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Introduction

1 Life cycle assessment (LCA) is an iterative methodology to assess the potential environmental impacts of 2 products and services throughout their life cycle (International Organization for Standardization (ISO) 2006a, 3 b). Two types of LCA may be distinguished depending on their objectives [START_REF] Weidema | Market information in life cycle assessment[END_REF]Zamagni et al. 4 2012; Guiton and Benetto 2013): (i) attributional LCA (A-LCA) aims to assess the share of the overall 5 environmental impacts that may be attributed to a product system in a status quo situation and (ii) 6 consequential LCA (C-LCA) aims to assess the environmental consequences of a decision or a change 7 [START_REF] Weidema | Marginal production technologies for life cycle inventories[END_REF]. ILCD (European Commission -Joint Research Centre -Institute for Environment and 8 Sustainability 2010) and other authors [START_REF] Dandres | Assessing non-marginal variations with consequential LCA: Application to European energy sector[END_REF][START_REF] Marvuglia | Modelling approaches for consequential life-cycle assessment (C-LCA) of bioenergy: Critical review and proposed framework for biogas production[END_REF][START_REF] Plevin | Using Attributional Life Cycle Assessment to Estimate Climate-Change Mitigation Benefits Misleads Policy Makers[END_REF]) 9 recommend using the C-LCA approach to assess decisions with large-scale consequences (geographic and/or 10 multi-sector scale), such as the implementation of a public policy. 11

The way the life cycle inventory (LCI) is built constitutes the main modelling difference between A-LCA and 12 C-LCA. In theory, life cycle impact assessment (LCIA) methods should also be different between A-LCA and C-13 LCA. Indeed, it would be relevant to account for the consequences of the decision in the ecosphere by 14 assessing the environmental feedbacks and the changes in the current state of the environment. However, 15 the way C-LCA is now handled by LCA practitioners is by using the same models for LCIA in A-LCA and C-LCA. [START_REF] Dandres | Assessing non-marginal variations with consequential LCA: Application to European energy sector[END_REF] Consequential LCI (C-LCI) includes all the processes affected by the decision and are identified by accounting 17 for causal links, which may be physical, economic, social, etc. (Zamagni et al. 2012). In practice, published C-18

LCAs often account for physical links and market mechanisms. Inventory data may be distinguished by 19 foreground inventory data and background inventory data (Udo de [START_REF] De Haes H A | Guidelines for the application of life cycle assessment in the EU eco-label award scheme[END_REF][START_REF] Frischknecht | Life cycle inventory analysis for decision-making[END_REF]. 20

Here, foreground inventory data refers to the inventory data of the case study that are specifically collected 21 or modelled by the LCA practitioner. Background inventory data refers to generic data, often from LCI 22 databases, used to model the supply chains linked to the foreground inventory. Foreground inventory data 23 in C-LCA is obtained through a descriptive causal method [START_REF] Weidema | Marginal production technologies for life cycle inventories[END_REF][START_REF] Weidema | Market information in life cycle assessment[END_REF] or the use 24 of models, often economic models that account for non-linearity, elastic substitution or rebound effects 25 [START_REF] Earles | Integrated Economic Equilibrium and Life Cycle Assessment Modeling for Policy-based Consequential LCA[END_REF]. Using economic models is especially relevant when assessing prospective decisions with 26 consequences on a large scale. Indeed, chains of market mechanisms are widely described in economic 27 models and make it possible to also identify indirect consequences and account for technological progress 28 [START_REF] Dandres | Assessing non-marginal variations with consequential LCA: Application to European energy sector[END_REF]. In this study, we present a C-LCA case study to assess the potential environmental 29 consequences (benefits or impacts) of the implementation of alternative transportation scenarios in France 30 by 2050 through public policy for the energy transition. To perform the analysis, we applied a prospective 31 economic partial equilibrium model, running from 2009 to 2050, to compute the foreground inventory data 5 instead of just collecting data as traditionally done in LCA [START_REF] Marvuglia | Modelling approaches for consequential life-cycle assessment (C-LCA) of bioenergy: Critical review and proposed framework for biogas production[END_REF]. The background inventory 33 data is obtained using an adapted version of the LCI database ecoinvent. 34 C-LCA and A-LCA deal with the same types of uncertainty: stochastic uncertainty (spatial, temporal and 35 technological variability), and epistemic uncertainty related to the lack of knowledge on reality (often named 36 uncertainty in LCA) [START_REF] Huijbregts | Uncertainty in LCA LCA Methodology Application of Uncertainty and Variability in LCA Part I : A General Framework for the Analysis of Uncertainty and Variability in Life Cycle Assessment[END_REF][START_REF] Clavreul | Stochastic and epistemic uncertainty propagation in LCA[END_REF]). However, a higher level of uncertainty is expected 37 for C-LCA results as compared to A-LCA [START_REF] Whitefoot | Consequential Life Cycle Assessment With Market-Driven Design[END_REF][START_REF] Herrmann | Confronting Uncertainty in Life Cycle Assessment Used for Decision Support[END_REF]) which makes the 38 interpretation phase harder. Indeed, C-LCA is complex and uncertain by nature as it aims at describing 39 indirect consequences of a decision involving socio-economic links and is often prospective. Part of 40 uncertainty sources in C-LCA is due to specificities to build the C-LCI [START_REF] Whitefoot | Consequential Life Cycle Assessment With Market-Driven Design[END_REF]. More specifically, 41 the use of economic modelling implies that uncertainty sources from those models are uncertainty sources 42 in C-LCA. Three main sources of uncertainty in economic modelling can influence C-LCA: uncertainty due to 43 the resolution mode of the model and related approximations (optimization, simulation, etc.), model 44 uncertainty that simplifies reality (equations, linearity assumption, product in competition, partial 45 equilibrium hypothesis, etc.) and input data uncertainty (prices, capacities, elasticities, etc.) (Dandres et al. 46 2014). Overall uncertainty assessment is rarely performed in C-LCA from economic models (Dandres et al. 47 2012(Dandres et al. 47 , 2014)). Strategies to assess and reduce uncertainty in C-LCA from economic models are needed. They 48 should consider the goal and scope of the study, i.e. uncertainty reduction is required only if a conclusion 49 cannot be drawn for the study or if the target level of uncertainty is not achieved to ultimately enhance 50 decision making [START_REF] Patouillard | Critical review and practical recommendations to integrate the spatial dimension into life cycle assessment[END_REF]. 51 Spatial variability is part of the overall uncertainty in LCA, and thus in C-LCA. Using too generic information 52 to represent data with spatial variability introduces an additional uncertainty, called uncertainty due to 53 spatial variability in this article. This additional uncertainty may be reduced when regionalization is 54 accounted for in LCA. Regionalization refers to the enhancement of the representativeness of the processes 55 and environmental phenomena in a given region [START_REF] Patouillard | Ready-to-use and advanced methodologies to prioritise the regionalisation effort in LCA[END_REF]). To integrate regionalization in an 56 LCA study, the LCA practitioner may perform an inventory regionalization and/or inventory spatialization 57 [START_REF] Patouillard | Critical review and practical recommendations to integrate the spatial dimension into life cycle assessment[END_REF]. Inventory regionalization consists of collecting inventory data that is more 58 representative of the spatial coverage for a given technology. Inventory spatialization consists in describing 59 the spatial distribution of elementary flows to be able to use more regionalized characterization factors (CFs) 60 from regionalized LCIA methods [START_REF] Mutel | Overview and recommendations for regionalized life cycle impact assessment[END_REF]. Efforts on inventory regionalization or spatialization 61 must be prioritized depending on the impact category (IC) to guide the practitioner in reducing the 62 uncertainty of the LCA [START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF]). This may be achieved by performing a global sensitivity 63 analysis [START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF]). To our knowledge, the question of prioritizing regionalization in C-LCA has 64 never been addressed in the literature. This article addresses regionalization efforts at the level of the 65 inventory data, so focuses on inventory regionalization and/or inventory spatialization only. Impact 66 regionalization efforts, to develop spatially differentiated or regionalized characterization factors, is out of 67 scope. 68

