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Abstract

We present a new method to solve general systems of equations containing complementari-
ty conditions, with a special focus on those arising in the thermodynamics of multicomponent
multiphase mixtures at equilibrium. Indeed, the unified formulation introduced by Lauser et
al. [Adv. Water Res. 34 (2011), 957–966] has recently emerged as a promising way to auto-
matically handle the appearance and disappearance of phases in porous media compositional
multiphase flows. From a mathematical viewpoint and after discretization in space and time,
this leads to a system consisting of algebraic equations and nonlinear complementarity equa-
tions. Such a system exhibit serious convergence difficulties for the existing semismooth and
smoothing methods. This observation led us to design a new strategy called NPIPM (Non-
Parametric Interior-Point Method). Inspired from interior-point methods in optimization,
the technique we propose avoids any parameter management while ensuring good theoretical
convergence results. These are validated by extensive numerical tests, in which we compare
NPIPM to the Newton-min method.
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1 Introduction

1.1 Motivation and objectives

In many applied scientific fields such as mechanics, electronics or chemical kinetics [1,16] we often
encounter models of the form

ΛpXq � 0, P R`�m, (1.1a)

minpGpXq, HpXqq � 0, P Rm, (1.1b)
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thachsonnt94@gmail.com, ibtihel.ben-gharbia@ifpen.fr, quang-huy.tran@ifpen.fr

�IRMAR, INSA-Rennes, 20 Avenue des Buttes de Coësmes, 35708 Rennes, France.
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where the unknown X P D is to be found in some open domain D � R` and where the given
functions Λ : D � R` Ñ R`�m and G, H : D � R` Ñ Rm, with 0   m ¤ `, are assumed to
be continuously differentiable on D. The first ` � m equations (1.1a) are “ordinary” algebraic
equations. By contrast, the last m equations (1.1b) are rather “special” in that they involve
the componentwise minimum function and are therefore nondifferentiable. They represent the
so-called complementarity conditions (or unilateral conditions), the exact significance of which is
0 ¤ GpXq K HpXq ¥ 0, or equivalently,

GpXq ¥ 0, HpXq ¥ 0, xGpXq, HpXqy � 0. (1.2)

This name is justified by the observation that for each index α P t1, . . . ,mu, at least one of the two
quantities GαpXq and HαpXq vanishes while the other remains nonnegative. Each complementarity
condition minpGαpXq, HαpXqq � 0 expresses two possible functioning regimes by a same single
equation. The m complementarity conditions thus enable us to conveniently envision the 2m

configurations of the physical system in a unified manner. By “unified” we mean that a fixed set
of equations and unknowns is assembled throughout the simulation, namely,

F pXq � 0, with F pXq �
�

ΛpXq
minpGpXq, HpXqq

�
. (1.3)

Complementarity conditions were introduced in thermodynamics by Lauser et al. [23] for the
phase equilibrium problem of compositional multiphase mixtures, with an aim to speed up the
simulation of flows in porous media. The difficulty of this problem lies in the appearance and
the disappearance of various phases (liquid, gas, oil), the handling of which is quite delicate.
Reservoir engineers traditionally use the variable-switching formulation [13], in which only those
unknowns and equations that correspond to a currently present phase are considered. This has
the advantage of keeping the system small-sized, but is cumbersome and costly to implement,
insofar as “switching” may occur all the time. In this respect, Lauser et al.’s unified formulation
is a tremendous progress, not only for the practical comfort it offers but also for the theoretical
properties that it encapsulates, as emphasized in [9].

Subsequent works by Ben Gharbia [6], Ben Gharbia and Jaffré [10], Masson et al. [26, 27] and
Beaude et al. [4] testified to the superiority of the unified formulation over the variable-switching
one regarding computational time in simple cases, i.e., with Henry’s law for fugacity coeffients.
Another series of works at IFPEN [7, 8, 24, 31] seem to reach the opposite conclusion for realistic
fugacity coefficients given by cubic equations of state, such as Peng-Robinson’s law. All these works
use the Newton-min method [2, 22] to solve the nondifferentiable algebraic system of equations
(1.1). It was observed that Newton-min may suffer from periodic oscillations or converge to a
wrong solution. There are two possible explanations to this lack of robustness:

1. System (1.1) is ill-posed for some data and thermodyanimic laws. It may not have a solution
or some components of Λ are not well-defined over the whole domain of interest D. This
issue pertains to physical modelling and was addressed in [9].

2. Despite its popularity among numericist, thanks to its simplicity and the semismooth local
convergence theory of [29, 32], Newton-min may not be well-suited to the specific nature of
our problem. We need another algorithm. This issue is the subject of this article.

This work is a first step in the direction of an alternative numerical method to solve (1.1),
with a better guarantee of convergence and a greater robustness with respect to the parameters
of the problem. Our quest is deeply rooted in the belief that the unified formulation has a strong
potential to improve the performance of compositional multiphase flow simulators. After all, it is
already a major advance to have succeeded in recasting the continuous problem under a unified
language. It would be a pity not to “convert the try” for want of an adequate numerical method.
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1.2 Main results and outline of the paper

First of all, it is essential to review the existing classical methods that could be considered for
our problem. This is the purpose of §2. In addition to Newton-min (§2.1), which is part of the
semismooth family, we also revisit the smoothing family with the θ-smoothing methods (§2.2)
and the interior-point methods (§2.3). Although we prefer this second category for its conceptual
elegance, we insist on its main shortcoming, which is the absence of a reliable strategy to drive the
regularization parameter towards zero.

The identification of this difficulty prompts us to propose a new interior-point method (§3),
in which the smoothing parameter becomes a full-fledged unknown. The latter is governed by
a new equation coupling the new variable with the remaining ones. The augmented system is
then solved with the ordinary smooth Newton method, with an optional Armijo-type line search
to ensure global convergence. Since the parameter is now updated “automatically” and no longer
“manually,” the new algorithm is given the name NonParametric Interior-Point Method (NPIPM).
This is our main contribution.

In preparation for the numerical tests, we consider two models giving rise to systems of the
form (1.3). Both are reduced versions of more realistic models for two-phase compositional mix-
tures. The first one, expounded in §4.1, is the stationary phase equilibrium problem at a given
global composition. A thorough analysis of it was conducted in [9], where we highlighted its good
mathematical properties and clarified the assumptions ensuring the existence of a solution, detailed
in §4.2. In §4.3, we prove the regularity of all solutions barring two degenerate cases, which is a
favorable feature for quadratic convergence of NPIPM. This model is deployed in combination with
Henry’s and Peng-Robinson’s fugacity laws. Thanks to the simplicity of this model, we were able
to diagnose [9] an intrinsic deficiency of Peng-Robinson’s law that makes it impossible for F to
be well-defined over the whole domain D, thus jeopardizing the unified formulation. The domain
extension procedure proposed in [9] and recalled in §4.4 are therefore systemically applied in order
to prevent the numerical methods from stopping prematurely.

The second model, which includes an evolution in time, is built on top of the first one by
prescribing an ordinary differential equation on the global mass fraction (§5.1). Far from being
arbitrary, this differential equation can be heuristically derived from a one-dimensional two-phase
binary flow model discretized in space by a one-cell mesh. The interest of this second model lies
in the new difficulty associated with the time-step. This is why it is deployed in combination with
only Henry’s law for fugacities, which also allows the exact solution to be determined (§5.2) and
proven to be regular (§5.3).

Finally, extensive numerical results are provided in §6, where NPIPM is systematically com-
pared to Newton-min. For each model, we sweep over the initial points and the parameters. This
test campaign clearly demonstrates NPIPM’s excellence in comparison with Newton-min: most of
the time, NPIMP achieves a 100% convergence ratio.

2 Standard approaches for solving systems with comple-
mentarity conditions

For a general function F : D P R` Ñ R` that is not differentiable everywhere, the numerical
methods available in the literature to solve F pXq � 0 can be grossly divided into two categories:
semismooth methods and smoothing methods.

2.1 Newton-min, a popular semismooth method

The semismooth approach generalizes the classical smooth Newton method by resorting to a broa-
der notion of Jacobian matrix. Actually, the semismooth Newton theory [29, 32] is a concrete
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embodiment of the nonsmooth Newton theory [17, §7.2], an abstract framework that was developed
much earlier for locally Lipschitz functions.

By Rademacher’s theorem [14, §3.4.1], every locally Lipschitz-continuous function is continu-
ously differentiable almost everywhere. Put another way, the set CF of points X P D where ∇F pXq
exists in the classical sense is non-empty and its complement DzCF has measure zero. This enables
two notions of subdifferential to be introduced.

Definition 2.1 (Bouligand and Clarke subdifferentials). Let F : D � R` Ñ R` be a locally
Lipschitz-continuous function and CF � D be the set of points at which F is differentiable.

1. The B-subdifferential or the limiting Jacobian of F at X is the set-valued mapping BBF :
D Ñ R`�` defined as

BBF pXq �
 
M P R`�` | DpXnqkPN � CF , Xn Ñ X, ∇F pXnq ÑM

(
. (2.1a)

In other words, the Bouligand subdifferential BBF pXq is the set of all matrices M are the
limits of the Frechet differentials ∇F pXnq for a sequence Xn converging to X.

2. The C-subdifferential or the generalized Jacobian of F at X is the set-valued mapping BF :
D Ñ R`�` given by

BF pXq � convpBBF pXqq. (2.1b)

In other words, the Clarke subdifferential BF pXq is the convex hull of the Bouligand subdif-
ferential BBF pXq.

The idea is then to prescribe the local linear approximation d ÞÑ F pXkq �Mkd around Xk

with Mk P BF pXkq and to look for a zero of this approximation scheme. This defines the sequence
Xk�1 � Xk � dk after having solved Mkdk � �F pXkq for dk. Unfortunately, in general this
linear local model does not satisfy the technical conditions required by the nonsmooth framework
to ensure convergence [33, Definition 4.5]. This is why we have to restrict ourselves to a subclass
of those locally Lipschitz functions that comply exactly with these conditions.

