydisperse polymer data shown below.

Two theories have been proposed for the relation T 2LM ∝ (τ η τ 0 ) -1/2 ∝ (η/T ) -1/2 at high viscosity. The first theory by Korb et al. [START_REF] Korb | Relation and correlation between NMR relaxation times, diffusion coefficients, and viscosity of heavy crude oils[END_REF] stipulates that τ 0 (referred to as τ 1D in [START_REF] Korb | Relation and correlation between NMR relaxation times, diffusion coefficients, and viscosity of heavy crude oils[END_REF]) corresponds to a quasi-1D translational diffusion time of a maltene molecule within the transient nano-porous network of quasi immobile asphaltene macro-aggregates. τ 0 ∝ η/T below a critical viscosity η ≪ η c (with η c ≃ 300 cP), while τ 0 is constant above the critical viscosity η ≫ η c . While [START_REF] Korb | Relation and correlation between NMR relaxation times, diffusion coefficients, and viscosity of heavy crude oils[END_REF] uses this theory in the context of paramagnetism, their model for τ R can also apply here in the context of 1 H-1 H dipole-dipole relaxation. The second theory [START_REF] Kausik | Frequency and temperature dependence of 2D NMR T1-T2 maps of shale[END_REF] arrives at the same dependence of T 2LM ∝ (τ η τ 0 ) -1/2 ∝ (η/T ) -1/2 at high viscosity, but τ 0 (referred to as τ a in [START_REF] Kausik | Frequency and temperature dependence of 2D NMR T1-T2 maps of shale[END_REF]) is dominated by the maltene's residence time τ res in the asphaltene cluster (i.e. τ 0 ≃ τ res ), which is independent of viscosity.

Finally we note that the expression for T 2LM (Eq. 11) contains the factor 10/3, implying that T 2 is in the fastmotion regime (i.e. independent of frequency) even when ω 0 τ R ≫ 1. This is motivated by the interpretation of the polydisperse polymer and bitumen data presented below.

C. MD simulations

Molecular dynamics (MD) simulations of monodisperse polymers were conducted. Four different chain lengths of poly(isobutene) (see Fig. 2) were simulated at 25 • C: a 16-mer, 8-mer, 4-mer and 2-mer. The viscosity of the 16-mer and 8-mer were estimated using the relation η = A M α w [START_REF] Holden | Viscosity of polyisoprene[END_REF], with α ≃ 2.4 and A ≃ 1.07 × 10 -4 in units of (cP) and (g/mol) at ambient [START_REF] Singer | Interpretation of NMR relaxation in bitumen and organic shale using polymerheptane mixes[END_REF]. For example, in the case of the 16-mer where M w = 912 g/mol, this predicts a viscosity of η ≃ 1,000 cP. The viscosities of the 4-mer and 2-mer were predicted using the empirical relation T 2LM ≃ 9.56 (η/T )

-1 [START_REF] Lo | Mixing rules and correlations of NMR relaxation time with viscosity, diffusivity, and gas/oil ratio of methane/hydrocarbon mixtures[END_REF] in units of (ms) and (cP/K). MD simulations of the intra-molecular (T 1R,2R ) [START_REF] Bloembergen | Relaxation effects in nuclear magnetic resonance absorption[END_REF] and inter-molecular (T 1T,2T ) [85, 86] 1 H-1 H dipole-dipole relaxation were then computed for the polymers, from which the total relaxation times (T 1,2 ) are calculated:

1 T 1,2 = 1 T 1R,2R + 1 T 1T,2T . (12) 
The procedure for the MD simulations are the same as reported elsewhere [START_REF] Singer | Molecular dynamics simulations of NMR relaxation and diffusion of bulk hydrocarbons and water[END_REF][START_REF] Asthagiri | Molecular dynamics simulations of NMR relaxation and diffusion of bulk hydrocarbons[END_REF][START_REF] Singer | Role of internal motions and molecular geometry on the NMR relaxation of hydrocarbons[END_REF], and details are given in the Supporting Information. Fig. 6(a) shows the ratio of inter-molecular to intramolecular relaxation times T 1T /T 1R as a function of frequency for the four polymers. A value larger than unity T 1T /T 1R > 1 indicates that intra-molecular relaxation dominates, while T 1T /T 1R < 1 indicates that inter-molecular relaxation dominates. We find that T 1T /T 1R > 1 increases with increasing viscosity, implying that intramolecular relaxation dominates (by at least an order of magnitude) at high viscosities (η 1,000 cP). T 2T /T 2R (not shown) show similar results. These findings justify the assumption in our model (Eq. 8) that intra-molecular relaxation dominates over inter-molecular relaxation. Fig 6(b) shows the total relaxation T 1 (Eq. 12) as a function of frequency for the four polymers. The lowest viscosity (1 cP) polymer shows high T 1 values and minimal dispersion (i.e. minimal frequency dependence). On the other hand, the highest viscosity polymers show significant dispersion. The 189 cP and 1,000 cP polymers merge above f 0 > 100 MHz into a linear relation T 1 ∝ f 0 . This behavior is exactly predicted by the model (Eq. 10), namely that T 1 ∝ f 0 is independent of viscosity. The f 0 > 100 MHz region for the 1,000 cP polymer is compared with measurements and the model below.

We note that a similar relation was previously reported from MD simulations of heptane confined in a polymer matrix, where the surface relaxation T 1S of heptane followed T 1S ∝ f 0 under confinement [START_REF] Parambathu | Molecular dynamics simulations of NMR relaxation and diffusion of heptane confined in a polymer matrix[END_REF]. This implies a connection between the molecular dynamics of highviscosity fluids and low-viscosity fluids under confinement.

III. RESULTS AND DISCUSSIONS

The results and interpretation are organized as follows.