The main purpose of this article is to prioritize regionalization efforts to enhance interpretation in 69 consequential LCA by assessing the spatial uncertainty of a case study building on a partial equilibrium 70 economic model. This article is a case study based on the methodology developed by Patouillard et al. (2019) 71 to prioritize regionalization efforts in LCA. To do so, we propose an adaptation of this methodology to 72 prioritize regionalization efforts for the consequential LCA case study. Three specific objectives are derived: 73

(1) perform a C-LCA case study of alternative transportation scenarios to investigate the benefits of 74 implementing a public policy for energy transition in France with an uncertainty analysis to explore the 75 strength of our conclusions, ( 2 The goal of the study, used as C-LCA case study in this article, is to assess the consequences of implementing 84 alternative transportation scenarios to meet the French law on the energy transition (LTE) targets and 85 ultimately conclude if the consequences are potentially beneficial to the environment (more information on 86 the context in SI). The functional unit is to "reach the LTE targets in the French transport sector by 2030 while 87 meeting the French energy and mobility service demands from 2009 to 2050". Modelling the consequences 88 of the decision involves identifying the affected processes by the decision (and their magnitude) in the 89 economy. To do so, we isolate the consequences of the decision making the difference between the results 90 of a scenario with the decision and a scenario without decision (status-quo scenario) (Figure 1). 91

Consequential life cycle inventory

92 Amounts of elementary flow (emission and resource consumption) generated by the processes included in 93 the system boundaries are quantified. The system includes all the affected processes and their supply chain. 94

As proposed by [START_REF] Heijungs | The computational structure of life cycle assessment[END_REF], the LCI results are stored in the inventory vector 𝒈 that describes 95 the amount of each elementary flow generated to fulfill the functional unit and is calculated using equation 96 1. 97

𝒈 = 𝑩𝑨 -1 𝒇 (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 98 
To calculate 𝒈 for our case study, we used different tools to build an inventory model divided into two parts: 99 the foreground inventory model based on a partial equilibrium economic model called MIRET (see section 2.1.3 for more details) and the background inventory model mainly based on ecoinvent data (see Figure 1 and Figure 2). Here, we use the term model to encompass the data, associated equations and principles leading to a result.

 The foreground inventory model is used to calculate 𝒇 = [ 𝟎 𝒇 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 ],
where and 𝒇 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 is the vector with element 𝑓 𝑝 represents the amount of output product as defined in MIRET for each directly affected process needed to fulfil the functional unit, or 0 for a product not defined in MIRET and thus considered as non-directly affected processes, and 𝟎 is the vector of zeros. Note that each directly affected process has only one output product (no multifunctionality 

Adaptation for background inventory and mapping with the foreground

The background inventory model is mostly based on LCI datasets from the attributional LCI database ecoinvent version 3.3 cut-off [START_REF] Wernet | The ecoinvent database version 3 (part I): overview and methodology[END_REF]. Our choice of using the attributional version of ecoinvent 3.3 is discussed in section 4.3. To model the direct elementary flows and supply chains of the directly affected processes, we mapped each MIRET process affected by the decision to a corresponding ecoinvent process that must be adapted for our case study [START_REF] Yang | Two sides of the same coin: consequential life cycle assessment based on the attributional framework[END_REF]. All ecoinvent processes mapped with a MIRET process have been modified to (i) avoid double-counting by removing from the supply chain described in ecoinvent the consumption of products already modelled in MIRET (i.e. fuel production for car transportation is already modelled in MIRET and is considered as an affected process, so it is removed from the supply chain of car transportation processes in ecoinvent), (ii) account for direct tailpipe emissions from biofuel blended fuels by adding those emissions in ecoinvent transportation processes according to the biofuel share within each vehicle that evolves dynamically based on the optimization result of the MIRET model, (iii) technological progress in energy efficiency for vehicle use processes. Mapping excel file between MIRET and ecoinvent and further details on adaptation are available in SI. 2.1.5. Life cycle impact assessment and LCA models Elementary flows quantified in the LCI step are then characterized by an LCIA methodology to assess the potential environmental impacts of the affected processes' life cycle. To do so, we used IMPACT World+, a regionalized LCIA methodology with global spatial coverage [START_REF] Bulle | IMPACT World+: a globally regionalized life cycle impact assessment method[END_REF]. We chose impact indicators at the damage level which can be aggregated to assess the impacts on Areas of Protection (AOP). Hence, we will be able to prioritize the practitioner's efforts across damage ICs based on their contribution to the AOP.

The implemented version of IMPACT World+ has two AOP ICs at the damage level: ecosystem quality (EQ) and human health (HH); and 16 and 11 damage ICs contributing to each AOP, respectively. ICs related to climate change contribute to both AOPs. The following ICs are spatially-differentiated: freshwater acidification, terrestrial acidification, freshwater eutrophication, land occupation and land transformation for EQ; and water availability for HH. Global CFs, that represent the impact of an elementary flow emitted somewhere in the world, were used to assess both spatially-differentiated and generic ICs. For spatiallydifferentiated ICs, global CFs are CFs spatially aggregated for the world, calculated as an average of native CFs weighted by the probability for each elementary flow to occur in each native region [START_REF] Bulle | IMPACT World+: a globally regionalized life cycle impact assessment method[END_REF].

Equations 4 and 5 describe the LCA calculation models to compute C-LCA impact scores which is performed with Brightway 2 LCA software (Mutel 2017) using traditional LCA calculation (not regionalized LCA calculation). 𝒉 𝒅𝒂𝒎 represents the damage impact scores for damage ICs, for instance ionizing radiation contributing to ecosystem quality. It's a vector with a dimension 𝐽 = 27 and with element ℎ 𝑗 𝑑𝑎𝑚 for each damage IC 𝑗. 𝒉 𝒅𝒂𝒎 is calculated using equation 4 where 𝑸 𝒅𝒂𝒎 is the matrix of CFs at damage level. 𝒉 𝑨𝑶𝑷 represents the total damage impact scores aggregated for AOP ICs, for instance ecosystem quality. It's a

vector with a dimension 𝐾 = 2 and with element ℎ 𝑘 𝐴𝑂𝑃 for each AOP IC 𝑘. 𝒉 𝑨𝑶𝑷 is calculated using equation 4 where

𝑸 𝑨𝑶𝑷 = [ 1 ⋯ 1 0 ⋯ 0 0 ⋯ 0 1 ⋯ 1
] is a matrix with dimensions 𝐾 × 𝐽 with element equals to 1 when the damage IC 𝑗 contributes to the AOP IC 𝑘.

𝒉 𝒅𝒂𝒎 = 𝑸 𝒅𝒂𝒎 𝒈 (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4)

𝒉 𝑨𝑶𝑷 = 𝑸 𝑨𝑶𝑷 𝒉 𝒅𝒂𝒎 (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5)
In terms of interpretation of C-LCA impact scores, a negative impact score indicates that the alternative transportation scenario meeting the LTE targets (scenario with) is potentially more beneficial than the business-as-usual transportation scenario (scenario with). On the contrary, a positive impact score indicates that the consequences of implementing the LTE targets are potentially adverse to the environment.

Methods for uncertainty analysis

The uncertainty analysis makes it possible to determine the strength of the conclusion of our case study, i.e.

whether the implementation of LTE in France would be potentially beneficial or not for the environment, by testing the significance of the conclusion regarding a chosen confidence level. This section describes: (i) the uncertainty sources estimation for our case study for the foreground and background inventory models and LCIA model, (ii) the general approach for uncertainty analysis of the C-LCA model for our case study, and (iii)

the statistical tests applied. Then, the results of the statistical tests are used to identify the damage and AOP ICs to be prioritized for uncertainty reduction, as proposed by [START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF].