Definition 2.2 (Semismooth function). Let F : D � R` Ñ R` be a locally Lipschitz-continuous
function. We say that F is semismooth at sX P D if

lim sup
XÑ�X

MPBF pXq

‖F pXq �Mp sX �Xq � F p sXq‖
‖X � sX‖

� 0. (2.2)

The subclass of semismooth functions is rich enough to cover all functions of interest in real
applications. It happens, however, that the generic element of BF pXkq is difficult to identify. This
is precisely the case for the functions F having the form (1.3). It is then recommended [21] to pick
Mk P BBF pXkq instead, which might be easier to determine. The following statement provides
the generic element of BBF pXkq when F is of the type (1.3).

Proposition 2.1. If Λ, G, H : D � R` Ñ R` are continuously differentiable, then F is semis-
mooth. Its B-subdifferential consists of all matrices M P R`�` of the form

BBF pXq �
"
M �

�
∇ΛpXq

{∇
�
, {∇ P Rm�`

*
, (2.3a)

where the α-th row of {∇ for α P t1, . . . ,mu is

{∇α �

$'&'%
∇GαpXq if GαpXq   HαpXq,
∇GαpXq or ∇HαpXq if GαpXq � HαpXq,
∇HαpXq if GαpXq ¡ HαpXq.

(2.3b)
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Algorithm 1 Newton-min algorithm

1. Choose X0 P D � R`. Set k � 0.
2. If F pXkq � 0, stop.
3. Select an element Mk P BBF pXkq as in (2.3). Find a direction dk P R` such that

F pXkq �Mkdk � 0. (2.4)

4. Set Xk�1 � Xk � dk and k Ð k � 1. Go to step 2.

Proof. The proof makes use of general results on the semismoothness of the componentwise min-
imum of two semismooth functions and on the B-subdifferential of a vector-valuded function [21,
§1.75, §1.54]. See details in [33, Proposition 4.2].

Algorithm 1 summarizes the successive steps of the Newton-min method for problem (1.3).
Historically, the first report on Newton-min seems to date back to Aganagić [2]. Instead of the
minimum function, we could have expressed componentwise complementarity by means of another
C-function, that is, a function ψ : R2 Ñ R such that

ψpa, bq � 0 ô a ¥ 0, b ¥ 0, ab � 0. (2.5)

Besides ψminpa, bq � minpa, bq, two other C-functions are worth knowing of:

� the Fischer-Burmeister function ψFBpa, bq �
?
a2 � b2 � pa� bq. This C-function is differen-

tiable everywhere except at p0, 0q. In addition, its square ψ2
FBpa, bq is continuously differ-

entiable on the entire plane. Introduced in [18], the Fischer-Burmeister function played a
central role in the early development of algorithms. The corresponding semi-smooth method
is called Newton-FB.

� the Mangasarian function ψMpa, bq � ζp|a�b|q�ζpaq�ζpbq, where ζ : RÑ R is an increasing
function and ζp0q � 0. It can be made differentiable everywhere by an appropriate choice of
ζ, e.g., ζptq � t3 as advocated in [25]. The coresponding Newton-M method is nevertheless
not very successful, due to a flaw shared by all smooth C-functions, that is, ∇ψp0, 0q � p0, 0q.
This makes the Jacobian matrix singular at the solution.

Remark 2.1. It was observed [6] that the direction dk computed by (2.4) is not always a descent
direction for the least-squares merit function ΘpXq � 1

2‖F pXq‖2. Consequently, globalization of
Newton-min by means of a line search (cf. §3.3) along dk remains a delicate issue.

2.2 θ-smoothing, a typical smoothing method

In contrast to semismooth methods, smoothing methods first try to regularize the F function, which
introduces a regularization parameter that must be progressively pushed to zero. A regularization
of F is the choice of a family of functions rF p�; νq : D � R` Ñ R`, ν ¡ 0

(
(2.6)

such that: (i) rF p�; νq is a smooth (continuously differentiable) function of X, for all ν ¡ 0; (ii)rF p�; νq is continuous with respect to ν, in some functional sense; (iii) limνÓ0
rF p�; νq � F p�q, in

some functional sense. Starting from a current pair of values pXk, νkq, the overall strategy of a
smoothing method is to

1. solve rF pXk�1 ; νkq � 0 in the unknown Xk�1 by means of the smooth Newton method, using
Xk as the initial point;
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2. decrease the regularization parameter from νk to νk�1 by some “rule of thumb.” Start over
the process until F pXk�1q � 0.

The regularized system in Step 1 is supposedly easier to solve and may benefit from the enhanced
properties of the smooth Newton method. Moreover, it is customary to do just one iteration in Step
1, with a view to lower the computational cost. This paradigm, known as the diagonal Newton,
induces more approximation error but is of great practical interest.

To smooth out the scalar complementarity equation 0 ¤ a K b ¥ 0, let us first rewrite it under
the plainly equivalent form

a ¥ 0, b ¥ 0, Spaq �Spbq ¤ 1, (2.7)

where

Sptq �
#

0 if t � 0,

1 if t ¡ 0
(2.8)

is the step function. The latter serves as an indicator of positive arguments t ¡ 0 over R�. Since
the step function is discontinuous, let us regularize it using the notion of a smoothing function
introduced by Haddou and his coauthors [3, 19].

Definition 2.3 (θ-smoothing function). A function θ : R� Ñ r0, 1q is said to be a θ-smoothing
function if it is continuous, nondecreasing, concave, and

θp0q � 0, lim
tÑ�8

θptq � 1. (2.9a)

Furthermore, if θ can be defined for negative arguments t P p�T, 0q, with T ¡ 0, while remaining
continuous, nondecreasing and concave, it is required that

θptq   0 for t P p�T, 0q. (2.9b)

The smoothing function is a “father” function, by compression of which regularized step func-
tions will be generated. The two most common examples of smoothing functions are:

� the rational function θ1 : p�1,�8q Ñ p�8, 1q defined by

θ1ptq � t

t� 1
. (2.10a)

� the exponential function θ2 : RÑ p�8, 1q defined by

θ2ptq � 1� expp�tq. (2.10b)

Definition 2.4 (θ-smoothing family). Let θ be a θ-smoothing function. The family of functions 
θνptq :� θpt{νq, ν ¡ 0

(
(2.11)

is said to be the θ-smoothing family associated with θ.

Obviously, θν is a smooth function of t ¥ 0 for all ν ¡ 0. It is also continuous with respect to
ν at each fixed t ¥ 0. From the defining properties (2.9), it can be readily shown that

lim
νÓ0

θνptq � Sptq, @t ¥ 0. (2.12)

In other words, S is the limit of θν in the sense of pointwise convergence. The equivalence between
0 ¤ a K b ¥ 0 and (2.7) suggests us to impose

a ¥ 0, b ¥ 0, θνpaq � θνpbq � 1 (2.13)

for ν ¡ 0, as a smooth approximation of (2.7). Replacing S by θν in (2.7) is logical. Replacing
“¤” by “=” in (2.7) is motivated by the fact that we want an equality to be mounted into the
system of equations. Let us examine the impact of (2.13) on the examples (2.10).
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� For the rational function (2.10a), we can easily prove the remarkable equivalence

θ1
νpaq � θ1

νpbq � 1 ô ab � ν2. (2.14a)

The equality ab � ν2 appears to be a natural relaxation of ab � 0. This smoothing paradigm
will prevail in interior-point methods, with ν in the right-hand side instead of ν2.

� For the exponential function (2.10b), we readily check the equivalence

θ2
νpaq � θ2

νpbq � 1 ô �ν lnrexpp�a{νq � expp�b{νqs � 0, (2.14b)

In the left-hand side, the function minνpa, bq :� �ν lnrexpp�a{νq � expp�b{νqs can be re-
garded as a smooth approximation of minpa, bq. This relaxation of minpa, bq � 0 could
have been worked out from the more well-known fact [5] that maxνpa, bq :� ν lnrexppa{νq �
exppb{νqs is a smooth approximation of maxpa, bq.

For F of the form (1.3), we consider the regularization family t rF p�, νq, ν ¡ 0u, where

rF pX , νq �
�

ΛpXq
ν pθνpGpXqq � θνpHpXqq � 1q

�
. (2.15)

Here, it is understood that θν operates componentwise on GpXq and HpXq, while 1 P Rm is
the vector whose entries are all equal to 1. The premultiplication by ν of the second line in
(2.15) is aimed at controlling the magnitude of their partial derivatives. Indeed, for all t ¥ 0,
θ1νptq � ν�1θ1pt{νq can be seen to blow up when ν Ó 0, while νθ1νptq tends to the finite limit θ1p0q.

To complete the two-step procedure described at the beginning of §2.2, we also need some “rule
of thumb” to steer ν to 0. This issue will be discussed at the end of §2.3.

2.3 Interior-point, a reference in optimization

Renowned for their efficiency in linear programming thanks to their polynomial complexity, interior-
point methods [34] can be interpreted as regularization methods. We are mostly interested in
primal-dual methods [35], in which primal variables (initial unknowns) and duals (Lagrange mul-
tipliers) enjoy the same status. When one dissects a primal-dual inner-point method, one realizes
that it is basically a method for solving the algebraic system of Karush-Kuhn-Tucker (KKT) op-
timality conditions. The fact that the system comes from a constrained minimization problem is
ultimately of little importance in the method. This opens up the prospect of transposing these
methods to the case of a general system containing complementarity conditions.