In section A we present the T 1LM data for polydisperse polymers and bitumen in the slow-motion (i.e. highviscosity) regime, and we use Eq. 10 to extract the free parameters S 2 and τ L (Table II). In section B we present the T 2LM data for polydisperse polymers and bitumen in the slow-motion (i.e. high-viscosity) regime, and we use Eq. 11 to extract the free parameter τ 0 (Table II). In section C we present the full frequency dependence of T 1LM and T 2LM data for the polydisperse polymers spanning both the fast-and slow-motion regimes, and we use the full expression Eq. 8 to extract τ 0 for each polymer (Table III).

A. T1LM for polydisperse polymers and bitumen

The results for T 1LM for crude oils (including bitumen) and polydisperse polymers are shown in Fig. 7(a). The crude-oil data are taken from various sources listed in the legend. The most recent addition is the bitumen data at f 0 = 400 MHz by Kausik et al. [START_REF] Kausik | Frequency and temperature dependence of 2D NMR T1-T2 maps of shale[END_REF], measured over a range of temperatures (30

• C ↔ 90 • C).
Also shown in Fig. 7(a) is the BPP prediction [START_REF] Bloembergen | Relaxation effects in nuclear magnetic resonance absorption[END_REF] at f 0 = 2.3 MHz and 400 MHz from Eq. 2. The crude oils roughly follow the BPP prediction T 1LM ∝ (η/T ) -1 at low viscosities, however T 1LM clearly plateaus at high viscosity. Also shown are the MD simulations at 400 MHz for the polymers, which are consistent with the polydisperse polymer measurements. Fig. 7(b) shows the same data as Fig. 7(a) but on a frequency normalized scale. More specifically, the xaxis (η/T ) is multiplied by f 0 /2.3 with f 0 in units of MHz, while the y-axis (T 1LM ) is divided by f 0 /2.3. Frequency normalizing has the effect of collapsing the frequency dependence of the BPP model onto one universal curve [START_REF] Zhang | Oil and gas NMR properties: the light and heavy ends[END_REF]. It also has the effect of collapsing the bitumen and polymer data in the slow-motion regime onto one plateau value given by T 1LM × 2.3/f 0 ≃ 3 ms, i.e. T 1LM ∝ f 0 . The more recent bitumen data at 400 MHz shows a slight departure from the low frequency data, namely the plateau value is lower than at lower frequencies. As shown below, the model takes this departure into account with the ω 0 τ L term in Eq. 10.

Fig. 8 shows T 1LM data for the polydisperse polymers and the bitumen in the slow-motion regime (i.e. highviscosity) regime, which corresponds to data within the horizontal lines (the log-average) in Fig. 7(a). The best fit to the new model using Eq. 9 and Eqs. 1 are shown for both polydisperse polymers and bitumen, and the best fit parameters are shown in Table II. The second moment is fixed to ∆ω R /2π = 20.0 kHz, which is the value for n-heptane [START_REF] Singer | Interpretation of NMR relaxation in bitumen and organic shale using polymerheptane mixes[END_REF]. A Stokes radius of R = 1.85 Å is used for the polymers, which is the value needed to match the correlation T 1LM,2LM = 9.56 (η/T ) -1 in the low-viscosity regime [START_REF] Lo | Mixing rules and correlations of NMR relaxation time with viscosity, diffusivity, and gas/oil ratio of methane/hydrocarbon mixtures[END_REF]. A slightly larger Stokes radius of R = 2.47 Å is used, which is the value needed to match the correlation T 1LM,2LM = 4.0 (η/T ) -1 in the low-viscosity regime [START_REF] Freedman | A new NMR method of fluid characterization in reservoir rocks: Experimental confirmation and simulation results[END_REF].

FIG. 8. T1LM vs. f0 data for polydisperse polymers and bitumen taken from Fig. 7(a), where only data from the slowmotion (i.e. high viscosity) regime are included. Bitumen data are taken from various sources (see Fig. 7 caption), while field cycling (FC) data for bitumen are taken from [START_REF] Kausik | Frequency and temperature dependence of 2D NMR T1-T2 maps of shale[END_REF]. Also shown are FC data for the 102,000 cP polymer. Solid curves are fits using the model in Eq. 10 with fitting parameters shown in Table II. MD simulations of the 1,000 cP polymer are shown above f0 > 100 MHz, corresponding viscosity independent region (see Fig. 6) where T1 ∝ f0. BPP prediction T1 ∝ f 2 0 is also shown.

We note that the fact that T 1LM,2LM are consistent with a constant Stokes radius R in the low-viscosity regime, i.e. R is independent of molecular size (and therefore viscosity), clearly shows that T 1,2 are probes of the local molecular dynamics. This is in stark contrast to the radius of gyration R g which depends on the molecular size [START_REF] Singer | Molecular dynamics simulations of NMR relaxation and diffusion of bulk hydrocarbons and water[END_REF].

The first free-parameter in the model is the order parameter S 2 , which characterizes the rigidity of the molecule. S 2 ≃ 0.147 is found for the polydisperse polymers, which is consistent with previously reported data for monodisperse polymers at high molecular-weights M w > 4,000 g/mol [START_REF] Kariyo | From a simple liquid to a polymer melt: NMR relaxometry study of polybutadiene[END_REF][START_REF] Kariyo | From simple liquid to polymer melt. glassy and polymer dynamics studied by fast field cycling NMR relaxometry: Rouse regime[END_REF][START_REF] Graf | Chain-order effects in polymer melts probed by 1 H double-quantum NMR spectroscopy[END_REF]]. The fit to bitumen indicates a lower S 2 ≃ 0.085, implying a less-rigid molecule (i.e. more isotropic internal-motions). The second freeparameter is the local correlation-time τ L , which characterizes the fast τ L (≃ 10's ps) motions of the molecular branches. The fit indicates a local correlation time of τ L ≃ 20 ns for the polydisperse polymers, and a longer τ L ≃ 53 ns for bitumen. We note that unlike bitumen, the fit for the polydisperse polymers is not very sensitive to τ L , therefore an upper bound τ L 20 ns may be more appropriate for the polydisperse polymers. 8 using Eq. 10, while τ0 is optimized from data in Fig. 9 using Eq. 11. ∆ωR and R are fixed.