We distinguish two types of decision-makers: decision-makers who draw conclusions on AOP and will analyze statistical tests for each AOP IC to identify for which one reducing uncertainty is necessary; and decisionmakers who draw conclusions on damage contributions who will analyze statistical tests for each damage IC or a selection of damage ICs that are of interest. Therefore, the priority and type of work for uncertainty reduction will depend on the type of decision-maker. That's why we apply the uncertainty analysis and statistical tests to both damage and AOP impact scores. We used the notation ℎ 𝑖 to represent damage or AOP impact score (ℎ 𝑗 𝑑𝑎𝑚 𝑜𝑟 ℎ 𝑘 𝐴𝑂𝑃 ).

Estimation of uncertainty sources

As displayed in Figure 1  For the foreground inventory model, input variables of the MIRET model (i.e. prices of commodities, production capacities per year, yields, etc.) that may be subject to spatial variability were selected based on expert judgment. Finally, the prices of five different biomass commodities were considered based on their geographic origins. Further details on data sources and the calculation of relative extrema for spatial variability are available in SI.

 For the background inventory model, we accounted for uncertainty sources as defined in ecoinvent v3.3 that are estimated with the Pedigree approach using lognormal distributions [START_REF] Muller | The application of the pedigree approach to the distributions foreseen in ecoinvent v3[END_REF]). This uncertainty not only contains a spatial component but other uncertainty sources as well.

Associated limitations for our case study are discussed in section 4.3. We also accounted for the correlation between input and output quantities from unit processes in an uncertainty analysis in background LCI for water and land transformation flows, as described in [START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF].

 

2.2.1.

The general approach for uncertainty analysis Table 1 summarizes the techniques used for the uncertainty analysis of the C-LCA case study. The background inventory model and the LCIA data are fully integrated with the LCA calculation tool. Therefore, to propagate the uncertainty from those sources to the C-LCA results, we used a random sampling from defined probability distributions for each source. On the other hand, the foreground inventory model (MIRET model) is not integrated with the rest of the model. Therefore, we propagate uncertainty sources in the MIRET model using a computer experimental design and bootstrapping resampling with a dependent sampling for the scenarios with and without decision (see details below). We used a Monte Carlo simulation with 𝑅 = 5000 runs (𝑟) to propagate all the uncertainty sources in the LCA calculation model and obtained the following set of impact scores 𝐻 𝑖 = {ℎ 𝑖,𝑟 } 𝑟=0 𝑅-1 for each IC 𝑖. Limitations of our uncertainty analysis are discussed in section 4.3.

Table 1 -Techniques used for the uncertainty analysis of the C-LCA case study for the estimation of uncertainty sources, the uncertainty propagation and the output format.

Uncertainty propagation in the foreground inventory model

The MIRET model version used here is relatively time-consuming (approximately 15min/run) and there is no integration between the MIRET model and the rest of the C-LCA model. So, a substantial amount of time is required to extract and format the outputs of MIRET for each run. Therefore, performing a Monte Carlo analysis of 5 000 runs to propagate the uncertainty within the MIRET model and linking it directly with the other part of the C-LCA model would have been very time-consuming. Consequently, we decided to use a computer experimental design [START_REF] Santner | The design and analysis of computer experiments[END_REF][START_REF] Aleisa | Leveraging life cycle assessment and simplex lattice design in optimizing fossil fuel blends for sustainable desalination[END_REF] to approximate the uncertainty propagation of the spatial variability of MIRET's inputs variables to its results. We chose a spacefilling design that aims to spread sets of values evenly throughout the experimental region, thus exploring all the potential responses of the model [START_REF] Pronzato | Design of computer experiments: Space filling and beyond[END_REF]. For the case study, we used a Latin-Hypercube sampling design that provided 80 sets of values for the 5 random input variables considered as uncorrelated variables with a uniform distribution [START_REF] Damblin | Numerical studies of space-filling designs: Optimization of Latin Hypercube Samples and subprojection properties[END_REF] 

𝑠 𝑖 = √ 1 𝑅-1 ∑ (ℎ 𝑖,𝑟 -𝐻 𝑖 ̅̅̅ ) 2 𝑅-1 𝑟=0
, 𝛿 0 is a threshold value traditionally set at 0.2. The probability that we reject 𝐻 0 while being true is called the significance level (α) which should be set depending on the risk aversion of the decision-maker. In our case study, we conventionally set α to 0.05. If the p-value of the test is lower than the chosen significance level (α), then 𝐻 0 is rejected and the alternative hypothesis 𝐻 𝑎 : 𝛿 𝑖 < -𝛿 0 is considered as statistically significant with a confidence level (1-α). If 𝐻 0 is rejected, the decision is beneficial for the IC.

It means that the absolute distance between 𝛿 𝑖 and zero is significantly more than 𝛿 0 , i.e. more than "0.2 standard deviation units" [START_REF] Mendoza Beltran | Quantified Uncertainties in Comparative Life Cycle Assessment: What Can Be Concluded?[END_REF].

The priority for uncertainty reduction should set on actions with the potential to enhance the interpretation phase and the decision making [START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF]). In the case 𝐻 0 is rejected, there is no need to put efforts on reducing the uncertainty of C-LCA impact scores for related ICs as conclusions can already be drawn. However, if 𝐻 0 cannot be rejected for some ICs, it means that there is no statistical evidence that the decision is beneficial for these ICs. It can be that the decision is not beneficial or that the uncertainty level is still too high and prevents us from concluding. Therefore, we will prioritize our efforts to try to reduce the uncertainty of C-LCA impact scores for those ICs where 𝐻 0 cannot be rejected. The prioritization between ICs will depend on their relative contribution to the uncertainty, using the methodology described in section 2.3.

Different goals for this case study would have led to different statistical tests and the prioritization for uncertainty reduction would have been different.

Results of uncertainty analysis of the C-LCA case study

We performed a Monte Carlo analysis including all sources of identified uncertainty and displayed 𝐻 𝑖 the damage impact score distributions for each IC 𝑖 (Figure 3). Then we identified ICs to be prioritized for uncertainty reduction based on the results of modified NHST statistical tests for sample size 𝑅 = 5000, 𝛿 0 =0.2 and α=0.05. ICs where 𝐻 0 can be rejected with a confidence level of 95% are identified in Figure 3 with the symbol (*). All detailed results for modified NHST statistical tests are available in SI.

Analysis for decision-makers focusing on AOP:

Even if the total impact score distribution for EQ contains both negative and positive values, the implementation of LTE in France from 2009 to 2050 would be beneficial for EQ with a confidence level of 95%, according to modified NHST statistical tests. The total impact scores for HH are evenly distributed between negative and positive values. Modified NHST statistical tests confirm that we cannot reject 𝐻 0 for HH with a confidence level of 95%, so no conclusion can be drawn.

Therefore, attempting to reduce the uncertainty and increase the discriminating power for HH is relevant to our case study.

Analysis for decision-makers focusing on damage contributions: Land transformation and water availability are the ICs that seem to dominate uncertainty in EQ and HH, respectively. The global sensitivity analysis ill test this intuition based on visual inspection. However, the impact score uncertainty for both ICs should be interpreted with caution since spatial correlation within IC between CFs has been partially addressed for these ICs and may affect the results [START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF]. Beyond land transformation and water availability, modified NHST statistical tests confirm that the implementation of LTE in France is likely to have a beneficial impact on the following ICs with a confidence level of 95%: global warming (short-term and longterm altogether, for EQ and HH), marine acidification, marine eutrophication, terrestrial acidification, thermally polluted water, photochemical oxidant formation and particulate matter formation. In this case, there is no need to attempt to reduce the uncertainty for these ICs since we may already conclude on the benefits of implementing the LTE, which is the goal of our case study. 

