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1 Quasi Chemical Approximation

Let us consider a solid surface made up of M adsorption sites occupied by N fluid molecules.
For such a surface lattice having a connectivity z0 (z0 = 4 for a simple square lattice as each
site is connected to 4 nearest neighbors), the total number of pairs is z0M/2 since each of the M
sites is paired with z0 sites but each site pair is double counted [(i, j) = (j, i)]. Each neighboring
site pair can be occupied as follows: (1) both sites are empty, (2) one site is empty while the
other one is occupied, (3) both sites are occupied. Let us denote N00, N01, and N11 the number
of pairs corresponding to these three configurations (the subscripts ‘0’ and ‘1’ therefore refer to
an unoccupied site and an occupied site in the considered pair). N00, N01, and N11 necessarily
obey the following normalization rules: (1) z0N = 2N11 + N01 and (2) z0(M − N) = 2N00 + N01.
These two rules can be understood as follows. Each isolated molecule corresponds to one of
the N adsorbed molecules and generates z0N01 pairs but each neighboring molecule pair removes
two pairs of type N01. The same reasoning applies for the second rule but with the unoccupied sites.

In what follows, the canonical partition functions of an individual adsorbed molecule and of the
whole system made of M sites occupied by N molecules at the temperature T are denoted q and
Q(N,M, T ), respectively. By noting w the energy of a given pair of neighboring adsorbed molecules,
the lateral interaction energy between adsorbed molecules writes N11w = z0Nw/2−N01w/2. This
allows writing the total partition function as:

Q(N,M, T ) = qN
∑
N01

g(N,M,N01)e
−N11w/kBT = qNe−z0Nw/2kBT

∑
N01

g(N,M,N01)e
N01w/2kBT (1)

where g(N,M,N01) corresponds to the number of ways the N adsorbed molecules can be dis-
tributed among theM solid sites while leading to N01 occupied/unoccupied site pairs. To determine
g(N,M,N01), we first consider the number of ways ω(N,M,N01) each site pair can be assigned to
N00, N01, and N11 without considering whether these configurations are actually possible or not
[ω(N,M,N01) ≥ g(N,M,N01)]:

ω(N,M,N01) =
[z0M/2]!

[z0N/2−N01/2]![z0(M −N)/2−N01/2]![N01/2]!2
(2)

Following the approach by Hill,1 to correct ω(N,M,N01) for impossible configurations and estimate
g(N,M,N01), we write that g(N,M,N01) = C(N,M)ω(N,M,N01) where C(N,M) is the correction
factor that needs to be determined. After noting that

∑
N01

g(N,M,N01) = M !/[N !(M − N)!],
C(N,M) can be determined by writing:

∑
N01

g(N,M,N01) = C(N,M)
∑
N01

ω(N,M,N01) =
M !

N !(M −N)!
(3)
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Then, we use the maximum term method which consists of approximating the sum over N01 by
its maximum contribution obtained for N∗01. In practice, N∗01 is determined by maximizing ω, i.e.
∂ lnω/∂N01 = 0 for N01 = N∗01. This leads to N∗01 = z0N(M −N)/M with1:

ω(N,M,N∗01) =
[ M !

N !(M −N)!

]z0
(4)

and, therefore, the following expression:

C(N,M) =
[ M !

N !(M −N)!

]1−z0
(5)

By introducing t(N,M,N01) = g(N,M,N01)e
N01w/2kBT = C(N,M)ω(N,M,N01)e

N01w/2kBT , the
partition function in Eq. (1) can be expressed as:

Q(N,M, T ) = qNe−z0Nw/2kBT
∑
N01

t(N,M,N01) ∼ qNe−z0Nw/2kBT t(N,M,N∗01) (6)

where the last expression is obtained by replacing the sum over N01 by its maximum contri-
bution (maximum term method); i.e. ∂ ln t(N,M,N01)/∂N01 = 0 for N01 = N∗01. From the
expression of t(N,M,N01), this last optimization condition leads to ∂ ln t(N,M,N01)/∂N01 =

∂ lnω(N,M,N01)/∂N01 + w/2kBT = 0. After a little algebra2, it is possible to show that
∂ lnω/∂N01 = 1/2 ln[(θ−α)(1−θ−α)/α2] where θ = N/M is the occupancy rate and α = N01/z0M .
Using this expression in the condition ∂ ln t(N,M,N01)/∂N01 = 0 leads to:

(θ − α)(1− θ − α)

α2
= e−w/kBT (7)

The last expression is a second degree equation in α which admits as solutions:

α =
N∗01
z0M

=
2θ(1− θ)
γ + 1

(8)

with γ = [1−4θ(1− θ)(1− exp(−w/kBT ))]1/2 (among the two solutions admitted by this quadratic
equation, only the one leading to the correct solution α = θ(1− θ) for w = 0 i.e. γ = 1 is kept).

1Using Stirling formula, lnN ! ∼ N lnN − N , we obtain ∂ lnN !/∂N = lnN . Applying this formula to
∂ lnω/∂N01 = 0 for N01 = N∗

01, we obtain ∂ lnω/∂N01 = 1/2 ln[z0N/2 −N∗
01/2] + 1/2 ln[z0(M −N)/2 −N∗

01/2] −
ln[N∗

01/2] = 0 which can be recast as [z0N −N∗
01][z0(M −N)−N∗

01] = N∗
01

2 and, hence, N∗
01 = z0N(M −N)/M .