Let us consider the family of regularized problems

rF pX; νq � 0, with rF pX; νq �
�

ΛpXq
GpXq dHpXq � ν1

�
P R`, (2.16)

where ν ¥ 0 is the smoothing parameter, 1 P Rm is the vector whose components are all equal to
1, and d denotes Hadamard’s componentwise product. It is usually more convenient to cast the
previous sytem under the form

FpX ; νq � 0, with FpX ; νq �

����
ΛpXq
GpXq � V
HpXq �W
V dW � ν1

���� P R`�2m, (2.17)

where X � rXT ;V T ;WT sT P D � Rm � Rm � R`�2m is the augmented unknown and where the
slack variables pV,W q P Rm � Rm are subject to the componentwise positivity conditions

V ¥ 0, W ¥ 0. (2.18)
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Enlarging the size of the system and the number of unknowns does not change the determinant of
the Jacobian matrix at the corresponding solution. Let us state this result for later use. Due to
defintions (2.16) and (2.17), the Jacobian matrices ∇X

rF pX; νq and ∇XFpX; νq do not depend on

ν. For short, they will be denoted by ∇ rF pXq and ∇FpXq.
Lemma 2.1. Let X P D and X � rXT ;V T ;WT sT P D � Rm � Rm such that V � GpXq and
W � HpXq. Then,

det∇FpXq � det∇ rF pXq. (2.19)

Proof. The determinant of the Jacobian matrix of FpX ; νq is equal to

det∇FpXq �

∣∣∣∣∣∣∣∣
∇ΛpXq 0 0
∇GpXq �Im 0
∇HpXq 0 �Im

0 Im dW Im d V

∣∣∣∣∣∣∣∣ ,
where the Hadamard product between a matrix and a vector is defined as the matrix whose each
column is the Hadamard product between the corresponding column of the matrix and the vector.
By linear combination of the last (block)-row with the second and third (block)-rows, we obtain

det∇FpXq �

∣∣∣∣∣∣∣∣
∇ΛpXq 0 0
∇GpXq �Im 0
∇HpXq 0 �Im

∇GpXq dW �∇HpXq d V 0 0

∣∣∣∣∣∣∣∣ .
By means of 2m row permutations, we end up with

det∇FpXq �

∣∣∣∣∣∣∣∣
∇ΛpXq 0 0

∇GpXq dW �∇HpXq d V 0 0
∇GpXq �Im 0
∇HpXq 0 �Im

∣∣∣∣∣∣∣∣ �
∣∣∣∣ ∇ΛpXq
∇GpXq dW �∇HpXq d V

∣∣∣∣ .
For V � GpXq, W � HpXq, the last determinant coincides det rF p�; νq. Note that the Lemma does
not require X to be a solution of (2.16).

A primal-dual interior-point method strives to generate a sequence

tXkukPN � I :�  
X � pX, V, W q P R`�2m | V ¡ 0, W ¡ 0

(
, (2.20)

as well as an auxiliary sequence tνkukPN � R�
� such that pXk, V k, W kq Ñ p sX, Gp sXq, Hp sXqq and

νk Ñ 0, where sX P D is a zero of F � rF p�; 0q. Algorithm 2 describes a single-stage interior-point
method which consists of one Newton iteration (Step 3), followed by a truncation (Step 4) and an
update for the regularization parameter (Step 6).

Below are a few common empirical ways to progressively drive νk to 0:

νk�1 � pνkq2; (2.23a)

νk�1 � pνkq2; (2.23b)

νk�1 � min
�
0.5 νk, pνkq2�; (2.23c)

νk�1 � min
�
0.5 νk, pνkq2, xV k�1, W k�1y {m�

. (2.23d)

The geometric sequence (2.23a) has the advantage of going slowly to zero, which is recommended
when νk is still large. The power sequence (2.23b) goes quickly to zero, which is relevant when
νk is already small. The hybrid geometric-power sequence (2.23c) combines the advantages of
the first two strategies. The hybrid geometric-power sequence involving a duality measure (2.23d)
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Algorithm 2 Single-stage interior-point algorithm

1. Choose X0 P I. Set k � 0, ν0 � xV 0, W 0y {m, γ � 0.99.
2. If FpXk ; 0q � 0, stop.
3. Find a direction dk � pdXk, dV k, dW kq P R`�2m such that

FpXk ; νkq �∇FpXkqdk � 0. (2.21)

4. Compute ςk P p0, 1q such that Xk � ςk dk P I by

ςk � γ � arg max
 
ς P r0, 1s | V k � ς dV k ¥ 0, W k � ς dW k ¥ 0

(
. (2.22)

5. Set Xk�1 � Xk � ςkdk .
6. Set νk�1 � one of the heuristic strategies (2.23).
7. Set k Ð k � 1. Go to step 2.

allows the sequence to be reconnected to some current “reality” [20, §5]. Unfortunately, there is
no universal magic formula to monitor the sequence of regularization parameter tνku. A heuristic
strategy that works fine with one problem may fail with another. We have to try several sequences
tνku before knowing which one is best suited to the problem at hand.

Remark 2.2. Most of today’s interior-point general-purpose softwares for linear programming are
based on Mehrotra’s predictor-corrector algorithm [28]. This celebrated two-stage algorithm rests
upon a subtle tuning of the regularization parameter. It can be similarly extended to an equation
solver [33, §4.3.3.3], but the numerical results are not always as good as the other methods [33,
§6.1.1].

3 Design of a new nonparametric interior-point method

To compensate for the weakness of smoothing methods regarding the lack of a good strategy to
decrease ν to 0, we undertake to look for another way of dealing with the regularization parameter.
Our guiding principle is to treat it as an unknown in its own right.

3.1 NPIPM in a nutshell

In system (2.17), the status of the parameter ν is very distinct from that of the variable X. While
X is computed by a Newton iteration, ν has to be updated in an ad hoc manner. Usually, progress
occurs when two objects of different natures are put on an equal footing. This is why we feel that
it would be judicious to incorporate the parameter ν into the variables X.

Let us consider the enlarged vector X � rXT ; νsT P D � Rm � Rm � R� � R`�2m�1. We seek
a system of `� 2m� 1 equations

FpXq � 0, with FpXq �
�
FpX ; νq
fpX, νq

�
(3.1)

to be prescribed on X . The last equation fpX, νq � 0 must be devised in such a way that every
solution of (2.17) with ν � 0 is also a solution of the enlarged system (3.1). To enforce a few
“desirable” properties that will be enumerated later, we advocate

fpX, νq � 1

2
‖V �‖2 � 1

2
‖W�‖2 � u

2m2
pxV, W y�q2 � ην � ν2, (3.2a)

9



where u and η are two positive parameters and

‖V �‖2 �
m̧

α�1

pV �
α q2, ‖W�‖2 �

m̧

α�1

pW�
α q2. (3.2b)

To explain the rationale behind the choice (3.2), let us remind ourselves that our ultimate goal
is to make ν equal 0, while ensuring the inequalities (2.18). Thus, it seems really natural to first
consider fpX, νq � ν. This construction turns out to be too naive. Indeed, if we start from some
ν0 ¡ 0 and solve the smooth system (3.1) by the smooth Newton method, since the last equation
is linear, we end up with ν1 � 0 at the first iteration. Once the boundary of the interior region is
reached, we are “stuck” there.

To prevent ν from rushing to zero in just one iteration, we could set fpX, νq � ν2, which is
equivalent at the continuous level. At the level of Newton iterates, there is still a flaw: since ν � 0
is now a double root of the last equation, quadratic convergence will be lost when νk approaches
0! A remedy to this is to add a small linear term, that is, fpX, νq � ην � ν2, where η ¡ 0 is a
small parameter. The price to be paid for recovering quadratic convergence is that there is now a
spurious negative solution ν � �η   0. This should not be a problem, however, if we start from a
positive value for ν.

At this stage, system (3.1) is still not yet adequate. Indeed, the last equation is totally decoupled
from the others. Everything happens as if ν is governed by a pre-determined sequence, generated
a priori by the Newton iterates of the scalar equation ην � ν2 � 0, regardless of X. It is desirable
to couple ν and X in a tighter way. The choice (3.2) does achieve this purpose:

� As long as ν ¥ 0, the cancellation of fpX, νq implies V � � W� � 0, which amounts to
saying that V ¥ 0 and W ¥ 0. Should a component of V or W become negative during the
iteration, the penalty terms 1

2‖V
�‖2 and 1

2‖W
�‖2 are strong incentives for it to return into

the interior domain I.

� Thanks to upxV, W y�q2{2m2, where u ¡ 0 is a small parameter, the update of ν depends
on V and W . Without this term, we run again into the previous problem of ν “living its
own separate life” inside I. Note that at the continuous level, we have xV,W y{m � ν as a
consequence of V dW � ν1, but at the level of iterates, things can be very different.

The idea is now to apply the standard Newton method to the smooth system (3.1)–(3.2),
which updates X and ν simultaneously. To enforce a globally convergent behavior, we also opt for
Armijo’s line search.

3.2 Determinant of the Jacobian matrix and parameter increment

Before writing down the new algorithm, let us mention some insightful properties regarding the
determinant of the Jacobian matrix and the parameter increment when the current iterate lies in
the interior region.

Lemma 3.1. Let X P I, where I is the interior region defined in (2.20). Let X � rXT ; νsT for
some ν P R. Then,

det∇FpXq � pη � 2ν � uxV,W y{mqdet∇FpXq. (3.3)

If ν ¡ �η{2, the two Jacobian matrices are singular or nonsigular at the same time.

Proof. In the same fashion as in the proof of Lemma 2.1, the Jacobian matrix of the enlarged
system (3.1)–(3.2) can be decomposed blockwise as

∇FpXq �

������
∇ΛpXq 0 0 0
∇GpXq �Im 0 0
∇HpXq 0 �Im 0

0 Im dW Im d V �1
0 pV �qT � uxV,W y�WT {m2 pW�qT � uxV,W y�V T {m2 η � 2ν

������ (3.4)
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where V � is the vector of components V �
α � minpVα, 0q and similarly for W�. If X P I, then

V � �W� � 0. Subtracting the product of uxV,W y�1T {m2 with the fourth (block)-row from the
last row, we can eliminate the scalar products xV,W y ¥ 0 in the second and third columns, so that

det∇FpXq �

∣∣∣∣∣∣∣∣∣∣
∇ΛpXq 0 0 0
∇GpXq �Im 0 0
∇HpXq 0 �Im 0

0 Im dW Im d V �1
0 0 0 η � 2ν � uxV,W y{m

∣∣∣∣∣∣∣∣∣∣
. (3.5)

Expanding (3.5) with respect to the last row yields the desired result. Note that this Lemma does
not require X to solve (3.1)–(3.2).