Global sensitivity analysis of the C-LCA case study

Once we identified ICs where uncertainty needs to be reduced, main sources of spatial uncertainty in the C-LCA model for each IC must be identified to adequately prioritize the data collection for regionalization. The objective of the global sensitivity analysis (GSA) is to identify the main sources of uncertainty in the C-LCA model (foreground inventory model based on economic modelling, background inventory model, CFs). In contrast to local sensitivity analysis, GSA provides a more representative sensitivity analysis by accounting for the overall variation range of inputs and accounts for interactions and correlations [START_REF] Wei | How to Conduct a Proper Sensitivity Analysis in Life Cycle Assessment: Taking into Account Correlations within LCI Data and Interactions within the LCA Calculation Model[END_REF].

Here, we present the GSA indicators used in this study and the stepwise procedure to identify the key sensitive variables, also referred to as main uncertainty sources or main uncertainty contributors. The stepwise procedure allows to determine which impact categories and which parts of the LCA model should be prioritized for uncertainty reduction. This procedure is in line with the one proposed in Patouillard et al.

(2019) and adapted for our C-LCA case study. Python scripts to perform GSA are available as supporting information in [START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF] and accessible at https://doi.org/10.5281/zenodo.3597423.

GSA indicators definition

The first-order sensitivity index derived from the Sobol variance decomposition is designed for factor prioritization [START_REF] Saltelli | On the Relative Importance of Input Factors in Mathematical Models[END_REF][START_REF] Saltelli | Numbers for policy: Practical problems in quantification[END_REF]). This index is selected as our importance indicator for GSA to identify the main uncertainty sources in this study. For a model 𝑌 = 𝑚(𝑋 1 , … , 𝑋 𝑙 , … , 𝑋 𝐿 ) where 𝑋 𝑙 are the uncertain (or random) input variables of the model and 𝑌 is the output, the first-order sensitivity index 𝑆𝐼1 𝑋 𝑙 measures the main influence or first order effect of variable 𝑋 𝑙 on the results 𝑌 [START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF]. We estimated 𝑆𝐼1 𝑋 𝑙 using the procedure described in [START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF]. The total sensitivity index 𝑆𝐼𝑇 𝑋 𝑙 also includes the second and higher order effects of the variable 𝑋 𝑙 on the results [START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF]. 𝑆𝐼𝑇 𝑋 𝑙 is a sum of 𝑆𝐼1 𝑋 𝑙 and all 𝑆𝐼𝑘 𝑋 𝑙 …𝑋 𝑘 (k th -order sensitivity index which represent the sensitivity due to interactions between variables 𝑋 𝑙 … 𝑋 𝑘 ). It provides an additional information on the influence of 𝑋 𝑙 in the model, which could be useful. More information on the Sobol variance decomposition is available in SI. 1).

A stepwise procedure to identify the main sources of uncertainty

All inventory model variables can also be grouped in a single group of variables defined as 𝑋 𝐿𝐶𝐼 = {𝑋 𝐿𝐶𝐼 𝑏𝑔 , 𝑋 𝐿𝐶𝐼 𝑓𝑔 }. This group choice will guide the efforts required since each part involves different efforts and skills for data and model improvements.

Here, we describe the stepwise procedure used to identify the main sources of ℎ 𝑖 uncertainty for our case study. At each step, we performed a GSA on a specific model with the form 𝑌 = 𝑚 x (𝑋 1 , … , 𝑋 𝑙 , … , 𝑋 𝐿 ) as detailed in Table 2 and The GSA interpretation to prioritize efforts for uncertainty reduction is explained at each step.

1. IC ranking step: determine which damage IC is the main source of ℎ 𝑘 𝐴𝑂𝑃 uncertainty for each AOP IC.

For each AOP IC, we ranked each damage IC based on its 𝑆𝐼1 ℎ 𝑗 𝑑𝑎𝑚 value. Damage ICs with higher 𝑆𝐼1 ℎ 𝑗 𝑑𝑎𝑚 are major contributors to the uncertainty of ℎ 𝑘 𝐴𝑂𝑃 and, therefore, should be prioritized for uncertainty reduction. This information is useful when the goal and scope of the LCA study focuses on more than one damage IC.

2. LCI vs. LCIA step: determine which group of variables between 𝑋 𝐿𝐶𝐼 and 𝑋 𝐿𝐶𝐼𝐴 is the main source of Both groups of inventory model variables and LCIA variables are important contributors to total EQ impact score uncertainty. The total HH impact score uncertainty is driven by the interactions between both 𝑋 𝐿𝐶𝐼 and 𝑋 𝐿𝐶𝐼𝐴 variable groups, meaning that no priority order may be drawn and that both groups should be further investigated. Therefore, inventory regionalization or inventory spatialization may be required depending on the damage IC. Land transformation and water availability have the highest first-order sensitivity indices for the IC ranking step for EQ and HH, respectively. Consequently, they are the most sensitive ICs. In the case of land transformation for EQ, the uncertainty mainly comes from the group of LCIA variables, highlighting the need for inventory spatialization. In the case of water availability for HH, the sensitivity is almost entirely due to the interactions between inventory model variables and LCIA variables. In this case, both groups of variables are sensitive and both inventory regionalization and spatialization should be enhanced. The spatial correlation within the IC between CFs has been partially addressed for land transformation but not for water availability. This limitation could partly explain the dominance of both ICs in the sensitivity in the IC ranking step [START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF].

Regarding other regionalized ICs, the group of LCIA variables dominates the resulting sensitivity for the freshwater eutrophication IC only, indicating that inventory spatialization should be a priority for this IC. The interaction sensitivity index dominates the resulting sensitivity for terrestrial and freshwater acidification ICs for EQ and water availability for HH. Consequently, inventory regionalization and spatialization should both be a priority. Land occupation and marine eutrophication are the only ICs for which the group of LCI variables is the most sensitive, indicating that inventory regionalization should be prioritized here for these ICs.

Finally, the group of inventory model variables necessarily dominates the resulting sensitivity for nonregionalized ICs since no uncertainty from LCIA is associated with those ICs. The next section analyzes the part of the C-LCI model (foreground or background inventory model) that must be prioritized to refine the regionalization strategy. For EQ, the contribution of ICs to the total damage impact score uncertainty from inventory model variables is similar, except for the land transformation IC where it is lower. So, a lower priority may be set on this latter IC for inventory regionalization, and other ICs are equally important. For HH, the water availability IC dominates the contribution of ICs to the total damage uncertainty from inventory model variables and therefore should become a study priority for inventory regionalization.

Digging deeper into inventory uncertainty

The group of background inventory model variables dominates the sensitivity of the inventory model variables for only two ICs: ionizing radiation IC for HH and land transformation IC for EQ. For other ICs, the sensitivity is mainly due to the group of foreground inventory model variables or the interaction between background and foreground inventory model variables. These results highlight the fact that efforts should be invested to reduce the uncertainty from the foreground inventory model with a more representative regionalization of this part of the inventory model. For ICs in which interactions dominate, uncertainty reduction should also focus on background inventory model, in addition to the foreground inventory model.

A proposed strategy for regionalization of the C-LCA case study

The proposed strategy for regionalization in LCA strongly depends on the goal of the study, study resources (time and financial resources) and available tools, skills and experience of the team performing the study [START_REF] Patouillard | Critical review and practical recommendations to integrate the spatial dimension into life cycle assessment[END_REF]. Those factors affect the ICs that are selected for enhancement and the efforts invested to further study the sources of uncertainty within each group of variables.

This case study is performed in the context of the development and enhancement of the C-LCA practice with the MIRET-TIMES model at IFP Énergies nouvelles and case study conclusions are based on the performance of each damage IC (decision-makers focusing on damage contribution). The proposed strategy is divided into actions from very high to low priority depending on the importance of the sensitivity, available means and confidence level about the study conclusions. In other words, actions with the highest potential for uncertainty reduction and which will help to draw study conclusions will be prioritized. Therefore, ICs for which we can already conclude with a confidence level of 95% (global warming, marine acidification, marine eutrophication, terrestrial acidification, thermally polluted water, photochemical oxidant formation and particulate matter formation) are excluded from this strategy. Only damage ICs which uncertainty prevents us from concluding will be prioritized.

