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Abstract: Air pollution poses a major threat to health and climate, yet cities lack simple tools to
quantify the costs and effects of their measures and assess those that are most effective in improving
air quality. In this work, a complete modeling framework to estimate road traffic microscopic
pollutant emissions from common macroscopic road and traffic information is proposed. A machine
learning model to estimate driving behavior as a function of traffic conditions and road infrastructure
is coupled with a physics-based microscopic emissions model. The up-scaling of the individual
vehicle emissions to the traffic-level contribution is simply performed via a meta-model using both
statistical vehicles fleet composition and traffic volume data. Validation results with real-world
driving data show that: the driving behavior model is able to maintain an estimation error below
10% for relevant boundary parameter of the speed profiles (i.e., mean, initial, and final speed) on any
road segment; the traffic microscopic emissions model is able to reduce the estimation error by more
than 50% with respect to reference macroscopic models for major pollutants such as NOx and CO2.
Such a high-resolution road traffic emissions model at the scale of every road segment in the network
proves to be highly beneficial as a source for air quality models and as a monitoring tool for cities.

Keywords: driving behavior; stochastic speed prediction; microscopic pollutant emissions; real-
world driving conditions

1. Introduction

The World Health Organization (WHO) classified outdoor air pollution as a carcinogen
at the end of 2013. In Europe, air pollution is the leading environmental health risk.
According to the WHO and the Organisation for Economic Co-operation and Development
(OECD), outdoor and indoor air pollution caused 663,000 premature deaths in the European
region in 2010. The limit values set by the European Commission are repeatedly exceeded
on European territory and in particular on French territory. Faced with this observation,
the European Commission has initiated legal proceedings against 17 countries, including
France, for failure to comply with the standards for PM10 particles (and insufficient
reduction actions, particularly for France). This litigation reached a further stage on
19 June 2015, with the European Commission calling on France to take the necessary
measures to meet its obligations, the last step before referral to the Court of Justice. Finally,
in October 2019, within the Judgment in Case C-636/18 Commission v France, the Court
of Justice of the European Union upheld the Commission’s action and found that France
had failed to fulfill its obligations under the Air Quality Directive.

On the other hand, the European Environment Agency recently emphasized that
cities lack simple and easy-to-use methodologies and tools to quantify the costs and
effects of their measures and assess those that are most effective in improving air quality.
Transportation is one of the most pollutants emitting sectors [1]. In real driving conditions,
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vehicles’ pollutant emissions depend not only on the vehicle technology, but also on the
driving style, the road infrastructure and the traffic regulation measures. Changes in road
infrastructure and traffic management are frequent, especially in urban areas. Capacity,
congestion, and safety of users are often the only decision criteria. Impact on pollutant
emissions is rarely, if ever, taken into account, and only a few infrastructure owners are in a
position to make such optimization decisions [2]. However, changes in road infrastructure
and traffic management may have a strong impact on driving conditions and vehicle
emissions as shown by some studies [3].

Advances in Intelligent Transportation Systems (ITS) and Traffic Information Systems
(TIS) are making it increasingly easy to access traffic data. This opens possibilities for
innovative models and methods for traffic related predictions. In particular, estimating
driving behavior and dynamic speed profiles with realistic acceleration content and up-
dating such information at regular time intervals to better take into account time-varying
traffic conditions is of particular interest.

Most of the speed estimation methods are traditionally based on a single mean value
estimation per road link. They use real-world traffic data collected from probe vehicles
or various monitoring systems, in particular Loop Detectors (LP) and Floating Car Data
(FCD) [4–7]. The usage and accuracy of these methods, however, depend on the availability
of real-world traffic data.

Traffic models can be used to estimate road link speed. They exploit the fundamental
diagram theory [8,9] to describe the deterministic relationship between the flow speed
and the density (number of vehicles per unit length). Macroscopic models consider the
aggregate behavior of traffic flow on road links and estimate a mean speed in a road link.
In microscopic models [10,11], each vehicle is considered separately and the interactions
are mostly based on car-following and lane-changing theories. All these models, however,
require some complex calibration and extensive inputs (Origin/Destination matrix, etc.)
that might not be available for any road network.

Driving cycles are also used for the generation of realistic speed trajectories. They are
constructed from a history of real trips and use stochastic approaches [12,13]. However,
these driving cycles are generally used for large distances and they do not really take
into account the impact of the topology and infrastructure at a high resolution. Alterna-
tively, parametric spline functions can be used in the cases of traffic lights, stop signs and
roundabouts [14]. Polynomial functions are proposed in [15] to construct speed profiles of
turning vehicles at signalized intersections.