The interest of upxV,W y�q2{2m in (3.2) can also be revealed by inspecting the increment
dνk � νk�1 � νk of the Newton method (without truncation nor line search). The following
statement shows that whenever νk is lower than the central value xV k,W ky{m, either νk increases
or νk decreases with a smaller magnitude than it would have done without upxV,W y�q2{2m. Put
another way, the parameter νk cannot go too fast to zero without “waiting” for xV k,W ky{m.

Proposition 3.1. For Xk P I, the Newton increment for the parameter is

dνk � �ην
k � pνkq2 � upxV k,W ky{2m� νkq xV k,W ky{m

η � 2νk � uxV k,W ky{m . (3.6)

In comparison with the value

dνk0 � �ην
k � pνkq2
η � 2νk

(3.7)

that corresponds to u � 0, we have either dνk0 ¤ 0   dνk   |dνk0 | or dνk0   dνk ¤ 0 as soon as
νk   xV k,W ky{m.

Proof. Applying the row transformations described the proof of Lemma 3.1 to the linear system
∇FpXkqdk � �FpXkq and taking into account the right-hand side, we end up with

d
k �

�
dXk

dνk

�
� �

�
∇FpXkq �BνF

0 η � 2νk � uxV k,W ky{m
��1 �

FpXk ; νkq
ηνk � pνkq2 � ak

�
,

where ak � upxV k,W ky{2m � νkq xV k,W ky{m, hence (3.6). When u � 0, the increment (3.6)
degenerates to (3.7). Let us introduce

Ak � ηνk � pνkq2, ak � upxV k,W ky{2m� νkq xV k,W ky{m, (3.8a)

Bk � η � 2νk, bk � uxV k,W ky{m, (3.8b)

so that dνk � �pAk � akq{pBk � bkq and dνk0 � �Ak{Bk. Then, since bk ¡ 0 and Bk ¡ 0, the
inequality |dνk|   |dνk0 | occurs if and only if pAk � akqBk   AkpBk � bkq, which boils down to

ak

bk
¡ �A

k

Bk
. (3.9)

This holds true, e.g., for ak ¥ 0, that is, νk ¤ xV k,W ky{2m. But this also holds true when ak is
negative but “not too much.” The exact condition (3.9) reads

xV k,W ky{2m� νk ¡ �ν
kpη � νkq
η � 2νk

� pνkq2
η � 2νk

� νk

and reduces to xV k,W ky{m ¡ 2pνkq2{pη � 2νkq. Since 2pνkq2{pη � 2νkq   νk, the condition
νk   xV k,W ky{m becomes sufficient for |dνk|   |dνk0 | to take place.
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3.3 Globalized algorithm

Introduce the least-squares potential

ΘpXq � 1

2
‖FpXq‖2.

A detailed description of NPIPM is given in Algorithm 3. The initial point X0 � pX0, ν0q must be
an interior point, i.e., X0 P I. Furthermore, it is often taken at equilibrium, that is, V 0 � GpX0q
and W 0 � HpX0q, so that the initial parameter ν0 � xV 0, W 0y{m has the correct order of
magnitude.

Algorithm 3 Nonparametric interior point algorithm with Armijo line search

1. Choose X0 � pX0, ν0q, X0 P I, ν0 � xV 0, W 0y{m, κ P p0, 1{2q, % P p0, 1q. Set k � 0.
2. If FpXkq � 0, stop.
3. Find a direction d

k P R`�2m�1 such that

FpXkq �∇FpXkqdk � 0. (3.10)

4. Choose ςk � %jk P p0, 1q, where jk P N is the smallest integer such that

ΘpXk � %jkdkq ¤ p1� 2κ%jkqΘpXkq. (3.11)

5. Set Xk�1 � Xk � ςkdk and k Ð k � 1. Go to step 2.

Remark 3.1. There is no need to truncate the Newton direction dk to preserve positivity for
V k�1 and W k�1, since nonnegativity is guaranteed at convergence. However, the possibility for
the iterates to get out of the interior region makes this method not strictly “interior-point.” A
truly interior-point variant can be cooked up by carrying out the damping (2.22) before Step 4.

Remark 3.2. The positive parameters η and u are chosen once and for all. They not need to
be dynamically adapted in some “smart” way during the iterations. It is in this sense that the
adjective nonparametric is to be understood.

The convergence of Algorithm 3 is governed by the general theory for the smooth Newton
method [11, §6]. This global convergence theory heavily relies on the regularity of zeros.

Definition 3.1 (Regular zero). Let sX P D � R` be a zero of F , that is, F p sXq � 0. If the Jacobian
matrix ∇F p sXq is nonsingular, sX is said to be a regular zero of F .

The three items of the upcoming Theorem illustrate the conditions and the qualities of conver-
gence of the algorithm. Item (i) corresponds to the behavior of the algorithm near a regular zero.
Item (ii) states the rate of convergence in some particular situations. Item (iii) summarizes all of
the possible scenarios when running the algorithm.

Theorem 3.1. Let F : R`�2m�1 Ñ R`�2m�1 be a continuously-differentiable function.

(i) [Local analysis] Let sX be a regular zero of F. If X0 is close enough to sX , then ςk � 1 for
all k, and Xk Ñ sX superlinearly (and we recover the standard Newton method).

(ii) [Limit point] Let rX be a limit point of sequence tXku. If ∇Fp rXq is invertible, then rX is a

regular zero of F. If rX is a regular zero of F , then ςk � 1 for k big enough and Xk Ñ rX
superlinearly.

12



(iii) [General behavior] At least one of three possibilities below holds:

(a) FpXkq Ñ 0.

(b) ‖dpXkq‖ is unbounded.

(c) The sequence tXku converges to rX where ∇Fp rXq is not invertible.

Proof. See [11, Theorem 6.9] or the condensed exposition of [33, Theorem 5.2].

4 Stationary model for compositional two-phase mixtures

We are going to compare Newton-min and NPIPM on two models involving complementarity con-
ditions for multicomponent two-phase mixtures. Designed as reduced versions of those commonly
encountered in reservoir simulations, they enable us to gain valuable insights into what happens to
the algorithms and to conduct a thorough numerical study with respect to a full range of parame-
ters (§6). The first model is the unified formulation for the stationary phase equilibrium problem
investigated in [33, §2] and [9].

4.1 Phase equilibria in the unified formulation

We consider a mixture consisting of K ¥ 2 distinct components or species, labeled by the elements
of the set K �  

I, II, . . . , K
(
. Each component i P K may be present under at least one phase but

at most two phases. To fix ideas, the phases are labeled by the elements of P� tG, Lu, which
respectively stand for Gas and Liquid. Let tciuiPK be nonnegative numbers such that

°
iPK c

i � 1.
Each ci represents the global fraction of species i. The vector c � pcI, . . . , cK�1q P Ω, called global
composition, lies in

Ω �  
x � pxI, . . . , xK�1q P RK�1 | xI ¡ 0, . . . , xK�1 ¡ 0, 1� xI � . . .� xK�1 ¡ 0

(
. (4.1)

For any vector x � pxI, . . . , xK�1q P sΩ, it is understood that xK � 1 � xI � . . . � xK�1 P r0, 1s is
the fraction corresponding to the last component.

Each phase α P P is characterized by a fundamental function gα : Ω Ñ R known as the
(intensive) Gibbs free energy of the phase. We require gα to be as smooth as necessary in Ω and
continuously extendable to BΩ. However, ∇gα may blow up on BΩ. From gα, we define K functions
µjα : Ω Ñ R, j P K, called chemical potentials by

µjαpxq � gαpxq � x∇gαpxq, δj � xy (4.2)

for x P Ω, where the vector δj � pδj,1, δj,2, . . . , δj,K�1q P RK�1 is made up of Kronecker’s symbols.
The following statement summarizes some helpful identities between gα and µiα.

Lemma 4.1 (Connection between Gibbs energy and chemical potentials). For all x P Ω:

gαpxq �
Ķ

j�I

xj µjαpxq; (4.3a)

Bgα
Bxj pxq � µjαpxq � µK

α pxq, @j P KztKu. (4.3b)

0 �
Ķ

i�I

xiα∇xαµ
i
αpxαq. (4.3c)

Proof. See [33, Lemma 2.1].
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The first equation (4.3a) relates to Gibbs energy to the potentials. The second formula (4.3b)
provides the gradient of the Gibbs energy from the potentials. The last identity (4.3c) is known
as the Gibbs-Duhem condition. The potentials usually take the form

µiαpxq � lnpxiΦiαpxqq, (4.4)

in which Φiα is called the fugacity coefficient (or activity coefficients) of component i in phase α.
Substituting the form (4.4) into (4.3a), we obtain

gαpxq �
Ķ

i�I

xi lnxi �Ψαpxq, (4.5)

where the first sum
°K
j�I x

j lnxj is the ideal part and

Ψαpxq �
Ķ

i�I

xi ln Φiαpxq, (4.6)

is the excess part. The relations between Ψα and ln Φiα are similar to those between gα and µiα.

Lemma 4.2 (Connection between excess energy and fugacity coefficients). For all x P Ω:

ln Φjαpxq � Ψαpxq � x∇Ψαpxq, δj � xy, @j P K; (4.7a)

BΨα

Bxjα
pxq � ln Φjαpxq � ln ΦK

α pxq, @j P KztKu; (4.7b)

0 �
Ķ

i�I

xiα∇xαtln Φiαupxαq. (4.7c)

Proof. See [33, Lemma 2.2].

A family of positive real-valued functions tΦiαupi,αqPK�P is said to be admissible if, for each
α P P, there exists a Gibbs energy function gα such that they are the fugacity coefficients. This
implies, in particular, that the functions Φiα satisfy the Gibbs-Duhem condition (4.7c). Given
c P Ω and an admissible family of fuagacity coefficients, the phase equilibrium problem in the
unified formulation amounts to solving the nonlinear system

Y ξiG � p1� Y qξiL � ci � 0, @i P KztKu, (4.8a)

ξiGΦiGpxGq � ξiLΦiLpxLq � 0, @i P K, (4.8b)

min
�
Y, 1�°

jPK ξ
j
G

� � 0, (4.8c)

min
�
1� Y, 1�°

jPK ξ
j
L

� � 0, (4.8d)

in the unknowns pY , tξiGuiPK, tξiLuiPKq P R�RK�RK. for α P tG,Lu. Here, the fraction Y P r0, 1s
measures the overall importance of phase G in the mixture. As a result, 1� Y reflects the global
presence of phase L. The quantities ξα � pξI

α, . . . , ξ
K
α q P RK

� are called extended fractions of the
components in phase α. If a phase α P tG,Lu is present, that is, Y ¡ 0 or 1 � Y ¡ 0, then the
corresponding extended fractions sum to 1, as can be seen from the complementarity conditions
(4.8c)–(4.8d). In such a case, they coincide with the familiar partial fractions.