Also shown in Fig. 8 are the MD simulations of the 1,000 cP polymer above f 0 > 100 MHz, corresponding viscosity independent region (see Fig. 6) where T 1 ∝ f 0 . The agreement between simulation and data/model in Fig. 8 is remarkable given that only a monodisperse model of poly(isobutene) is used in the simulations. This suggests that the T 1 ∝ f 0 behavior is generic at highviscosities, and that 1 H-1 H dipole-dipole relaxation dominates over paramagnetism at high-viscosities.

B. T2LM for polydisperse polymers and bitumen

The results for T 2LM for the crude oils are shown in Fig. 9(a), taken from various sources listed in the legend, with the most recent addition is the bitumen data at f 0 = 400 MHz by Kausik et al. [START_REF] Kausik | Frequency and temperature dependence of 2D NMR T1-T2 maps of shale[END_REF]. T 2LM for the polydisperse polymers are shown in Fig. 7(b), along with de-oxygenated n-alkane data [START_REF] Shikhov | Temperature-dependent oxygen effect on NMR D-T2 relaxation-diffusion correlation of n-alkanes[END_REF], and the MD simulation results for the polymers at 400 MHz.

Solid lines are fits using the model in Eq. 11 with fitting parameters shown in Table II, restricted to the high-viscosity region η/T > 0.3 cP/K, or η > 100 cP at ambient equivalently. Both the polydisperse polymers and bitumen data are consistent with T 2LM ∝ (η/T ) -1/2 for viscosities higher than η/T > 0.3 cP/K. The model [START_REF] Zhang | Oil and gas NMR properties: the light and heavy ends[END_REF]), and at 400 MHz (Kausik et al. [START_REF] Kausik | Frequency and temperature dependence of 2D NMR T1-T2 maps of shale[END_REF]). (b) T2LM vs. η/T for the polydispersed polymers in Table I indicates that τ 0 is a factor ≃ 6 larger for bitumen than for the polydisperse polymers. As discussed in Section II B 2, there are two explanations for τ R = (τ η τ 0 ) 1/2 ∝ (η/T ) 1/2 and the interpretation of constant τ 0 [START_REF] Korb | Relation and correlation between NMR relaxation times, diffusion coefficients, and viscosity of heavy crude oils[END_REF][START_REF] Kausik | Frequency and temperature dependence of 2D NMR T1-T2 maps of shale[END_REF], and more investigations are required to narrow down the theory.

The BPP model predicts a "kink" in T 2 during the transition from the low-to high-viscosity regimes, where T 2 is shifted up by a factor 10/3 with increasing viscosity. The kink is supposed to occur at a viscosity corresponding to ω 0 τ η = 0.615, which as shown in Fig. 9 predicts am intermittent spread between low frequency (2.3 MHz) and high frequency (400 MHz) data. However, no spread between the 2.3 MHz and 400 MHz T 2LM data is apparent (within uncertainties), for both polydisperse polymers and bitumen. In other words, there is no apparent frequency dependence in T 2LM (within uncertainties) during the low-to high-viscosity regime, at least up to 400 MHz. We also note that such a kink in T 2LM has never been reported before for polydisperse fluids with a broad T 2 distribution.

We also note that the MD simulations of the polymers agree well with the measurements, which again suggests that 1 H-1 H dipole-dipole relaxation dominates over paramagnetism at high-viscosities.

C. Full frequency dependence of polydisperse polymer

FIG. T1LM vs. f0 from field-cycling (open symbols) and static fields (closed symbols) for the polydisperse polymers. Solid curves are results of the model in Eq. 8 with fixed values of S 2 and τL listed in Table II, along with optimized τ0 listed in Table III. MD simulations of the 1,000 cP polymer are shown above f0 > 100 MHz, corresponding to viscosity independent region (see Fig. 6) where T1 ∝ f0. BPP prediction where T1 ∝ f 2 0 at high frequencies is also shown.

The full frequency dependence in T 1LM for the polydisperse polymer are presented in Fig. 10. Also shown are the fits from the full expression of the model in Eq. 8 using fixed values of S 2 and τ L listed in Table II The full expression of the model shows good agreement with the data over the entire frequency range f 0 = 0.01 ↔ 400 MHz, including the coalescence at high frequencies corresponding to the slow-motion regime ω 0 τ R ≫ 1. Likewise, the MD simulation of the 1,000 cP polymer above f 0 > 100 MHz shows T 1 ∝ f 0 behavior, consistent with the data and the model. Fig. 11 shows the same T 1LM data as Fig. 10, along with T 2LM and T 1ρLM (at f 1 = 1.7 kHz) which show similar values to T 1LM at f 0 = 0.01 MHz. This implies that T 2LM and T 1ρLM (f 1 = 1.7 kHz) have no dependence on f 0 (within uncertainties), and remain in the fast-motion regime even when ω 0 τ R ≫ 1. We speculate this is due to the broad distribution in correlation times, which for T 1 is more efficiently narrowed by longitudinal cross-relaxation (a.k.a. spin-diffusion) than for T 2 by transverse cross-relaxation. This stems from the fact that transverse cross-relaxation for T 2 is only effective in the "non-secular" limit, i.e. the low frequency limit [START_REF] Kowalewski | Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications[END_REF]. As such, we speculate that the transition from the fastto slow-motion regime may occur over a much broader frequency range for T 2 than for T 1 . This is supported by the lack of frequency dependence (i.e. the lack of a kink) in T 2LM shown in Fig. 9(b). As such, we retain the factor 10/3 in Eq. 11 even in the slow-motion regime, at least up to 400 MHz.