2Let us start from the expression derived in footnote 1: ∂ lnω/∂N01 = 1/2 ln[z0N/2 − N01/2] + 1/2 ln[z0(M −
N)/2 − N01/2] − ln[N01/2] which can be recast as ∂ lnω/∂N01 = 1/2 ln[(z0N/2 − N01/2)(z0(M − N)/2 −
N01/2)/(N01/2)

2]. We then factorize the numerator and denominator by z20M2 and introduce the variables θ and α.
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Going back to the approximate partition function given in Eq. (6), it can be recast as:

lnQ(N,M, T ) = N ln[qe−z0w/2kBT ] + ln t(N,M,N∗01) (9)

which leads to the following chemical potential expression:

− µ

kBT
=

(
∂ lnQ

∂N

)
M,T

= ln[qe−z0w/2kBT ] +

(
∂ ln t

∂N

)
N∗01,M,T

+

(
∂ ln t

∂N∗01

)
N,M,T

(
∂N∗01
∂N

)
M,T

= ln[qe−z0w/2kBT ] +

(
∂ ln t

∂N

)
N∗01,M,T

(10)

where the last expression is obtained by noting that ∂ ln t/∂N∗01 = 0 since N∗01 is the
value that maximizes t at given N,M, T conditions. Using the definition t(N,M,N01) =

C(N,M)ω(N,M,N01)e
N01w/2kBT , we arrive at ∂ ln t/∂N = ∂ lnC(N,M)/∂N+∂ lnω(N,M,N∗01)/∂N

which leads to:(
∂ ln t

∂N

)
N∗01,M,T

= −(1−z0)[lnN−ln(M−N)]−z0
2

[
ln
(z0N

2
−N

∗
01

2

)
−ln

(z0(M −N)

2
−N

∗
01

2

)]
(11)

where the first term corresponds to the derivation of C(N,M) given in Eq. (5) while the last
two terms corresponds to the derivation of ω(N,M,N∗01) given in Eq. (2). Using θ = N/M and
α = N∗01/z0M , Eq. (11) can be recast as:(

∂ ln t

∂N

)
N∗01,M,T

= ln
[( θ

1− θ

)z0−1(1− θ − α
θ − α

)z0/2]
(12)

Inserting this expression into Eq. (10) yields the following expression:

µ

kBT
= − ln[qe−z0w/2kBT ] + ln

[(1− θ
θ

)z0−1( θ − α
1− θ − α

)z0/2]
(13)

Using the relation between α and γ (see above) and introducing the energy of a single adsorbed
molecule ε0 so that q = exp[−ε0/kBT ], the latter equation can be recast as:

µ

kBT
=

(z0w + 2ε0)

2kBT
+ ln

[
(γ − 1 + 2θ)(1− θ)

(γ + 1− 2θ)θ

]z0/2
+ ln

[
θ

1− θ

]
(14)

which is equivalent to the formula used in the main text.
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2 Additional figures
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Figure S1: Adsorption kinetics showing Γm′ as a function of time t for TX165 surfactant on kaolinite
clay for two bulk concentrations: (a) c = 300 µmol/kg and (b) c = 600 µmol/kg. The color lines
denote the data obtained using the cooperative model with β = 0.2 (blue), β = 0.5 (red), and
β = 1.0 (green) while the black lines correspond to kinetics predicted using the Langmuir kinetic
model with an adsorption/desorption constant kL that best matches the experimental adsorption
isotherm (see text). In each case, the dashed lines correspond to the case kA ∼ ν0k and kD ∼ ν0
while the solid lines correspond to kA ∼ ν0/c and kD ∼ ν0/kc. Note that our model predicts that
the color dashed lines (i.e. kA ∼ k and kD constant) are superimposed.
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Figure S2: Predicted surfactant adsorption isotherms at T = 298 K showing the surface concen-
tration of surfactants Γ onto a silica-based surface as a function of the bulk concentration c. The
black, blue, violet, green and red solid lines show the predictions from our model using different
values for cs. The vertical dashed lines indicate the corresponding critical surface concentration cs
as well as the bulk critical micelle concentration CMC.

0 200 400 600 800

 c (µmol/kg)

0.0

0.4

0.8

1.2

Γ
 (

µ
m

o
l/

m
2
)

 c
s

❒

 c
s

Γ
m’

Γ
m’

°

° ❒

Figure S3: Adsorption isotherm for aggregated monomer at T = 298 K showing the surface con-
centration of aggregated monomers Γ′m onto a silica-based surface as a function of the bulk concen-
tration c. The circles are for TX100 adsorption on quartz silica while the squares are for TX165 on
kaolin. The solid lines denote the fits used to describe the aggregated monomer adsorption. The
vertical dashed lines indicate the critical surface concentration cs for each dataset.

References

(1) Hill, T. L. Statistical Mechanics: Principles and Selected Applications ; Dover Publications, New
York, 1987.

S6