Here are the proposed actions per priority level for regionalization in C-LCA for our case study:

1. Very high priority actions. Those actions are focused on the most sensitive ICs (land transformation for EQ and water availability for HH) and the most sensitive part of their LCA model (LCIA data for both ICs and LCI data for water availability for HH).

 Investigate the influence of LCIA spatial correlation (spatial correlation within IC between CFs) on the impact score uncertainty for land transformation for EQ and water availability for HH, as it may highly influence the high sensitivity of both ICs [START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF]).

 If the potential for uncertainty reduction with LCIA spatial correlation is high, implement the LCIA spatial correlation within IC between CFs for land transformation for EQ and water availability for HH and perform GSA as described in the methodology from the beginning.

 If the potential for uncertainty reduction with LCIA spatial correlation is low, spatialize elementary flows for land transformation for EQ and water availability for HH to use more regionalized CFs instead of global CFs. The first level of spatialization would be to use the available information from ecoinvent on the location of each process unit, which is often at the country level. For water availability for HH, regionalize the inventory, especially the foreground LCI from the MIRET model.

High priority actions.

Those actions are focused on other high sensitive ICs which sensitivity may be due to foreground inventory model, i.e. the MIRET model (thermally polluted water, freshwater ecotoxicity, water availability, land occupation for EQ; ozone layer depletion, human toxicity for HH).

 Perform a GSA to investigate the influence of each foreground LCI variables to identify which among them are more sensitive. Do it in priority for ICs where conclusions are more difficult to draw, i.e.

when result distribution contains negative and positive values well spread around zero.

 Enhance the description of the relative spatial variation of the most sensitive foreground inventory model variables. For instance, a more representative distribution may be defined to represent the relative spatial variation instead of the uniform distribution currently used. In this case, the spacefilling experimental design should be adapted.

Low priority actions:

Those actions are focused on other parts of the LCA model for highly sensitive ICs.

 Perform a GSA to investigate the influence of background LCI variables to identify the most sensitive ones. Enhance the regionalization for those variables by performing a more representative regional data collection. Do it for highly sensitive ICs where background inventory model variables may be sensitive (freshwater ecotoxicity, land occupation for EQ; ozone layer depletion, human toxicity, ionizing radiation for HH).

 Spatialize elementary flows to use more regionalized CFs instead of global CFs. The first level of spatialization would be to use the available information from ecoinvent on the location of each process unit, which is often at the country level. Do it for highly sensitive ICs where LCIA data may be sensitive (land occupation and freshwater eutrophication for EQ).

Discussion

This article aims to prioritize regionalization efforts to enhance interpretation in C-LCA by assessing the spatial uncertainty of a case study building on a partial equilibrium economic model. The methodology used to prioritize regionalization efforts is an adaptation of the methodology proposed by [START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF].

The benefits and limits of this methodology are already discussed in [START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF]. Here, the discussion focuses on the limitations of its adaptation for our case study in C-LCA to avoid over-interpretation of the results.

Assessing uncertainty from partial equilibrium economic modelling

Assessing the spatial uncertainty of the foreground inventory model from the MIRET model was one of the challenges faced during this study. First, we relied on expert judgement to identify input variables of the MIRET model that may be subject to spatial variability. As it was not possible to assess the spatial variability of each MIRET model inputs, this approach helped us to focus our data collection to assess the spatial variability of the MIRET model in the context of our case study. However, by doing so, we excluded some inputs that might have been sensitive. As stated by [START_REF] Moret | Characterization of input uncertainties in strategic energy planning models[END_REF], this a priori exclusion should be avoided. Therefore, it would have been relevant to first identify the most sensitive inputs from the MIRET model and to assess the spatial variability of those inputs. Unfortunately, identifying the most sensitive inputs of the MIRET model was beyond the scope and the means of our case study. Nevertheless, future works on the MIRET model should focus on assessing the sensitivity of the model.

As the MIRET model was computationally intensive and not integrated with the background inventory model and LCA model, we used a computer experimental design to save time. We chose a standard design, known as space-filling, which consists of selecting sets of values for inputs uniformly spread across the experimental region. Still, we used the MIRET results for each experiment in our Monte Carlo analysis, using bootstrapping to randomly pick a MIRET result at each iteration. In doing so, we assumed a uniform distribution of the input variables of the MIRET model, which may lead to misestimating, and probably overestimating, the sensitivity of foreground inventory model variables [START_REF] Muller | Effects of Distribution Choice on the Modeling of Life Cycle Inventory Uncertainty: An Assessment on the Ecoinvent v2.2 Database[END_REF]. Indeed, input variables most likely have a value and distribution that are different from the uniform distribution. In our case study, input variables from the MIRET model are biomass prices. Their distribution should reflect prices from the different region of origin weighted by the amount of biomass produced in each region. Their most likely value is the price in the region where most of the biomass originates (main import country or region). Alternative probability distributions to fit the spatial distribution of the biomass prices should be investigated to validate (or not) the choice for the uniform distribution.

An alternative way to account for input variable-specific distribution is to build a prediction model based on the computer experiment design results, for instance using response surface methodology [START_REF] Draper | Response surface methodology: Process and product optimization using designed experiments: RH Myers and DC Montgomery[END_REF][START_REF] Ba | Modeling and optimization i: Usability of response surface methodology[END_REF]. The prediction model would be an estimation of the MIRET model, calculating MIRET result estimates from the input variable value defined by the user. Using this model, we may apply any distribution to the input variables and perform a Monte Carlo analysis directly on the prediction model to estimate MIRET uncertainty. However, the estimator to build the prediction model must be adapted to the MIRET model, especially because MIRET results are not linear and may have discontinuities regarding input variables. The existence of estimators adapted to the MIRET model, as well as computational time to build the prediction model, must be studied.

In our case study, we only investigated the spatial variability of the MIRET model. It involved a limited number of variables. Thus, the number of experiments, which depends on the number of variables, remains reasonable. If the purpose of the uncertainty analysis would have been to investigate all the MIRET uncertainty sources, and not only spatial variability, the number of variables would have been higher.

Therefore, the number of experiments and thus the computational time to run them would have increased dramatically. In this case, an alternative to computer experimental design is required. The uncertainty of the TIMES model results can also be estimated with other approaches such as robust optimization [START_REF] Nicolas | How) does sectoral detail affect the robustness of policy insights from energy system models? The refining sector's example[END_REF]. The associated computational time, as well as how uncertainty results can be used for C-LCA purposes, should be studied further.

LCIA spatial correlation in C-LCA

Once regionalized ICs have been dealt with, LCIA spatial correlations from different origins should be considered: the spatial correlation at the product system level, the spatial correlation between ICs (inter ICs)

and the spatial correlation within IC between CFs (intra CFs) [START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF]. There is an additional source of LCIA spatial correlation in C-LCA: LCIA spatial correlation between processes affected by the decision. Here, affected processes are identified by comparing two scenarios modelled using the economic model MIRET: one scenario with the decision and the other without. Only the difference between both scenarios is modelled in the C-LCA model. However, the spatial distribution of a process may be different between the scenario with and without the decision. For instance, biomass cultivation processes may occur in some regions in the scenario that implement the LTE and in other regions in the business-as-usual scenario.

Here, since the MIRET version used in this exercise is not regionalized, we assumed that this spatial distribution is the same for both scenarios and thus also assume that processes from the scenario with and without decision are perfectly spatially correlated. We, therefore, use regionalized CFs from the same region for both scenarios.