IV. CONCLUSIONS

We present NMR relaxation measurements of polydisperse polymers over a wide range of viscosities and over a wide range of frequencies using T 1 and T 2 in static fields, T 1 field-cycling relaxometry, and T 1ρ relaxation in the rotating frame.

We develop a phenomenological model to fit the relaxation data which accounts for a distribution in molecular correlation times for these polydisperse polymers by decreasing the frequency exponent in the BPP model [START_REF] Bloembergen | Relaxation effects in nuclear magnetic resonance absorption[END_REF] from (ωτ ) 2 to (ωτ ) 1 [START_REF] Singer | NMR relaxation of polymer-alkane mixes, a model system for crude oils[END_REF][START_REF] Singer | Interpretation of NMR relaxation in bitumen and organic shale using polymerheptane mixes[END_REF]. Our model also accounts for internal motions of the non-rigid polymer branches with a Lipari-Szabo model incorporating an order parameter S 2 (i.e. rigidity), and a (fast) local correlation time τ L of the polymer branches. In the high viscosity regime of the model, the (slow) rotational correlation time of the entire polymer is taken to be τ R = (τ η τ 0 )

1/2 ∝ (η/T ) 1/2 , where τ η ∝ η/T is the Stokes-Einstein-Debye correlation time, and τ 0 is a constant interpreted in [START_REF] Korb | Relation and correlation between NMR relaxation times, diffusion coefficients, and viscosity of heavy crude oils[END_REF][START_REF] Kausik | Frequency and temperature dependence of 2D NMR T1-T2 maps of shale[END_REF].

In the high-viscosity (i.e. slow-motion) regime, the model accounts for the viscosity independent "plateau" T 1LM × 2.3/f 0 ≃ 3 ms of the polydisperse polymers. The model accounts for previously reported bitumen data where the same plateau was reported, as well as the departure from the T 1LM ∝ f 0 behavior at high frequencies f 0 100 MHz. The model also accounts for the T 2LM ∝ (η/T ) -1/2 behavior at high viscosities η/T 0.3 cP/K (or η 100 cP at ambient, equivalently), for both polydisperse polymers and bitumen.

The model is applied to the full range of frequencies f 0 covering both the fast-and slow-motion regimes of the polydisperse polymers. The data indicate that the T 2LM and T 1ρ are independent of f 0 up to 400 MHz, which we speculate is because the transition from the fastto slow-motion regime occurs over a much broader frequency range for T 2 than for T 1 . We speculate this may be a result of the distribution in correlation times together with cross-relaxation (a.k.a. spin-diffusion) effects.

Molecular dynamics simulations of T 1 and T 2 by 1 H-1 H dipole-dipole relaxation of monodisperse polymers are reported with viscosities in the range η = 1 ↔ 1,000 cP. The simulations confirm the dominance of intra-molecular over inter-molecular 1 H-1 H relaxation at high viscosity, which was previously only assumed to be the case. The simulations for η 100 cP show that T 1 ∝ f 0 at high frequencies (f 0 100 MHz), specifically T 1 × 2.3/f 0 ≃ 3 ms, in good agreement with measurements and the model. A similar dispersion relation T 1S ∝ f 0 was previously reported from MD simulations of the surface relaxation T 1S of heptane confined in a polymer matrix, specifically T 1S × 2.3/f 0 ≃ 7 ms [START_REF] Parambathu | Molecular dynamics simulations of NMR relaxation and diffusion of heptane confined in a polymer matrix[END_REF], implying a common NMR relaxation mechanism between high-viscosity fluids and low-viscosity fluids under confinement. The MD simulations also imply that 1 H-1 H dipole-dipole relaxation dominates over paramagnetism for these systems.
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V. SUPPORTING INFORMATION A. Effects of dissolved oxygen

The measured T 1,2 of a bulk fluid at atmospheric conditions are given by the following:

1 T 1,2 = 1 T 1B,2B + 1 T 1O2,2O2 (13) 
T 1B,2B are the bulk contributions from 1 H-1 H dipoledipole relaxation. For de-oxygenated n-alkanes at ambient it was previously shown that T 1B,2B = 9.56 (η/T ) -1 [START_REF] Lo | Mixing rules and correlations of NMR relaxation time with viscosity, diffusivity, and gas/oil ratio of methane/hydrocarbon mixtures[END_REF], which for n-heptane is T 1B,2B = 7,320 ms at 25 • C (where η = 0.39 cP).

Given the measured T 1,2 and the known T 1B,2B for nheptane at ambient, Eq. 13 yields the paramagnetic contribution T 1O2 from dissolved oxygen. As shown in Fig. 12(a), T 1O2 increases from T 1O2 = 2,500 ms at f 0 = 2.3 MHz to T 1O2 = 5,600 ms at f 0 = 400 MHz. T 1O2 depends on the electron correlation time τ e and the concentration C O2 of dissolved oxygen through the following relations [START_REF] Mcconnell | The Theory of Nuclear Magnetic Relaxation in Liquids[END_REF]:

1 T 1O2 = J O2 (ω 0 ) + 7 3 J O2 (ω e ), (14) 1 T 
2O2 = 2 3 J O2 (0) + 1 2 J O2 (ω 0 ) + 13 6 J O2 (ω e ), (15) 
where the BPP spectral density is given by:

J O2 (ω) = 1 3 ∆ω 2 O2
2τ e 1 + (ωτ e ) 2 with ∆ω 2 O2 ∝ C O2 [START_REF] Bryan | Oil-viscosity predictions from low-field NMR measurements[END_REF] τ e is the electron correlation time of the paramagnetic O 2 molecule, and the second moment (i.e. strength) is given by ∆ω 2 O2 ∝ C O2 . Note that the Larmor frequency of the electron ω e is larger than 1 H by a factor ω e ≃ 659 ω 0 . The BPP model for the spectral density J O2 (ω) was previously shown to work well for a variety of solvents of various molecular weights [START_REF] Teng | Molecular oxygen spinlattice relaxation in solutions measured by proton magnetic relaxation dispersion[END_REF]. Fig. 12(a) shows that the fit to T 1O2 using Eqs. 14 and 16 work well, with best fit parameters τ e = 1.15 ps (which is consistent with [START_REF] Teng | Molecular oxygen spinlattice relaxation in solutions measured by proton magnetic relaxation dispersion[END_REF]) and ∆ω O2 /2π = 62.8 kHz.