The K � 1 equations (4.8a) are material balance of component i P KztKu. It seems that
the material balance for the last species K is missing, but in fact it can be readily recovered
by combining (4.8a) and (4.8c)–(4.8d). Therefore, it is redundant and must be left out of the
problem statement. The K equalities (4.8b) express the extended thermodynamic equilibrium of
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each component across the phases. In (4.8b), it is very important to be aware of the fact that xα
is the renormalized fraction vector defined as

xiα �
ξiα°
jPK ξ

α
j

. (4.8e)

System (4.8) is of the form (1.3) with ` � 2K� 1, m � 2, X � pY, ξI
G, . . . , ξ

K
G , ξ

I
L, . . . , ξ

K
L q,

ΛpXq �

����������

Y ξI
G � p1� Y qξI

L � cI

...

Y ξK�1
G � p1� Y qξK�1

G � cK�1

ξI
GΦI

GpxGq � ξI
LΦI

LpxLq
...

ξK
GΦK

GpxGq � ξK
LΦK

LpxLq

����������
P R2K�1 (4.9a)

and

GpXq �
�

Y
1� Y

�
P R2, HpXq �

�
1� ξ1

G � . . .� ξK
G

1� ξ1
L � . . .� ξK

L

�
P R2, (4.9b)

Remark 4.1. The thermodynamic functions gα, Ψα and Φiα also depend on the pressure P and the
temperature T. We voluntarily omitted to indicate this dependence, since the phase equilibrium
problem (4.8) is set at fixed pP,Tq.

4.2 Existence and construction of a solution

We recall that the functions tgαuαPP are smooth (say, twice differentiable), take finite values on
the boundary BΩ but their gradients blow up there, i.e., limxÑBΩ‖∇gαpxq‖ � �8. The latter is
due to the presence of logarithms in the ideal parts of the Gibbs functions. In [9], we showed that
under the following additional hypotheses, an explicit solution of (4.8) can be worked out.

Hypotheses 4.1. The gradient map ∇gα : Ω Ñ RK�1 is surjective. Moreover, the Gibbs energy
gα : Ω Ñ R is strictly convex, that is, it satisfies one of the two conditions below, which are
equivalent [12] for a twice differentiable function:

(a) For all px, yq P Ω� Ω with x � y,@
∇gαpxq �∇gαpyq, x� y

D ¡ 0. (4.10)

(b) For all x P Ω, the Hessian matrix ∇2gαpxq is definite positive.

This solution, which may not be unique, is inspired from Gibbs’ geometric construction for the
binary case [15] pK � 2q, which is depicted in Figure 1. Let g � mintgG, gLu and let qg be the
lower convex envelope of g on sΩ. By design, qg is a convex and continuous function. It can be
shown [9, Lemma 3.2] that under Hypotheses 4.1, qg is differentiable at all interior point.

Thus, for c P Ω, it makes sense to speak about the gradient ∇qgpcq and the tangent hyperplane,
defined as the graph of the linearized expansion Tcqgpxq � qgpcq � x∇qgpcq, x� cy. We introducesΓpcq �  

α PP | D sxα P Ω, gαpsxαq � Tcqgpsxαq, ∇gαpsxαq � ∇qgpcq( (4.11)

as the set of thoses phases whose Gibbs function gα is tangent to the hyperplane Tcqg. It can then
be proven [9, Lemma 3.3] that: (i) sΓpcq � H; (ii) for each α P sΓpcq, the contact point sxα is unique;
(iii) if P ¤ K, then c P convtsxαuαPsΓpcq.

The last property means that c is a convex combination of the contact points, that is, there
exist tsYαuαPsΓpcq ¥ 0 such that

°
αPsΓpcq

sYα � 1 and
°
αPsΓpcq

sYαsxα � c. The remaining unknowns
are determined as follows.
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Figure 1: Gibbs’ geometric construction for the phase equilibrium of a two-phase binary mixture.
Left: two-phase solution. Right: single-phase solution.

Theorem 4.1 (Geometric solution). Assume K ¥ 2, c P Ω. Let tsxαuαPsΓpcq, tsYαuαPsΓpcq be defined
as above and set sξiα � sxiα, for pα, iq P sΓpcq �K. (4.12a)

For pβ, iq PPzsΓpcq �K, set

sYβ � 0, sxβ � r∇gβs�1p∇qgpcqq, sξiβ � exprTcqgpsxβq � gβpsxβqssxiβ . (4.12b)

This procedure supplies us with a solution of (4.8).

Proof. See [9, Theorem 3.6]. Note that r∇gβs�1 is well-defined thanks to Hypotheses 4.1.

4.3 Regularity of zeros

According to Theorem 3.1, the promise of global convergence for the NPIPM algorithm hinges on
the regularity of the zeros of the system at hand. Put another way, if we could prove that the
Jacobian matrix ∇Fp sXq at a solution sX is nonsingular, this would be an auspicious sign of the
adequacy of the NPIPM algorithm to the problem. To study the regularity of a zero of (4.8), we
need to pay attention to two kinds of “singular” solution.

Definition 4.1 (Transition point). A solution psY , sξG, sξLq P R � RK � RK of (4.8) is said
to be a transition point when both arguments of one of the complementarity conditions vanish
simultaneously, that is," sY � 0, 1�

¸
iPK

sξiG � 0

*
or

" sY � 1, 1�
¸
iPK

sξiL � 0

*
. (4.13)

In the two-phase framework, such a point marks the change in the nature of the solution, from
a two-phase regime to a single-phase regime or vice-versa.

Definition 4.2 (Azeotropic composition). A global composition c P Ω is said to be azeotropic if
the graphs of gG and gL are tangent to each other at c. In other words,

gGpcq � gLpcq, ∇gGpcq � ∇gLpcq. (4.14)
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Figure 2 illustrates two azeotropic situations in the binary case. Note that c alone is not
responsible for azeotropy. It takes the two Gibbs functions to behave in a peculiar way to satisfy
(4.14). If azeotropy occurs at c P Ω, the solution of (4.8) is not unique: since the two contact
points sxα, α P tG,Lu, coincide with each other, sY could be replaced by any other value Y P r0, 1s.

The following Theorem tells us that, under Hypotheses 4.1, a solution of (4.8) is regular except
for the two previous pathological cases.

Theorem 4.2. Let sX � p sX, sV ,�W, sνq P R2K�6 be a solution of (3.1), (3.2) using the functions
(4.9). Assume that sν � 0 and that the Gibbs energy functions gG and gL meet Hypotheses 4.1.
Then, sX is a regular zero if and only if sX is neither a transition point nor an azeotropic point.

Proof. The proof is based on a brute-force calculation. We first invoke Lemma 3.1 and Lemma 2.1
successively to get

det∇Fp sXq � pη � 2sν � xsV ,�W y{mq
∣∣∣∣ ∇Λp sXq
∇Gp sXq dHp sXq �∇Hp sXq dGp sXq

∣∣∣∣ �: η d, (4.15)

with sν � xsV ,�W y{m � 0. Next, we observe that the determinant d in the right-hand side has the
same sign as

d

 �

∣∣∣∣ ∇Λ
p sXq
∇Gp sXq dHp sXq �∇Hp sXq dGp sXq

∣∣∣∣ ,
where

Λ
pXq �

����������

Y ξI
G � p1� Y qξI

L � cI

...

Y ξK�1
G � p1� Y qξK�1

G � cK�1

lnpξI
GΦI

GpxGqq � lnpξI
LΦI

LpxLqq
...

lnpξK
GΦK

GpxGqq � lnpξK
LΦK

LpxLqq

����������
.

This is because the logarithm is an increasing function and because we are at a solution, which
allows us to take out the same positive factor on each line. To compute d



, we go through a

long sequence of row and column linear combinations. A lot of simplifications occur thanks to the
Gibbs-Duhem condition (4.3c). At the end of the process, we obtain the following cases:

� If sY � 1, i.e., the solution is single-phase in G, then

d

 � 1� sσL

psσLqK det∇2gLpsxLq,

Figure 2: Azeotropic compositions for a two-phase two-component mixture.
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where sσL � °
iPK

sξiL. Because of strict convexity of gL, this quantity vanishes only whensσL � 1, which implies that we are at a transition point.

� If sY � 0, i.e., the solution is single-phase in L, and the discussion is similar.

� If sY P p0, 1q, i.e., the solution is two-phase, then

d

 � sY p1� sY q det

�p1� sY q∇2gGpsxGq � sY∇2gLpsxLq� ∆sxT pMGpsxGq �MLpsxLqq∆sx,
where ∆sx � sxG � sxL and where both symmetric matrices

MG � p∇2gGq1{2
!
IK�1 �

�
IK�1 � 1� sYsY p∇2gGq�1{2 ∇2gL p∇2gGq�1{2

��1)
p∇2gGq1{2

ML � p∇2gLq1{2
!
IK�1 �

�
IK�1 � 1� sYsY p∇2gLq�1{2 ∇2gG p∇2gLq�1{2

��1)
p∇2gLq1{2

can be shown to be positive definite owing to strict convexity of gα. To cancel d



requires
∆sx � 0, i.e., sxG � sxL. This is precisely the characterization of an azeotropic solution.

Full details of the calculation can be found in [33, Theorem 5.3].

4.4 Laws for fugacity coefficients

We now give two examples of fugacity coefficients and their associated Gibbs functions. The first
one, due to Henry, is very simple and complies with Hypotheses 4.1. The second one, due to
Peng-Robinson, is one of the most physically advanced laws by current standards and does not
necessarily satisfy these assumptions.