The effect of accounting (or not) for LCIA spatial correlation between affected processes may be studied by comparing C-LCA results from the current MIRET model (not regionalized) with a regionalized version of the MIRET model (GeoMIRET). With this version, we would be able to compare the spatial distribution of scenarios with and without the decision for each process and see if they match or not. If there is a difference between spatial distributions for each process that affects the C-LCA results, then not only should a set of affected processes be modelled in the C-LCA model but the LCA model of both scenarios, including affected and not affected processes, would have to be modelled. The difference between both LCA models must also be determined [START_REF] Yang | Two sides of the same coin: consequential life cycle assessment based on the attributional framework[END_REF]. Regarding uncertainty analysis, we accounted for the spatial uncertainty sources that we were able to quantify in the most comprehensive way as possible, i.e. trying to quantify the maximum sources of uncertainty in the case study. Nevertheless, quantifying all potential sources of spatial uncertainty in LCA was impossible because: (1) quantifying all quantitative sources would have required a very substantial amount of time that was beyond the time available for this study, (2) some qualitative uncertainty sources are difficult to translate into quantitative uncertainty, (3) we do not even know all potential sources in LCA, (4) the quantification of uncertainty is also uncertain. Interpretation of uncertainty analysis should keep in mind those limitations. More specifically, we do not account for the spatial component of the LCIA model uncertainty (i.e. spatial uncertainty from native resolution as opposed to the variability due to spatial aggregation) as this information is not yet provided by LCIA method developers [START_REF] Mutel | Overview and recommendations for regionalized life cycle impact assessment[END_REF]. Regarding uncertainty for background LCI, we accounted for all components of the ecoinvent uncertainty data, not only the spatial component, as we only had access to the uncertainty information in that format. Therefore, if the main source of uncertainty comes from background inventory model in our case study, the way to reduce it would be to collect more representative data, but not necessarily more regionalized ones. Besides, inventory model and LCIA correlations have been partially addressed in our case study, so uncertainty and GSA results should be interpreted with caution especially for land transformation and water availability impact indicators which are mainly affected [START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF]).

Other main limitations of the case study

Conclusion

The uncertainty analysis of this C-LCA case study including inventory model and LCIA input variables shows that the implementation of alternative transport scenarios in compliance with the LTE public policy is beneficial for some ICs, such as global warming, marine acidification, marine eutrophication, terrestrial acidification, thermally polluted water, photochemical oxidant formation and particulate matter formation, with a confidence level of 95%. For other ICs, uncertainty reduction is required to determine conclusions with a similar level of confidence.

The GSA of our C-LCA case study highlights that input variables identified from the partial equilibrium economic model with spatial variability (foreground inventory model) are significant contributors to the spatial uncertainty results and should be prioritized for spatial uncertainty reduction. Indeed, ways to reduce the spatial uncertainty of foreground inventory model from economic modelling should be explored. In this C-LCA case study, all regionalized ICs (except land occupation IC) require inventory spatialization, since the group of LCIA variables is the most sensitive. Therefore, using regionalized CFs in C-LCA is relevant, and C-LCA calculation tools should be adapted accordingly. 

LCA calculation model

Resampling using bootstrapping for foreground inventory model. Random sampling from probability distributions for background inventory model and LCIA data.

Monte Carlo simulation with dependent sampling for the scenario with and without decision.

5 000 runs = C-LCA impact scores 
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Figure 2 -

 2 Figure 2 -Consequential inventory model. The foreground inventory model is the French MIRET-TIMES model used to identify directly affected processes. The background inventory model is based on an adapted version of the ecoinvent database.

  , the C-LCA model is an arrangement of several tools integrated or not with the LCA calculation model as described by equations 1, 2, 3, 4 and 5. Each tool is a source of uncertainty for the overall C-LCA model. Since we are focused on spatial uncertainty, we aimed to select specifically spatial components of the different uncertainty sources when possible. We accounted for uncertainty sources from different input variables for the different parts of the C-LCA model: background inventory model, foreground inventory model, and LCIA data i.e. CFs.
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 3 Figure 3 -Box and whisker charts representing the distribution of damage impact score 𝒉 𝒊 for each 𝐈𝐂 𝒊 contributing to the ecosystem quality (EQ) AOP in PDF.m 2 .year (left) and contributing to human health (HH) AOP in DALY (right). The whiskers represent the local minimum and local maximum. The bottom and top of each box represent the first and third quartiles. The bar inside the box represents the median, and the cross represents the mean value. Outliers are excluded following the Tukey standards (McGill et al. 1978). (*): p-value<0.05 based on the results of modified NHST statistical tests. The charts on the top represent the distributions for 𝒉 𝒋 𝒅𝒂𝒎 for each damage IC and on the right of each graph for 𝒉 𝒌 𝑨𝑶𝑷 for each AOP IC. The charts on the bottom focus on damage ICs that are less uncertain (excluding land transformation for EQ and water availability for HH). S-T: short-term. L-T: long-term.

  estimated sensitivity indices as described in Patouillard et al (2019) (see the figure in SI).

Figure 4

 4 Figure 4 presents the results for GSA performed for the IC ranking step (length of each bar) and the LCI vs. LCIA step (divisions within each bar) by accounting for uncertainty from inventory model and LCIA variables.
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 4 Figure 4 -GSA results for the IC ranking step (length of each bar) and the LCI vs. LCIA step (divisions within each bar). Values of first-order sensitivity indices for the IC ranking step for each damage IC contributing to the ecosystem quality (left) and human health AOPs (right). The divisions within each bar correspond to the contribution of sensitivity indices for the LCI vs. LCIA step with 𝑺𝑰𝟏 𝑳𝑪𝑰 : firstorder sensitivity index for inventory model variables (purple);𝑺𝑰𝟏 𝑳𝑪𝑰𝑨 : first-order sensitivity index for LCIA variables (green); 𝑺𝑰𝟐 𝑳𝑪𝑰,𝑳𝑪𝑰𝑨 : second-order sensitivity index due to the interactions between LCI and LCIA variables (grey). The contribution of sensitivity indices for the LCI vs. LCIA step is also provided for each total AOP (hashed bar). Regionalized ICs are identified with the (R) symbol.

Figure 5

 5 Figure 5 presents the results for the GSA performed for the IC ranking step (length of each bar) and the background vs. foreground LCI step (divisions within each bar). In both steps, only inventory model variables (background and foreground) are uncertain and LCIA variables are set to their mean deterministic values, thus making it possible to test the sensitivity of the inventory model variables only. As uncertainty for background variables does not only contain spatial uncertainty, their contribution to the overall spatial uncertainty might be overestimated.
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 5 Figure 5 -GSA results for the IC ranking step considering only uncertainty from inventory model variables (length of each bar) and for the background vs. foreground LCI step (divisions within each bar). Values of first-order sensitivity indices for the IC ranking step considering only uncertainty from inventory model variables for each damage IC contributing to the ecosystem quality (left) and human health AOPs (right). The divisions within each bar correspond to the contribution of sensitivity indices for the background vs. foreground LCI step with 𝑺𝑰𝟏 𝑳𝑪𝑰 𝒇𝒈 : first-order sensitivity index for background

  Even if we would have preferred to use a consequential version of an LCI database to fully represent the chain of consequences even in the background data, we decided not to assess the consequences of the decision in the background inventory model, by using the attributional version of ecoinvent 3.3 to model the background. Indeed, the consequential version of the ecoinvent 3.3 database has limitations to adequately represent the prospective consequences in the background inventory model. In this consequential version of the ecoinvent database, constrained productions and marginal supply mix shares are identified based on historical average data which limits the possibility to assess future consequences of a decision[START_REF] Wernet | The ecoinvent database version 3 (part I): overview and methodology[END_REF] Vandepaer et al. 2018). Note that those shortcomings have been addressed in the most recent consequential version of ecoinvent and that consequential version of ecoinvent can surely be used in future consequential studies to model the background LCI.