Given that the concentration of dissolved oxygen in nheptane is C O2 = 132 mg/L (or 4.12 mM equivalently) at ambient (p O2 = 0.21 atm) implies that the relaxivity (defined in MRI terminology [START_REF] Lauffer | Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design[END_REF]) of O 2 is r 1 = 0.10 mM -1 s -1 at low frequencies f 0 100 MHz.

As shown in [START_REF] Teng | Molecular oxygen spinlattice relaxation in solutions measured by proton magnetic relaxation dispersion[END_REF], τ e is roughly constant for solvents with the molecular weight of heptane or higher, and also appears roughly constant at lower molecular weights [START_REF] Ward-Williams | Insights into functionality-specific adsorption dynamics and stable reaction intermediates using fast field cycling NMR[END_REF]. Furthermore as shown in Fig. 12(b), MD simulations indicate that C O2 is ∼30 % less for the 1,000 cP polymer than for heptane [START_REF] Parambathu | Molecular dynamics simulations of NMR relaxation and diffusion of heptane confined in a polymer matrix[END_REF], implying that T 1O2 is ∼30 % larger for the polymer than for heptane. This predicts that T 1O2 ≃ 8,000 ms for the polymer at f 0 = 400 MHz, which is much larger than the measured T 1 ≃ 300 ms. In other words, the effects of oxygen on T 1,2 are negligible FIG. 12. (a) Measurement of paramagnetic relaxation time T1O 2 due to dissolved oxygen in n-heptane [START_REF] Singer | Interpretation of NMR relaxation in bitumen and organic shale using polymerheptane mixes[END_REF] determined from Eq. 13, along with fit using Eq. 14. Prediction for T2O 2 also shown. (b) MD simulation of concentration CO 2 of dissolved oxygen in 1,000 cP polymer (φC7 = 0 vol%) relative to n-heptane (φC7 = 100 vol%) under ambient conditions, along with simulations for various polymer-heptane mixes, taken from [START_REF] Parambathu | Molecular dynamics simulations of NMR relaxation and diffusion of heptane confined in a polymer matrix[END_REF].

for the polymer at 400 MHz. Below 400 MHz, the effects of oxygen on the polymer are even less since the measured T 1,2 ≪ 300 ms.

The only cases in this report where the effects of dissolved oxygen are apparent are for the low-viscosity crude-oils at f 0 100 MHz where T 1LM,2LM 1,000 ms. In such cases T 1LM,2LM deviate slightly from the BPP correlation line T 1LM,2LM = 4.0 (η/T ) -1 in the lowviscosity regime.

B. Details of the model

The autocorrelation function G(t) for fluctuating magnetic 1 H-1 H dipole-dipole interactions is central to the development of the NMR relaxation theory in liquids [START_REF] Bloembergen | Relaxation effects in nuclear magnetic resonance absorption[END_REF][START_REF] Kimmich | NMR Tomography, Diffusometry and Relaxometry[END_REF][START_REF] Mcconnell | The Theory of Nuclear Magnetic Relaxation in Liquids[END_REF][START_REF] Cowan | Nuclear Magnetic Resonance and Relaxation[END_REF][START_REF] Torrey | Nuclear spin relaxation by translational diffusion[END_REF][START_REF] Hwang | Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids[END_REF][START_REF] Abragam | Principles of Nuclear Magnetism[END_REF]. From G(t), one can determine the spectral density function J(ω) by Fourier transform as such:

J(ω) = 2 ∞ 0 G(t) cos (ωt) dt, (17) 
for G(t) in units of s -2 [START_REF] Mcconnell | The Theory of Nuclear Magnetic Relaxation in Liquids[END_REF]. As shown in Fig. 13(a), G(t) for the n-alkanes has a multi-exponential (i.e. "stretched") decay rather than the single exponential decay predicted by BPP. Furthermore, the degree of stretching increases with increasing carbon number (i.e. increasingly non-spherical geometry). MD simulations indeed confirm that n-pentane and n-hexane have a more stretched intra-molecular G R (t) autocorrelation function (i.e. a broader distribution of correlation times) than the symmetric neo-pentane and benzene molecules, respectively [START_REF] Singer | Role of internal motions and molecular geometry on the NMR relaxation of hydrocarbons[END_REF]. The degree of stretching can be further analyzed using inverse Laplace transforms (see also [START_REF] Singer | NMR spin-rotation relaxation and diffusion of methane[END_REF] and supporting information in [START_REF] Singer | Role of internal motions and molecular geometry on the NMR relaxation of hydrocarbons[END_REF]). By comparison, Fig 13(b) shows the effect of decreasing the exponent β in the spectral density function J (β) (ω) as such:

J (β) (ω) = 1 3 ∆ω 2 R 2τ 1 + (ωτ ) 2β , (18) 
G (β) (t) = 2 2π ∞ 0 J (β) (ω) cos (ωt) dω, (19) 
where the real part of the inverse Fourier transform G (β) (t) is also defined. An analytical expression for G (β) (t) exists for the two extreme cases:

G (1) (t) G (1) (0) = exp (-t/τ ) , (20) 
G (1/2) (t) G (1) (0) = 2 π ∞ 0 cos(x) x + t/τ dx. (21) 
The case of β = 1, G (1) (t), is the BPP model with a single-exponential decay. The case of β = 1/2, G (1/2) (t) [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables chapter 5: Exponential integral and related functions Dover Publications[END_REF], is the stretched case used in the phenomenological model to account for the independence of T 1LM on τ , i.e. the independence on η/T . As demonstrated in It is interesting to note that the long time behavior of Eq. 21 is G (1/2) (t) ∝ t -2 for t/τ ≫ 10. This is analogous to the Mittag-Leffler function, which starts off as a stretched exponential at short times, and turns into a power-law decay at long times [START_REF] Magin | Anomalous NMR relaxation in cartilage matrix components and native cartilage: Fractional-order models[END_REF].