4.4.1 Henry’s law

If phase α P tG,Lu is an ideal fluid, for which Ψα � 0, then it can be checked to fulfill Hypotheses
4.1. Henry’s law is a straightforward generalization, with

Ψαpxq �
Ķ

i�1

xi ln ki (4.16)

where tkiuiPK are positive constants, each of them embodying a property of the corresponding
species. The fugacity coefficients calculated by (4.7a) are then

ln Φjαpxq � ln ki, for all j P K. (4.17)

This is why this law is also called the constant coefficients law. Again, it is not difficult to
show [33, Proposition 3.1] that the Gibbs energy function gα associated with Henry’s law fulfills
Hypotheses 4.1 for all pkI, . . . , kKq P pR�

�qK.

4.4.2 Peng-Robinson’s law

In Peng-Robinson’s law, the fugacity coefficients of the two phases G, L are coupled with each
other and, in a sense, are computed “simultaneously.” Each component i P K in a pure state is
characterized by a pair of positive parameters ai (cohesion term) and bi (covolume). These are
highly sophisticated functions of the pressure and the temperature, but at fixed pP,Tq can be
considered as constants. This gives rise to a pair of postive dimensionless parameters

Ai � Pai

pRTq2 , Bi � Pbi

RT
. (4.18)
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A multicomponent mixture is supposed to behave approximately as a fictitious pure component
endowed with an averaged value for the pair pA,Bq. The latter is computed from the pAi, Biq’s
and the current partial fractions by means of a mixing rule x ÞÑ pApxq, Bpxqq. There can be
found [30] a wide variety of mixing rules . We choose the most common one, namely,

Apxq �
� ¸

jPK
xj
?
Aj


2

, Bpxq �
¸
jPK

xjBj . (4.19)

The next step is to consider the cubic equation

Z3pxq � pBpxq � 1qZ2pxq
� rApxq � 2Bpxq � 3B2pxqsZpxq � rB2pxq �B3pxq �ApxqBpxqs � 0 (4.20)

in the variable Zpxq. In the most favorable situation, there are three real roots, all greater than
Bpxq. These are then named Bpxq   ZLpxq   ZIpxq   ZGpxq. In other words, the smallest root
is associated with the liquid phase L, while the largest one is associated with the gas phase G. As
for the intermediate root ZIpxq, it does not have any physical meaning.

Let α P tG,Lu and assume that the real root Zαpxq ¡ Bpxq is well-defined. Then, the excess
Gibbs energy of Peng-Robinson’s law is defined as

Ψαpxq � Zαpxq � 1� ln rZαpxq �Bpxqs � Apxq
2
?

2Bpxq ln

�
Zαpxq � p1�?

2qBpxq
Zαpxq � p?2� 1qBpxq

�
. (4.21)

From this, the fugacity coefficients can be deduced with the help of (4.7a). Combining the result
with the mixing rule (4.19), we end up with [33, Corollary 3.2]

ln Φiαpxq �
Bi

Bpxq rZαpxq � 1s � ln rZαpxq �Bpxqs

�
�
Bi

Bpxq �
2Aipxq
Apxq

�
Apxq

2
?

2Bpxq
ln

�
Zαpxq � p1�?

2qBpxq
Zαpxq � p?2� 1qBpxq

�
. (4.22)

using the “matrix-vector” product

Aipxq �
?
Ai

� ¸
jPK

xj
?
Aj

	
. (4.23)

In the unfavorable situation when equation (4.20) has only on real root greater than Bpxq,
two subcases have to be envisaged. If we manage to assign a “natural” phase label α � G or L
to the real root, then the corresponding excess Gibbs energy Ψα is defined by (4.21), leaving its
counterpart in the other phase undefined. Otherwise, Ψα is undefined in both phases. This process
raises two serious questions:

1. When does the cubic equation has three real roots greater than Bpxq and when does it have
only one real root greater than Bpxq?

2. When and how can a “natural” phase label be assigned to the unique real root greater than
Bpxq and when is it impossible?

These questions were addressed at length in [33, §3.2.3] (see also [9] for a shorter presentation),
where we stressed the critical issue of the Gibbs functions gG, gL not being defined on the whole
domain Ω. To sketch out the difficulty, let us consider the binary case where x � x P p0, 1q � Ω.
Then, for some data pAI, BIq and pAII, BIIq, there exist 0   x5   x7   1 such that the quantities
ZLpxq, ΨLpxq, gLpxq are well-defined only for x P r0, x7s, while the quantities ZGpxq, ΨGpxq, gGpxq
are well-defined only for x P rx5, 1s. Furthermore, since g1Gpx�5 q and g1Lpx�7 q are finite, the image
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sets g1Gprx5, 1qq and g1Lpp0, x7sq are not equal to R. This prevents the unified formulation from
being always able to assigning a well-defined extended fraction to a vanishing phase by inverting
g1G and g1L.

To circumvent this obstacle, we proposed [33, §3.3] a procedure to extend the domains of
defintion of the Gibbs functions to sΩ. When the cubic equation does not have three real roots, the
idea is to use the common real part of the two complex conjugate roots, as a “surrogate” of the
missing real root. Assume that Zα is the only real root greater than B of Peng-Robinson’s cubic
equation

Z3 � pB � 1qZ2 � pA� 2B � 3B2qZ � pB2 �B3 �ABq � 0.

To alleviate notations, we do not explicitly indicate the dependency of A, B and Z on x. Let β be
the other phase, that is, β � L if α � G and β � G if α � L. Since the sum of the three (complex)
roots is equal to 1�B, the two remaining conjugate roots share the common real part

Wβ � 1�B � Zα
2

. (4.24)

It can then be proven that for physically reasonable values of B, we have Wβ ¡ B and

Zα  Wβ if α � L, Wβ   Zα if α � G.

These properties of Wβ are the constraints to which Zβ would have been subject, had it existed.
They speak in favor of the enrollment of Wβ as a substitute for Zβ . Doing so yields the Gibbs
function

Ψβ �Wβ � 1� ln
�
Wβ �B

�� A

2
?

2B
ln

�
Wβ � p?2� 1qB
Wβ � p?2� 1qB

�
. (4.25)

for the missing phase β. By (4.7a), we can derive the corresponding fugacity coefficients. In view
of the mixing rule (4.19), these are given by

ln Φiβpxq �
Bi

B
rWβ � 1s � ln rWβ �Bs

�
�
Bi

B
� 2Aipxq

A

�
A

2
?

2B
ln

�
Wβ � p?2� 1qB
Wβ � p?2� 1qB

�
�
�x∇Wβ , δ

i � xy
Wβ

� x∇B, δi � xy
B

�
Wβ ΥA,BpWβq

pWβ �BqpW 2
β � 2BWβ �B2q (4.26)

for all i P K, with ΥA,BpW q �W 3 � pB � 1qW 2 � pA� 2B � 3B2qW � pB2 �B3 �ABq.
The last step of this procedure is a “sacrifice” of a tiny portion of the three-root region in order

for ∇Zβ not to blow up when approaching the one-root region. To this end, we introduce

ϑ � ZI � ZL
ZG � ZL

P r0, 1s (4.27)

as an indicator of the closeness to the transition boundary. Indeed, the cubic equation has double
roots when ϑ � 0 or ϑ � 1. Let ε P p0, 1{4q be a small threshold. If ϑ P r2ε, 1� 2εs, we apply the
usual formulas for the case of three real-roots. If ϑ P p1� 2ε, 1s, the two roots ZI and ZG are close
to each other. We keep ZL but progressively replace ZG by WG � 1

2 p1 � B � ZLq � 1
2 pZI � ZGq

whose gradient is bounded. Instead of ZG, we plug rZG � r1 � νGpϑqsZG � νGpϑqWG into (4.21),
where

νGpϑq �

$'&'%
0 if ϑ ¤ 1� 2ε,

qppϑ� p1� 2εqq{εq if ϑ P p1� 2ε, 1� εq,
1 if ϑ ¥ 1� ε,

(4.28)
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and qpyq � y2p3 � 2yq. The rescaled function y ÞÑ qpy{εq serves as a C1 step function over the
interval r0, εs. We note that qp0q � 0, qp1q � 1 and q1p0q � q1p1q � 0. From the modified excess
Gibbs energy

ΨG � rZG � 1� ln
� rZG �B

�� A

2
?

2B
ln

� rZG � p?2� 1qBrZG � p?2� 1qB

�
(4.29a)

and from the rule (4.7a), the fugacity coefficients are inferred as

ln ΦiG � Bi

B
r rZG � 1s � ln r rZG �Bs

�
�
Bi

B
� 2Aipxq

A

�
A

2
?

2B
ln

� rZG � p?2� 1qBrZG � p?2� 1qB

�
�
�x∇ rZG, δi � xyrZG � x∇B, δi � xy

B

� rZG ΥA,Bp rZGq
p rZG �Bqp rZ2

G � 2B rZG �B2q
. (4.29b)

If ϑ P r0, 2εq, we proceed in a similar and symmetric fashion to replace ZL by rZL � r1�νLpϑqsZL�
νLpϑqWL in the expression of ΨL, while preserving ZG.

To conclude this section, we lay emphasis on the fact the domain extension procedure is aimed
at improving the unified formulation’s chance of “survival,” which will be corroborated by the
numerical experiements of §6. We do not strive to fulfill Hypotheses 4.1, since these assumptions
may already be violated for the original unextended Gibbs functions.

5 Evolutionary model for binary two-phase mixtures

The second model on which comparisons between Newton-min and NPIPM are carried out is a
simplified system with a time evolution. To build this model, we start from the stationary two-
phase binary equilibrium problem and impose a differentiel equation for the global fraction on the
top of it.