  

  

  

  

  

Figure 1 -Arrangement of the different models, tools, variables and equations to build the C-LCA model

  ). 𝑓 𝑝 are calculated based 𝑰 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 is the identity matrix with size 𝑃 × 𝑃 with 𝑃 the number of affected processes from MIRET, and 𝟎 are matrices of zeros.

	of the technology and environmental matrices from ecoinvent; 𝑨 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 is the matrix mapping each decision that defines alternative transportation scenarios to be implemented with the LTE in France by 2050.
	directly affected technology from MIRET to an adapted ecoinvent product, with element equal to -1 Then, we calculated the difference of production volumes 𝑉 for each technology 𝑝 at year 𝑌 𝑡 between the
	scenario with decision (𝑉 𝑝,𝑡 𝑤𝑖𝑡ℎ ) and the one without decision (𝑉 𝑝,𝑡 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ). When 𝑉 𝑝,𝑡 𝑤𝑖𝑡ℎ -𝑉 𝑝,𝑡 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ≠ 0, we considered the technology 𝑝 at year 𝑌 𝑡 as an affected process to be included in the C-LCA. The resulting production volume for each directly affected process 𝑉 𝑝,𝑡 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 (equation 2) is then aggregated over time from 2009 to 2050 horizon with a linear interpolation between time slices to define 𝑓 𝑝 (equation 3). We if mapped or 0 otherwise; 2.1.3. Foreground inventory model based on a partial equilibrium economic model identified 𝑃 = 97 technologies in MIRET as directly affected processes (see SI for the complete list).
	A TIMES 1 -based prospective economic partial equilibrium model (Loulou et al. 2016), called MIRET and 𝑉 𝑝,𝑡 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 = 𝑉 𝑝,𝑡 𝑤𝑖𝑡ℎ -𝑉 𝑝,𝑡 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2)
	developed by IFP Énergies nouvelles (Menten et al. 2015), is used to identify the directly affected technologies in MIRET and quantify the associated amount of product reported in 𝑓. Direct and indirect 𝑓 𝑝 = ∑ (𝑉 𝑝,𝑡 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 + 𝑉 𝑝,𝑡+1 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 ) (𝑌 𝑡+1 -𝑌 𝑡 ) 2 𝑇-1 𝑡=0 (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3)
	elementary flows associated with those affected processes are modelled in the background inventory (see Note that 𝑓 𝑝 = 3𝑉 𝑝,2009 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 + 5𝑉 𝑝,2015 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 + 5𝑉 𝑝,2019 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 + 11 2 𝑉 𝑝,2025 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 + 25 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 + 10𝑉 𝑝,2050 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 for 2 𝑉 𝑝,2030 section 2.1.4). our case study.
	The MIRET model represents the energy and transport sectors in France and covers all the technologies
	occurring in France for the following steps: production and imports of resources for primary energy,
	production of final energy from primary energy, production of end-use energy to meet the final energy
	on optimization results from MIRET as described in section 2.1.3. Notice that this deviates markedly demand in France. Based on input data, this dynamic model helps determine which technologies will be
	from the traditional LCA model, in which vector 𝒇 is set by the analyst and contains an amount for needed to meet the exogenous demands (mobility demand, energy demand, etc.) in each time slice 𝑡
	one product only. No elementary flow or unit process is modelled in the foreground inventory, they representing a specific year 𝑌 𝑡 ∈ {2009; 2015; 2019; 2025; 2030; 2050} by minimizing the total system are all modelled in the background. cost under constraints (technological constraints, regulation constraints, etc.). Therefore, the identified
	 The background inventory model corresponds to the technology matrix 𝑨 and the environmental technologies are cost-optimal and are limited by the structure of the model (technologies available, chosen
	matrix 𝑩. The background inventory refers to LCI datasets used to model (i) the direct emissions for granularity) and the nature of the partial equilibrium model where demands are exogenous. More details on
	each directly affected process and (ii) the part of the supply chain and associated indirect emissions the reference energy system of the MIRET model is available in SI. For more information on TIMES models
	for each affected process that is not described in MIRET. Note that all elementary flows and and its use in LCA, see (Lorne and Tchung-Ming 2012; Menten et al. 2015; Astudillo et al. 2017; Albers et al.
	processes are modelled in the background inventory model and represent the overall life cycle. Most 2019). Running the MIRET model allows determining the optimal production volumes 𝑉 (i.e. how much of
	of those LCI datasets are adapted from the ecoinvent database. The mapping between directly the process is used in MIRET) for each process 𝑝 existing in MIRET at year 𝑌 𝑡 for a defined scenario. Please affected processes from MIRET and the LCI datasets from ecoinvent is part of the background note the term production volume is used to qualify the output amount per year of a product from a
	inventory model as described in section 2.1.4. Note that the row order and column order match for technology existing in the MIRET model.
	𝑨 (e.g., if steel production is column 1, steel is row 1), all process output products are normalized to
	1 and all processes have one single output. Here are the formats of the resulting 𝑨 and 𝑩 matrices To identify the directly affected processes, we first built two scenarios with MIRET: (1) the scenario without
	(see section 2.1.4 for more details) 𝑨 = [ decision which is business as usual scenario without the implementation of the LTE; (2) the scenario with 𝑨 𝑎𝑑𝑎𝑝𝑡𝑒𝑑_𝑒𝑐𝑜𝑖𝑛𝑣𝑒𝑛𝑡 𝟎 𝑰 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 ] and 𝑩 = 𝑨 𝑚𝑎𝑝𝑝𝑖𝑛𝑔
	[𝑩 𝑎𝑑𝑎𝑝𝑡𝑒𝑑_𝑒𝑐𝑜𝑖𝑛𝑣𝑒𝑛𝑡 𝟎] where 𝑨 𝑎𝑑𝑎𝑝𝑡𝑒𝑑_𝑒𝑐𝑜𝑖𝑛𝑣𝑒𝑛𝑡 and 𝑩 𝑎𝑑𝑎𝑝𝑡𝑒𝑑_𝑒𝑐𝑜𝑖𝑛𝑣𝑒𝑛𝑡 are the adapted versions

  For the LCIA model, only the variability due to the spatial aggregation of global CFs for spatiallydifferentiated ICs is considered as the uncertainty source as done in[START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF] (more information on the implementation is available in SI). Besides, during the uncertainty analysis, we accounted for the LCIA spatial correlations between elementary flows produced by the same unit process only for the land transformation IC and for certain elementary flows. Other types of spatial correlation are not taken into account in this case study due to the challenge of implementing them in a reasonable amount of time (see[START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF] for more details). It is worth noting that uncertainty from CFs and spatial LCIA correlation is rarely implemented in available LCA software.

  . A total of 80 sets are a good compromise to explore the space of 5 variables in minimum time. One set provides one random value for each input variable. For each set 𝑠 of input values, we run the MIRET model for the scenarios with and without a dependent sampling between the scenarios with and without. During the Monte Carlo analysis for uncertainty analysis on the C-LCA model, we used the bootstrap resampling method[START_REF] Efron | Missing Data, Imputation, and the Bootstrap[END_REF]) that consists in randomly picking a set 𝑠 of MIRET results 𝑉 𝑝,𝑡,𝑠 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 at each Monte Carlo iteration with replacement and recalculates 𝒇 for every set using equations 2 and 3.Statistical tests allow determining the strength of the conclusion depending on the goal of the LCA study. For our C-LCA case study, the goal is to investigate if the decision is beneficial for the environment. Positive C-𝐻 𝑖 , 𝜇 𝑖 is the mean of impact scores 𝐻 𝑖 estimated with 𝐻 𝑖 ̅̅̅ =

	and obtain new production volume values gathered in the following set {𝑉 𝑝,𝑡,𝑠 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 } 𝑠=0 79 = {𝑉 𝑝,𝑡,𝑠 𝑤𝑖𝑡ℎ -
	𝑉 𝑝,𝑡,𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 } 𝑠=0 79 to ensure 2.2.3.	Statistical tests and priority rules for uncertainty reduction
	𝛿 𝑖 =	𝜇 𝑖 𝜎 𝑖	is the standardized mean of 1 𝑅	∑ 𝑅-1 𝑟=0	ℎ 𝑖,𝑟	,
	𝜎 𝑖		is	the	standard	deviation	of	𝐻 𝑖	estimated	with