We note that G (1/2) (t) starts to diverge below t/τ = 0.14, therefore the model is valid for times t/τ 0.14. Correspondingly, this implies that the model for J (1/2) (ω) is valid for frequencies 2ωτ 7.1 (where the factor 2 reflects the J(2ω 0 ) terms in Eq. 1). Given the local correlation-time τ L ≃ 50 ps, this corresponds to validity below frequencies f 0 10 GHz.

C. Link between model and Cole-Davidson

The Cole-Davidson function is widely used to describe the dielectric response [START_REF] Davidson | Dielectric relaxation in glycerol, propylene glycol, and n-propanol[END_REF][START_REF] Lindsey | Detailed comparison of the WilliamsWatts and ColeDavidson functions[END_REF][START_REF] Beckmann | Spectral densities and nuclear spin relaxation in solids[END_REF] and its departure from the traditional Debye model. The function is defined as such: [START_REF] Nicot | Improvement of viscosity prediction using NMR relaxation[END_REF] which reduces to the following expression:

χ ′′ (ω) = Im 1 1 + iωτ CD βCD
χ ′′ (ω) = sin [β CD arctan(ωτ CD )] [1 + (ωτ CD ) 2 ] βCD /2 . (23) 
The Cole-Davidson exponent is bound by 0 < β CD ≤ 1, where β CD = 1 is the Debye model. As β CD is decreased, the underlying distribution P CD (τ ) in molecular correlation times τ grows wider. The Cole-Davidson function has also been successfully used to describe NMR relaxation of glycerol and monodispersed polymers through the relation χ ′′ DD (ω) ∝ ω/T 1 [START_REF] Kruk | Field-cycling NMR relaxometry of viscous liquids and polymers Prog[END_REF][START_REF] Flämig | NMR relaxometry: The canonical case glycerol[END_REF]. The NMR Cole-Davidson spectral density J CD (ω) is given by the following:

J CD (ω) = 2 ω Im 1 1 + iωτ CD βCD 1 3 ∆ω 2 R β CD π/2 (24) 
which reduces to the following expression:

J CD (ω) = 2 ω sin [β CD arctan(ωτ CD )] [1 + (ωτ CD ) 2 ] βCD/2 1 3 ∆ω 2 R β CD π/2 . (25) 
For the purposes of comparison with our model, we have added a factor 1 3 ∆ω 2 R /β CD π/2 to the definition of J CD (ω). The factor 1 3 ∆ω 2 R is related to the units convention of the spectral density [START_REF] Cowan | Nuclear Magnetic Resonance and Relaxation[END_REF]. The factor 1/β CD π/2 is introduced to highlight the similarity with our model. J CD (ω) as defined in Eq. 25 becomes independent of β CD in the limit β CD 10 -3 , and tends towards:

J CD (ω) ⇒ 1 3 ∆ω 2 R 2τ R 1 + ωτ R for β CD 10 -3 τ CD = τ R π/2 (26) 
In other words, J CD (ω) tends towards our model (without the added Lipari-Szabo model, i.e. S 2 = 1) in the case of β CD 10 -3 and τ CD = τ R π/2. βCD . The above comparison shows that polydisperse polymers and bitumen have a much larger distribution in molecular correlation times than gycerol. In terms of the Cole-Davidson model, this manifests itself as a small exponent β CD 10 -3 for the polydisperse polymers and bitumen, compared to monodisperse gycerol where β CD ≃ 0.6 for the α-peak.

D. Details of MD simulation

The detailed simulation procedure is provided in Ref. [START_REF] Parambathu | Molecular dynamics simulations of NMR relaxation and diffusion of heptane confined in a polymer matrix[END_REF]. The system was simulated using NAMD [START_REF] Phillips | Scalable molecular dynamics with NAMD[END_REF][START_REF]Theoretical and Computational Biophysics group[END_REF] code, and modeled using CGenFF Force Field [START_REF] Vanommeslaeghe | CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force field[END_REF]100]. The number of molecules used were 269, 143, 74, and 40 for the 2-mer, 4-mer, 8-mer and 16-mer, respectively. The systems were equilibrated at constant N pT conditions at 25 • C and 1 atm. The data was then collected in a N V E ensemble to compute the autocorrelations G R,T (t).

The results of the intra-molecular G R (t) and intermolecular G T (t) are shown in Fig. 15(a) for the polymer at 1 cP and 1,000 cP. In order to quantify the departure of G R,T (t) from single-exponential decay, we fit G R,T (t) to a sum of multi-exponential decays and determine the underlying probability distribution P R,T (τ ) in correlation times τ . More specifically, we perform an inversion of the following Laplace transform [START_REF] Venkataramanan | Solving fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions[END_REF][START_REF] Song | T1-T2 correlation spectra obtained using fast two-dimensional laplace inversion[END_REF][START_REF] Singer | Role of internal motions and molecular geometry on the NMR relaxation of hydrocarbons[END_REF]:

G R,T (t) = ∞ 0 P R,T (τ ) exp (-t/τ ) dτ, (27) 
τ R,T = 1 G R,T (0)

∞ 0 P R,T (τ ) τ dτ, (28) 
G R,T (0

) = 1 3 ∆ω 2 R,T (29) 
where P R,T (τ ) are the probability distribution functions derived from the inversion, plotted in Fig. 15(b). Details of the inversion procedure can be found in [START_REF] Singer | NMR spin-rotation relaxation and diffusion of methane[END_REF] and in the supporting information in [START_REF] Singer | Role of internal motions and molecular geometry on the NMR relaxation of hydrocarbons[END_REF]. The P R,T (τ ) in Fig. 15(b) indicate a set of ∼5 polymer modes, located at similar τ values for both intramolecular P R (τ ) and inter-molecular P T (τ ) interactions. The intra-molecular P R (τ ) has an additional mode at short τ ∼ 10 -2 ps for both the polymer and heptane, while it is absent for P T (τ ) in both cases. Similar observation of the τ ∼ 10 -2 ps mode was reported in the supporting information for all the liquid-state n-alkanes [START_REF] Singer | Role of internal motions and molecular geometry on the NMR relaxation of hydrocarbons[END_REF], and it is attributed to the fast rotation of the methyl groups.