5.1 A simplified ODE system

In the binary case of the stationary model (4.8), the global fraction of the first component c is a
given data. Let us make it depend on time by considering the algebro-differential system

dc

dt
� Y p1� Y qξI

Gp1� 1{kIq � 0, (5.1a)

Y ξI
G � p1� Y qξI

G{kI � c � 0, (5.1b)

minpY, 1� ξI
G � ξII

Gq � 0, (5.1c)

minp1� Y, 1� ξI
G{kI � ξII

G{kIIq � 0 (5.1d)

in the four unknowns pc, Y, ξI
G, ξ

II
Gq, equipped with the intial condition

pc, Y, ξI
G, ξ

II
Gqpt � 0q � pc0, Y0, pξI

Gq0, pξII
Gq0q (5.2)

subject to the equilibrium relations

Y0pξI
Gq0 � p1� Y0qpξII

Gq0{kI � c0 � 0, (5.3a)

minpY0, 1� pξI
Gq0 � pξII

Gq0q � 0, (5.3b)

minp1� Y0, 1� pξI
Gq0{kI � pξII

Gq0{kIIq � 0. (5.3c)
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At fixed c, the last three equations of (5.1) are in fact the stationary equilibrium problem (4.8)
with K � 2, in which the variables ξI

L and ξII
L have been eliminated with the help of the equilibrum

relations
ξI
G � kIξI

L, ξII
G � kIIξII

L .

The latter mean that phase G is an ideal gas and phase L is governed by Henry’s law.
For simplicity, we restrict ourselves to kI ¡ 1 ¡ kII ¡ 0. Let KG, KL be the two constants

kIp1� kIIq
kI � kII

�: KG ¡ KL :� 1� kII

kI � kII
¡ 0. (5.4)

It can then be proven that the exact solution of (5.1)–(5.3) is given by

cptq �

$'''&'''%
c0 if c0 P r0,KLs,

KGγ0 expptq �KL

γ0 expptq � 1
if c0 P pKL,KGq,

c0 if c0 P rKG, 1s,
(5.5)

where γ0 � pc0 �KLq{pKG � c0q. The values of Y ptq, ξI
Gptq and ξII

Gptq are deduced from cptq by
the formulas

psY , sξI
G,

sξII
Gq �

$''''&''''%
p0, kIc, kIIp1� cqq if c P r0,KLs,�
c�KL

KG �KL
, KG, k

IIp1�KLq



if c P pKL,KGq,

p1, c, 1� cq if c P rKG, 1s,

(5.6)

which are none other than the solution of the stationary two-phase binary equilibrium problem
(4.8) at fixed c.

But our primary interest is the algebraic system that arises when we apply the Euler backward
scheme to (5.1) with a time-step τ ¡ 0. This system reads

c� c5 � τ

�
1� 1

kI



ξI
GY p1� Y q � 0, (5.7a)

Y ξI
G � p1� Y qξI

G{kI � c � 0, (5.7b)

minpY, 1� ξI
G � ξII

Gq � 0, (5.7c)

minp1� Y, 1� ξI
G{kI � ξII

G{kIIq � 0, (5.7d)

where c5 denotes the value of c at the previous time-step. In (5.7), c5 P r0, 1s, τ ¡ 0 and kI ¡ 1 ¡
kII ¡ 0 play the role of parameters. System (5.7) is of the form (1.3) with ` � 4, m � 2,

ΛpXq �
�
c� c5 � τp1� 1{kIq ξI

G Y p1� Y q
Y ξI

G � p1� Y q ξI
G{kI � c

�
, (5.8a)

and

GpXq �
�

Y
1� Y

�
, HpXq �

�
1� ξI

G � ξII
G

1� ξI
G{kI � ξII

G{kII

�
. (5.8b)

5.2 Reference solution

The upcoming Proposition deals with the exitence and uniqueness of a solution to (5.7).

Proposition 5.1. Let KL,KG be the constants defined by (5.4). Except for the case 3(b) in the
enumeration below, system (5.7) has a unique solution psc, sY , sξI

G,
sξII
Gq P r0, 1s � r0, 1s � R� � R�

called reference solution.
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1. If c5 P rKG, 1s, then the reference solution is in the G single-phase regime and given by

sc � c5, sY � 1, sξI
G � c5, sξII

G � 1� c5. (5.9)

2. If c5 P pKL,KGq, then the reference solution is in the two-phase regime and given by

sc � KG �KL

2
� KG �KL

2τ

"
1�

�
1� 2

KG �KL � 2c5
KG �KL

τ � τ2

�1{2*
. (5.10)

The values of sY , sξI
G and sξII

G are deduced from sc by formulas (5.6).

3. If c5 P r0,KLs, then the number

τmax � KG �KL � 2c5
KG �KL

�
d�

KG �KL � 2c5
KG �KL


2

� 1 (5.11)

is well-defined and greater than or equal to 1.

(a) For τ   τmax, the reference solution is in the L single-phase regime and given by

sc � c5, sY � 0, sξI
G � kIc5, sξII

G � kIIp1� c5q; (5.12)

(b) For τ ¥ τmax, in addition to (5.12) that we declare to be the reference solution, there
are two spurious solutions (counted with multiplicity).

Proof. The last three equations of model (5.7) are exactly the stationary binary model (4.8).
Therefore, pY, ξI

G, ξ
II
Gq can be expressed as functions of c by means of (5.6). In particular,

Y � c�KL

KG �KL
1pKL,KGqpcq

for all phase regimes, using the characteristic function 1. Inserting this into the first equation
(5.7a) and invoking kI � KG{KL, we obtain a scalar equation on c, namely,

c� c5 �
τ

KG �KL
pc�KLqpc�KGq1pKL,KGqpcq � 0. (5.13)

The rest of the proof relies on studying the function representing the left-hand side of the above
equation. This part is not difficult and is left to the readers.

5.3 Regularity of zeros

The most significant result for this model is that the reference solution corresponds most of the
time to a regular zero.

Theorem 5.1. For all τ ¥ 0, the reference solution of (5.7) defined in Proposition 5.1 gives rise
to a regular zero for the NPIPM system, except at transitional and azeotropic points.

Proof. Let X � pc, Y, ξI
G, ξ

II
Gq et recall the notations of (5.8). By Lemma 3.1 and Lemma 2.1, we

can study the sign of

d �
∣∣∣∣ ∇Λp sXq
∇Gp sXq dHp sXq �∇Hp sXq dGp sXq

∣∣∣∣ ,
where sX � pc, sY , sξI

G,
sξII
Gq is the reference solution, instead of the sign of det∇Fp sXq or det∇FpsXq.

In this case, we have

d �

∣∣∣∣∣∣∣∣
1 �τ∆sξIp1� 2sY q �τ∆sξI sY p1� sY q{sξI

G 0
�1 ∆sξI sY � p1� sY q{kI 0

0 1� sσG �sY �sY
0 �1� sσL psY � 1q{kI psY � 1q{kII

∣∣∣∣∣∣∣∣ ,
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with
∆sξI � sξI

G � sξI
L � sξI

Gp1� 1{kIq, sσG � sξI
G � sξII

G, sσL � sξI
L � sξII

L .

Expanding the determinant with respect to the first column, we find

d � d0 � τ d1, (5.14)

where

d0 �
∣∣∣∣∣∣

∆sξI sY � p1� sY q{kI 0
1� sσG �sY �sY

�1� sσL psY � 1q{kI psY � 1q{kII

∣∣∣∣∣∣
is the determinant of the stationary binary model and

d1 �
∣∣∣∣∣∣

∆sξIp1� 2sY q ∆sξI sY p1� sY q{sξI
G 0

1� sσG �sY �sY
�1� sσL psY � 1q{kI psY � 1q{kII

∣∣∣∣∣∣ .
Assume sY � 1, i.e., the solution is in the gas phase. Then, sσG � 1. We obtain that d0 � 1�sσL.

By a direct computation, we have d1 � 0. Therefore, d � d0 � 1 � sσL ¥ 0. Equality holds at a
transition point. The other single-phase case sY � 0 is similar.

Assume now sY P p0, 1q, i.e., the solution is in the two-phase regime. Then, sσG � sσL � 1,
ξG � xG and ξL � xL. We get

d0 � ∆sxI

∣∣∣∣ �sY �sY
psY � 1q{kI psY � 1q{kII

∣∣∣∣
can be expressed as a quadratic form and hence d0 ¥ 0, with equality if and only if xG � xL,
namely, at an azeotropic point. Let us compute d1. By expanding with respect to its first column
and by noticing that the, we obtain

d1 � p1� 2sY q d0.

Coming back to (5.14), we get
d � d0 r1� τp1� 2sY qs.

From (5.10), we infer by (5.6) that

τp1� 2sY q � 1�
�
1� 2

KG �KL � 2c5
KG �KL

τ � τ2

�1{2

  1.

Consequently, d has the same sign behavior as d0.

6 Numerical results

On the grounds of the previous models, we now compare NPIPM and the Newton-min method. For
the stationary model of §4, we consider the binary and ternary cases. For each case, we consider
two tests: one with the ideal and Henry’s laws, the other with Peng-Robinson’s law. The domain
extension procedure (4.24)–(4.26) must be activated, otherwise both Newton-min and NPIPM may
crash.

For each test, we display two figures: the first one represents the solution for various c P Ω
using the same initial point in both methods; the second one indicates not only the number of
iterations to reach convergence, starting from this initial point, but also the percentage of elements
within a generated set of initial points for which convergence occurs.

Unless otherwise specified, the stopping criterion is ‖FpXq‖   10�7 and the maximum number
of iterations to be 50 in all tests. With NPIPM, the parameters are η � 0.5, u � 1, κ � 0.4 and
% � 0.99.
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6.1 Stationary two-phase binary model

In the two-component case, we write c, xα instead of cI, xI
α. Model (4.8a) then becomes

Y ξI
G � p1� Y qξI

L � c � 0,

ξI
G ΦI

GpxGq � ξI
L ΦI

LpxLq � 0,

ξII
G ΦII

GpxGq � ξII
L ΦII

LpxLq � 0,

minpY ; 1� ξI
G � ξII

Gq � 0,

minp1� Y ; 1� ξI
L � ξII

L q � 0,

(6.1a)

(6.1b)

(6.1c)

(6.1d)

(6.1e)

with the implicit renormalization xα � ξI
α{pξI

α � ξII
α q for α P tG,Lu.