LCA impact scores (ℎ 𝑖 ) are interpreted as adverse to the environment and negative ones as beneficial for the environment. Therefore, we want to compare the Monte Carlo output samples 𝐻 𝑖 for each IC 𝑖 to a reference value. To do so, we can apply statistical tests based on the Null Hypothesis Significance Test (NHST). To avoid NHST limitations with large sample size (our sample size is 5000), we used the modified NHST procedure proposed by

[START_REF] Heijungs | Measures of difference and significance in the era of computer simulations, meta-analysis, and big data[END_REF] 

and described in Mendoza

[START_REF] Mendoza Beltran | Quantified Uncertainties in Comparative Life Cycle Assessment: What Can Be Concluded?[END_REF]

. In our case study, tests for prioritization are one-tailed modified NHST for each IC 𝑖 with the null hypothesis 𝐻 0 ∶ 𝛿 𝑖 ≥ -𝛿 0 ; where

  [START_REF] Jacques | Sensitivity analysis in presence of model uncertainty and correlated inputs[END_REF][START_REF] Xu | Uncertainty and sensitivity analysis for models with correlated parameters[END_REF][START_REF] Wei | How to Conduct a Proper Sensitivity Analysis in Life Cycle Assessment: Taking into Account Correlations within LCI Data and Interactions within the LCA Calculation Model[END_REF][START_REF] Patouillard | Prioritizing regionalization efforts in life cycle assessment through global sensitivity analysis: a sector meta-analysis based on ecoinvent v3[END_REF]. Therefore, we created three uncorrelated groups of variables that are the different parts of the C-LCA model: background inventory model variables 𝑋 𝐿𝐶𝐼 𝑏𝑔 from the ecoinvent database, foreground inventory model variables 𝑋 𝐿𝐶𝐼 𝑓𝑔 from MIRET model and LCIA variables 𝑋 𝐿𝐶𝐼𝐴 , which are CFs from IMPACT World+ (Figure

	As discussed in Patouillard et al. (2019), a straightforward approach to perform GSA on an LCA model would
	require more than 200 days of calculation to directly estimate the sensitivity of each variable. Therefore, we
	decomposed the LCA model into simpler models by grouping variables to prioritize the most sensitive part
	of the model step by step. The main reasons for grouping variables are: (1) to reduce the computational
	complexity; (2) to drive the efforts with a practitioner's perspective. Indeed, the type of data, tools and
	expertise to improve the spatialization of elementary flows, the regionalization of foreground inventory
	model or the regionalization of background inventory model is very different; (3) to deal with correlation
	between variables (

Table 2 -Details on GSA models and sensitivity indices estimated at each step

 2 

  efforts between inventory regionalization and inventory spatialization for the damage ICs selected during the IC ranking step. If 𝑆𝐼1 𝑋 𝐿𝐶𝐼 is the highest sensitivity index, the ℎ 𝑗 𝑑𝑎𝑚 uncertainty mainly comes from inventory model variables, and the inventory should, therefore, be investigated for regionalization. If 𝑆𝐼1 𝑋 𝐿𝐶𝐼𝐴 is the highest sensitivity index, the ℎ 𝑗 𝑑𝑎𝑚 uncertainty is mainly coming from LCIA variables, and the inventory should, therefore, be investigated for spatialization to use more regionalized CFs. An 𝑆𝐼2 𝑋 𝐿𝐶𝐼 ,𝑋 𝐿𝐶𝐼𝐴 (also referred to as interaction sensitivity index) higher than other sensitivity indices, which indicates that the ℎ 𝑗 𝑑𝑎𝑚 uncertainty mainly comes from the interactions between both groups of variables. Therefore, no priority order may be drawn and both groups 𝑋 𝐿𝐶𝐼 and 𝑋 𝐿𝐶𝐼𝐴 should be further studied.3. Background vs. foreground LCI step: determine which if 𝑋 𝐿𝐶𝐼 𝑏𝑔 or 𝑋 𝐿𝐶𝐼 𝑓𝑔 is the main source of ℎ 𝑗

	𝑆𝐼1 𝑋 𝐿𝐶𝐼 𝑓𝑔	is higher.
	3.3. Results of global sensitivity analysis of the C-LCA case study
	3.3.1.	IC ranking and LCI vs. LCIA steps

ℎ 𝑗 𝑑𝑎𝑚 uncertainty for each damage IC. Interpretation of sensitivity indices for this step makes it possible to prioritize 𝑑𝑎𝑚 uncertainty for each damage IC considering LCI uncertainty only. Interpretation of sensitivity indices for this step makes it possible to prioritize inventory regionalization efforts between background and foreground LCI for damage ICs selected during the IC ranking step and the LCI vs. LCIA step. Inventory regionalization efforts should be focused on: (i) the background inventory model if 𝑆𝐼1 𝑋 𝐿𝐶𝐼 𝑏𝑔 is higher than other sensitivity indices; (ii) the foreground inventory model, i.e. the MIRET model here, if

Table 1 . Parts of the C-LCA model Estimation of input uncertainty Uncertainty propagation

 1 

	Output format
	and integration
	with LCA model

Table 2 Steps Model on which the GSA is performed Sensitivity indices estimated (details available in SI)

 2 𝑚 3 (𝑋 𝐿𝐶𝐼 𝑏𝑔 , 𝑋 𝐿𝐶𝐼 𝑓𝑔 , 𝜇 𝑋 𝐿𝐶𝐼𝐴 ) which is a derived model from 𝑚 2 where 𝑋 𝐿𝐶𝐼𝐴 are set to their mean deterministic values (𝜇 𝑋 𝐿𝐶𝐼𝐴 ).

	IC ranking	𝒉 𝑨𝑶𝑷 = 𝑚 1 (ℎ 0 𝑑𝑎𝑚 , … , ℎ 𝑗 𝑑𝑎𝑚 , … , ℎ 𝐽-1 𝑑𝑎𝑚 )	𝑆𝐼1 ℎ 𝑗 𝑑𝑎𝑚 for each IC 𝑘 𝐴𝑂𝑃
		based on equation 5.		
	LCI vs. LCIA 𝒉 𝒅𝒂𝒎 = 𝑚 2 (𝑋 𝐿𝐶𝐼 , 𝑋 𝐿𝐶𝐼𝐴 ) based on equation	𝑆𝐼1 𝑋 𝐿𝐶𝐼 , 𝑆𝐼1 𝑋 𝐿𝐶𝐼𝐴 𝑎𝑛𝑑 𝑆𝐼2 𝑋 𝐿𝐶𝐼 ,𝑋 𝐿𝐶𝐼𝐴	for
		4.	each IC 𝑗 𝑑𝑎𝑚
	background	𝒉 𝒅𝒂𝒎 = 𝑆𝐼1 𝑋 𝐿𝐶𝐼 𝑏𝑔	, 𝑆𝐼1 𝑋 𝐿𝐶𝐼 𝑓𝑔	𝑎𝑛𝑑 𝑆𝐼2 𝑋 𝐿𝐶𝐼 𝑏𝑔 ,𝑋 𝐿𝐶𝐼 𝑓𝑔
	vs.		for each IC 𝑗 𝑑𝑎𝑚
	foreground			
	LCI			

TIMES: The Integrated Markal-Efom System. MARKAL (MARket ALlocation model,[START_REF] Fishbone | Markal, a linear-programming model for energy systems analysis: Technical description of the bnl version[END_REF]) and EFOM (Van der Voort and Doni 1984) are two bottom-up energy models that inspired the structure of TIMES.
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