The decomposition of G R,T (t) into a sum of exponential decays is common practice in phenomenological models of complex molecules [START_REF] Beckmann | Spectral densities and nuclear spin relaxation in solids[END_REF]101], where the more complex the molecular dynamics, the more exponential terms are required [START_REF] Woessner | Spin relaxation processes in a twoproton system undergoing anisotropic reorientation[END_REF][START_REF] Woessner | Nuclear magnetic dipole-dipole relaxation in molecules with internal motion[END_REF]. This is in contrast to analytical techniques and theories used to interpret the autocorrelation function of monodisperse polymers with high molecular-weight M w > 4,000 g/mol where entanglement occurs, and a power law decay is observed G(t) ∝ t -α [START_REF] Chávez | Time-domain NMR observation of entangled polymer dynamics: Universal behavior of flexible homopolymers and applicability of the tube model[END_REF][START_REF] Chávez | Time-domain NMR observation of entangled polymer dynamics: Analytical theory of signal functions[END_REF][START_REF] Mordvinkin | Microscopic observation of the segmental orientation autocorrelation function for entangled and constrained polymer chains[END_REF]. We note however that our polydisperse polymers most likely do not entangle to the extent that monodisperse polymers do, if indeed the polydisperse polymers entangle at all. Also defined in Eq. 28 are the correlation times τ R,T derived from P R,T (τ ), which are found to be τ R = 2,380 ps and τ T = 3,030 ps at 1,000 cP, compared with τ R = 3.33 ps and τ T = 10.1 ps at 1 cP. In other words, the MD simulations indicate that τ R,T increase by a factor (a) MD simulations of the intra-molecular (GR(t)) and inter-molecular (GT (t)) auto-correlation functions GR,T (t) for polymer at 1,000 cP and 1 cP. (b) Probability distributions PR,T (τ ) determined from inverse Laplace transforms of GR,T (t) (Eq. 27). Gray curve is BPP frequency filter defined in Eq. 30, at f0 = 400 MHz.

of ≃500 from 1 cP to 1,000 cP.

The spectral density J R,T (ω) is determined from the Fourier transform (Eq. 17) of G R,T (t) (Eq. 27):

J R,T (ω) = ∞ 0 2τ 1 + (ωτ ) 2 P R,T (τ )dτ [START_REF] Zielinski | Nuclear magnetic resonance dispersion of distributions as a probe of aggregation in crude oils[END_REF] from which the T 1,2 dispersion (i.e. frequency depen-dence) can be determined as such:

1 T 1,R,T = J R,T (ω 0 ) + 4J R,T (2ω 0 ), (31) 1 T 2,R,T = 3 2 J R,T (0) + 5 2 J R,T (ω 0 ) + J R,T (2ω 0 ), (32)

1 T 1,2 = 1 T 1R,2R + 1 T 1T,2T . (33) 
Fig. 15(a) indicates that the second moment ∆ω 2 R,T = 3 G R,T (0) is about a factor ≃10 larger for intra-molecular (∆ω 2 R ) versus inter-molecular (∆ω 2 R ) interactions at 1,000 cP. Given that τ R ≃ τ T at 1,000 cP, one can then deduce that the ratio T 1T,2T /T 1R,2R ≃ 10. In other words, the intra-molecular relaxation rate is ≃ 10 larger than the inter-molecular relaxation rate, therefore intramolecular relaxation dominates at 1,000 cP.

The gray curve in Fig. 15(b) corresponds to the "BPP frequency filter" defined in Eq. 30, at f 0 = 400 MHz (as an example). In other words, the components of P R,T (τ ) contributing to T 1 at f 0 = 400 MHz are weighted by the BPP frequency filter curve, which peaks at ω 0 τ = 0.615. As such, the components in P R,T (τ ) at long τ ≃ 10 4 ps do not contribute to T 1 at f 0 = 400 MHz (as an example), nor do the short components τ 10 ps.

FIG. 3 .

 3 FIG. 2. Illustration of poly(isobutene), where only carbon atoms are shown for clarity.MD simulations of poly(isobutene) were performed with a 16-mer (i.e. 64 carbon atoms) with Mw = 912 g/mol and η ≃ 1,000 cP at ambient.

FIG. 5 .

 5 FIG. 5. (a) T1ρ distributions at f1 = 1.7 kHz and f1 = 42 kHz, along with T2 distributions, all measured at f0 = 21 MHz and 38.4 • C. (b) T2 distributions at f0 = 2.3 MHz and 35 • C, along with T2 distributions at f0 = 21 MHz and 38.4 • C.

FIG. 6 .

 6 FIG. 6. (a) MD simulations of the ratio of inter-molecular to intra-molecular relaxation times T1T /T1R as a function of frequency for the four polymers. (b) Total relaxation time T1 as a function of frequency for the four polymers. Also shown are the BPP prediction (T1 ∝ f 2 0 ), and the observed trend (T1 ∝ f0) above f0 > 100 MHz.

FIG. 7 .