6.1.1 With Henry’s law

Phase G is an ideal gas, phase L obeys Henry’s law with kI � 2, kII � 0.5. Thanks to the extreme
simplicity of (6.1c), we can even eliminate ξI

L, ξII
L from the equations, as was done in §5.1 for the

evolutionary model.
In the first test, starting from the same initial point pY, ξI

G, ξ
II
Gq � p0.99, 0.67, 0.327q and

sweeping over the grid of parameters c P t0.01; 0.02; . . . ; 0.99u, we run the two algorithms and
observe the computed solution in Figure 3. Barring a single divergence point (red dot at c � 0.4q
for Newton-min, the two methods find the same solution, whose Y -component is drawn. The
number of iterations required for each method is shown in panel (b) of Figure 4b.

In the second test, we sweep over the grid of parameters c P t0.0001, 0.0002, ..., 0.9999u and
the set of initial points

D0 �  pY, ξI
G, ξ

II
Gq0 PM3 | 1� pξI

Gq0 � pξII
Gq0 ¡ 0 and 1� pξI

Gq0{kI � pξII
Gq0{kII ¡ 0

(
,

where M � t0.1; 0.2; . . . ; 0.9u. The number of initial points used for the tests is |D0| � 216.
For each c, we count the number of initial points for which the method converges and then plot
the percentage of success for each algorithm in Figure 4a. The success rate of NPIPM is 100%,
while that of Newton-min is around 90%. In this Figure, we also plot the percentage of success
corresponding to the θ-smoothing method using θ1 and the Mehrotra predictor-corrector algorithm.
We see that they are significantly worse than Newton-min and NPIPM. This is the reason why we
keep only Newton-min as a reference for comparison.

6.1.2 With Peng-Robinson’s law

Let us choose pAI, BIq � p0.2153, 0.03q and pAII, BIIq � p0.1861, 0.02q to ensure that the Gibbs
functions gG, gL are “visually” strictly convex once extended.

In the first test, we use the same initial point pY, ξI
G, ξ

II
G, ξ

I
L, ξ

II
L q0 � p0.2, 0.4, 0.4, 0.6, 0.2q and

sweep over the grid of parameters c P t0.01; 0.02; . . . ; 0.99u. The computed solutions are displayed
in Figure 5. Note that Newton-min now has many divergence points (red dots) for c ¤ 0.5. The
number of iterations required to reach convergence is supplied Figure 6a.

In the second test, we measure the percentage of convergence over the grid of parameters
c P t0.0001, 0.0002, ..., 0.9999u and the set of initial points

D0 �  pY, ξI
G, ξ

II
G, ξ

I
L, ξ

II
L q0 PM5 | 1� pξI

Gq0 � pξII
Gq0 ¡ 0 and 1� pξI

Lq0 � pξII
L q0 ¡ 0

(
,

where M � t0.2; 0.4; 0.6; 0.8u. The number of initial points used for the tests is |D0| � 144. The
success rate for each method shown in Figure 6b as a function of c. Again, NPIPM achieves 100%,
while Newton-min culminates at about 85%.
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(a) Newton-min

(b) NPIPM

Figure 3: Henry’s law, tested with the same initial point.
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Figure 4: Henry’s law
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(a) Newton-min

(b) NPIPM

Figure 5: Peng-Robinson’s law: one initial point.
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Figure 6: Peng-Robinson’s law.
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6.2 Stationary two-phase ternary model

In the three-component case, model (4.8) reads

Y ξI
G � p1� Y qξI

L � cI � 0, (6.2a)

Y ξII
G � p1� Y qξII

L � cII � 0, (6.2b)

ξI
G ΦI

GpxI
G, x

II
Gq � ξI

L ΦI
LpxI

L, x
II
Lq � 0, (6.2c)

ξII
G ΦII

GpxI
G, x

II
Gq � ξII

L ΦII
LpxI

L, x
II
Lq � 0, (6.2d)

ξIII
G ΦIII

G pxI
G, x

II
Gq � ξIII

L ΦIII
L pxI

L, x
II
Lq � 0, (6.2e)

minpY, 1� ξI
G � ξII

G � ξIII
G q � 0, (6.2f)

minp1� Y, 1� ξI
L � ξII

L � ξIII
L q � 0, (6.2g)

with the implicit renormalization xiα � ξiα{pξI
α � ξII

α � ξIII
α q for α P tG,Lu, i P tI, IIu.

6.2.1 With Henry’s law

Phase G is an ideal gas, phase L obeys Henry’s law with kI � 0.2, kII � 6, kIII � 2. The
stopping criterion is ‖FpXq‖   10�12. Starting from the same initial point pY, ξI

G, ξ
II
G, ξ

III
G q �

p0.9, 0.1, 0.7, 0.1q and sweeping over the grid of parameters C � tpcI, cIIq P P2 | cI � cII   1u
where P � t0.01; 0.02; . . . ; 0.99u, we display the regime type (single-phase G, single-phase L or
two-phase) of the computed solution in Figure 7, highlighting divergence in the red color. In Figure
8a, we display the number of iterations after linearly indexing the elements of C.

In the second test, we sweep over the same grid of parameters and the set of initial points

D0 �  pY, ξI
G, ξ

II
G, ξ

III
G q0 PM4 | 1� pξI

Gq0 � pξII
Gq0 � pξIII

G q0 ¡ 0 and

1� pξI
Gq0{kI � pξII

Gq0{kII � pξIII
G q0{kIII ¡ 0

(
,

where M � t0.1; 0.2; . . . ; 0.9u. The number of initial points used for the tests is |D0| � 252. For
each c P C, we count the number of initial points for which the method converges and then plot the
percentage of success for each algorithm in Figures 8b–8c. Figure 8c demonstrates the efficiency
of NPIPM relatively to Newton-min, with 100% of convergence.

6.2.2 With Peng-Robinson’s law

The stopping criterion is ‖FpXq‖   10�10 and η � 10�4 in the last equation of the NPIPM system.
We select pAI, BIq � p0.0883, 0.01q, pAII, BIIq � p0.1861, 0.02q, and pAIII, BIIIq � p0.2153, 0.03q
so that gG and gL are “visually” strictly convex once extended.

In the first test, we use the same initial point

pY, ξI
G, ξ

II
G, ξ

III
G , ξI

L, ξ
II
L , ξ

III
L q0 � p0.4, 0.3, 0.5, 0.1, 0.325, 0.2, 0.17q

and sweep over the grid of parameters C � tpcI, cIIq P P2 | cI�cII   1u, where P � t0.01; 0.02; . . . ; 0.99u.
The regime type (single-phase G, single-phase L or two-phase) of the computed solution is repre-
sented in Figure 9, where divergence is reported in red. In Figure 10a, we display the number of
iterations.

In the second test, we sweep over the grid of parameters C � t pcI, cIIq P P2 | cI � cII   1 u,
where P � t0.05; 0.10; . . . ; 0.95u, and the set of initial points

D0 �  pY, ξI
G, ξ

II
G, ξ

III
G , ξI

L, ξ
II
L , ξ

III
L q0 PM7 | 1� pξI

Gq0 � pξII
Gq0 � pξIII

G q0 ¡ 0 and

1� pξI
Lq0 � pξII

L q0 � pξIII
L q0 ¡ 0

(
,

where M � t0.1; 0.2; . . . ; 0.9u. The number of initial points used for the tests is |D0| � 64. For
each c P C, we plot the percentage of successful initial points for in Figures 10b–10c. Once again,
we notice that NPIPM is much more effective than Newton-min.
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(a) Newton-min

(b) NPIPM

Figure 7: Henry’s law: one initial point.

6.3 Evolutionary two-phase binary model

Setting pkI, kIIq � p2, 0.5q, we sweep over the two-dimensional grid of parameters pc5, τq P t0.01; 0.02; . . . ; 0.99u� 
0.1; 0.2; . . . ; 10

(
and the set of initial points

D0 �  pY, ξI
G, ξ

II
G, cq0 PM4 | 1� pξI

Gq0 � pξII
Gq0 ¡ 0 and 1� pξI

Gq0{kI � pξII
Gq0{kII ¡ 0

(
where M � t0.1; 0.2; . . . ; 0.9u. The number of initial points used for the test is |D0| � 1944. For
each pair pc5, τq, we plot the percentage of successful initial points. The results are shown in Figure
11. Although NPIPM no longer claims a 100% rate, especially for large τ , it remains obviously
better than Newton-min for τ ¤ 6 or c5 ¤ 0.35.

29



0 20 40 60 80 100 120

Index of c

0

5

10

15

20

25

30

35

N
u
m

b
e
r 

o
f 
it
e
ra

ti
o
n
s

Average number of iterations: 8.61 (Newton-min), 4.74 (NPIPM)

Newton-min

NPIPM

(a) Number of iterations with the same initial point.

0 0.2 0.4 0.6 0.8 1

c
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

c
2
   

0

10

20

30

40

50

60

70

80

90

100

(b) Newton-min: percentage of convergence over all
initial points.
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Figure 8: Henry’s law.

7 Conclusion

In this work, we laid the first stone in the construction of a new method that would be better
suited to the resolution of systems containing complementary conditions arising in the unified
formulation of thermodynamical equilibria. Numerical results on simple compositional two-phase
models revealed an overwhelming superiority of NPIPM over Newton-min. In this sense, they are
very promising. The deliberately small size of the systems enabled us to understand in depth the
behavior of the algorithms, and most notably the physical obstruction due to Peng-Robinson’s law,
for which the remedy (4.24)–(4.26) saved us from a compromising situation.

There is still a long way to go. It is of course essential to continue the comparison between
NPIPM and Newton-min on the models presented here with a larger number of components, for
example a dozen or even a hundred. It is also crucial to try the proposed method on realistic
reservoir simulations, in which the system to be solved comes from the finite-volume discretization
of the partial differential equations of a porous media flow model. The size of the problem would
then be much larger, which could create additional difficulties for the algorithms.
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(a) Newton-min

(b) NPIPM

Figure 9: Peng-Robinson’s law: one initial point.
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