 7 FIG. 7. (a) T1LM vs. η/T for the polydisperse polymers in Table I at 2.3 MHz, 21 MHz, and 400 MHz, and MD simulations of the polymer poly(isobutene) in Fig. 2 at 400 MHz. Also shown are previously published crude-oil and bitumen data at 2.0 MHz (LaTorraca et al. [6], Yang et al. [25]), at 7.5 MHz and 20 MHz (Zhang et al. [10]), at 80 MHz (Vinegar et al. [2]), and at 400 MHz (Kausik et al. [44]). Horizontal lines at each frequency indicate log-average of T1LM in slowmotion (i.e. high-viscosity) region. Curved lines are the BPP prediction [63] at 2.3 MHz and 400 MHz. (b) Same data as in (a), but plotted on frequency normalized axes (normalized to f0 = 2.3 MHz).

FIG. 9 .

 9 FIG. 9. (a) T2LM vs. η/T for bitumen at 2.0 MHz (Vinegar et al.[START_REF] Vinegar | Whole-core analysis by 13[END_REF], LaTorraca et al.[START_REF] Latorraca | Heavy oil viscosity determination using NMR logs[END_REF], Yang et al.[START_REF] Yang | NMR measurement of bitumen at different temperatures[END_REF]), at 7.5 MHz and 20 MHz (Zhang et al.[START_REF] Zhang | Oil and gas NMR properties: the light and heavy ends[END_REF]), and at 400 MHz (Kausik et al.[START_REF] Kausik | Frequency and temperature dependence of 2D NMR T1-T2 maps of shale[END_REF]). (b) T2LM vs. η/T for the polydispersed polymers in TableIat 2.3 MHz, 21 MHz, and 400 MHz, and MD simulations of the polymers at 400 MHz. n-Alkane de-oxygenated data at 2.0 MHz (Shikov et al. [41]). Solid lines are fits using the model in Eq. 11 for the region η/T 0.3 cP/K (or η 100 cP at ambient, equivalently), with fitting parameters listed in Table II. Curved lines are the BPP prediction [63] at 2.3 MHz and 400 MHz.

Fig 13 ,

 13 increasing the carbon number increases the degree of stretching in Fig 13(a), which corresponds to decreasing β in Fig 13(b).

FIG. 13 .

 13 FIG.13. (a) MD simulations of the intra-molecular autocorrelation function GR(t) for the liquid n-alkanes at ambient, taken from[START_REF] Singer | Molecular dynamics simulations of NMR relaxation and diffusion of bulk hydrocarbons and water[END_REF]. The y-axis is normalized by the zero time amplitude GR(0), and the x-axis is normalized by the correlation time τR. Straight line is the BPP prediction. (b) Inverse Fourier transform G (β) (t) (Eq. 19) of the spectral density function J (β) (ω) (Eq.[START_REF] Mutina | Effect of oxygen on the NMR relaxation properties of crude oils[END_REF], where β = 1 corresponds to BPP model (Eq. 20), and β = 1/2 (Eq. 21) corresponds to the model in this report.

Fig 14 shows T 1

 1 FIG. 14. T1 determined from JCD(ω) for βCD = 1, 0.6, and 10 -3 , compared with our model, (a) as a function of η/T for fixed f0 = 2 MHz, and (b) as a function of f0 for fixed η/T = 1 cP/K.

FIG. 15 .

 15 FIG. 15.(a) MD simulations of the intra-molecular (GR(t)) and inter-molecular (GT (t)) auto-correlation functions GR,T (t) for polymer at 1,000 cP and 1 cP. (b) Probability distributions PR,T (τ ) determined from inverse Laplace transforms of GR,T (t) (Eq. 27). Gray curve is BPP frequency filter defined in Eq. 30, at f0 = 400 MHz.

TABLE I

 I 

. Brand name, composition, viscosity η at 25 • C and 40 • C, average molecular weight Mw, and polydispersivity index Mw/Mn, for the Brookfield viscosity standards used in this study.

  • C were made with a Bruker Avance spectrometer, in a 5 mm diameter probe. 1 H NMR T 1 , T 1ρ , and T 2 measurements at f 0 = 21 MHz and 38.4 • C were made at IFP-EN on a Maran Ul-FIG. 4. T1 distributions from field cycling (FC) relaxometry at 38.4 • C for polymers listed in Table I. Dashed vertical line indicates FC ramp-time.

  at 2.3 MHz, 21 MHz, and 400 MHz, and MD simulations of the polymers at 400 MHz. n-Alkane de-oxygenated data at 2.0 MHz (Shikov et al.[START_REF] Shikhov | Temperature-dependent oxygen effect on NMR D-T2 relaxation-diffusion correlation of n-alkanes[END_REF]). Solid lines are fits using the model in Eq. 11 for the region η/T 0.3 cP/K (or η 100 cP at ambient, equivalently), with fitting parameters listed in TableII. Curved lines are the BPP prediction [63] at 2.3 MHz and 400 MHz.

TABLE III .

 III , and optimized values of τ 0 listed in TableIII. The optimized values of τ 0 in Table III tend to decrease with increasing viscosity, however the average agrees with the value in Table II determined from the entire set of T 2LM data. The factor ≃ 2 smaller τ 0 (and factor ≃ 2 1/2 smaller τ R ) for 102,000 cP is likely due to FC ramp-time effects which overestimate T 1LM by a factor ≃ 2 1/2 . T1LM from Fig.10, plus T2, T1ρ, and model. Viscosity η, Stokes-Einstein-Debye correlation time τη (Eq. 3), τ0 fitting parameter used in Fig.10and corresponding τR = (τητ0) 1/2 , for the polydisperse polymers at 40 • C. ( * ) τ0 and τR for 102,000 cP are likely underestimated due to FC ramp-time effects.

	All at	η	τη	τ0 τR
	40 • C (cP) (ns) (ns) (ns)
		385	2	53 11
		4,060 25	51 36
		28,700 179	40 85
		102,000 636 22

FIG. 11. * 118 *
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1. Effects of dissolved oxygen.