Models for acceleration have been considered, particularly in [16] (based on heuristic
assumptions) or [17]. Such models often fail to predict stopping points, related for instance
to traffic lights or intersections. To do so, speed trajectory classification might be used, as
in [18], where clustering algorithms are used to identify three major patterns at a specific
intersection.

In this work, we build on the results of [19] and extend the application of the driving
behavior model to the road traffic emissions’ estimation with extensive validation and
comparison results. In fact, this information can be used for a better overall understanding
of the phenomena and the factors generating traffic-related pollutant emissions at high
spatial and temporal resolution. Solutions can then be found to improve traffic safety and
reduce overall emissions and energy consumption.

In order to accurately estimate pollutant emissions from the predicted driving be-
havior, an adapted microscopic vehicle and emissions model should be used. Indeed, the
pollutant emissions level is strongly linked to the driving behavior, regardless of the vehicle
and its technologies. This sensitivity is much higher than for fuel consumption. For a same
itinerary, and with the same car, the level of pollutant emissions can be tripled between
two drivers, depending on how they drive. A better knowledge and monitoring of vehicle
usage will have a double benefit: at the driver scale, a direct decrease of emissions through
improved driving behavior and habits; at the regulator scale, assisting the development of
future standards and infrastructures.
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Regarding the microscopic emissions modeling, for a long time, the environmental
impact of vehicles has only been evaluated by the means of dynamo-meter emissions
tests. The data derived from such testing is not representative of “real-world” driving
conditions [20]. To deal with this issue, the Portable Emissions Measurement System
(PEMS) has been being developed since the 1990s [21]. These systems are suitable for
measurements on a specific vehicle; however, due to their cost, large scale studies of real
driving emissions (RDE) are not possible. As a consequence, little is known about the
impact of real-world conditions on emissions and only very recently studies have been
starting to shed more light on the subject [22,23]. A way to measure indirectly real traffic
emissions of vehicles is to use an air quality sensor, but large scale diffusion is limited as
well, and it is then difficult to relate the pollution to its cause. It is known that emission
factors can be coupled with real GPS data to estimate vehicle emissions [24]. However,
emission factors only consider average vehicles and average driving style and are suitable
for average emissions on long trips but not for real traffic emissions which needs to take
into account the local impact of the driving style and slope [25]. To take into account
these phenomena, it is necessary to use a finer level of model called microscopic, whose
input is generally a 1 Hz vehicle speed profile. Several microscopic models already exist,
but they are designed for offline studies [26]. They are often coupled with microscopic
traffic simulators which provide the 1 Hz speed profile [27,28]. Unfortunately, there is an
important gap between simulated and measured speed profiles and therefore pollutant
emissions, as illustrated in [29]. The purpose of this work is to couple a new microscopic
emissions model, covering even the most recent pollutants after-treatment technologies,
unlike other renowned microscopic emission models, such as PHEM [30], with realistic
speed profiles provided by the proposed driving behavior model to estimate on-road
pollutant emissions.

The objective of this work is to propose a modeling framework to estimate vehicular
traffic pollutant emissions in each segment of a road network by only using macroscopic
topographic and traffic information. Firstly, the proposed approach focuses on designing
a generalized approach for the estimation of vehicle speed trajectory at a road link scale.
This driving behavior model is trained on the real-world speed trajectories recorded
by the smartphone application Geco air [31]. This application records automatically the
1-Hz Global Positioning System (GPS) signal when the user is moving to provide him a
feedback on the individual environmental footprint of his mobility. The application is
free to download and use. In addition to encouraging the users to take part in a citizen
science project, the application provides drivers with an individual coaching to reduce their
pollutant and CO2 emissions. The resulting database is usable for research purposes and
compliant with General Data Protection Regulation (GPDR) rules. It is a major opportunity
to improve the understanding of real-word driving conditions and related emissions which
are now modeled in a really simplified way to predict the pollutant concentrations. In
2020, this database counts more than 6 Million trips for a total of 73 Million kilometers,
and these figures increase continuously with the daily trips of thousands of users. The
driving behavior model trained with these data are then used to estimate speed trajectories
on any road link, not requiring the availability of previous recordings on the considered
road links. The model does not need any calibration and takes as inputs macroscopic data
(road infrastructure, topology, etc.) that are available through commercial Geographic
Information System (GIS). A stochastic approach is exploited to construct vehicle speed
trajectories. This allows the estimation of several speed trajectories per road link, to take
into account various possible driving behaviors. Secondly, a microscopic vehicle and
pollutant emissions model is proposed to be able to convert the estimated driving behavior
into vehicle emissions at the outlet of the exhaust-line. Lastly, the vehicle emissions
are converted into the emissions of an equivalent vehicle representing the vehicles fleet
circulating in the considered area obtained from public statistical studies. The calculation
of the overall road traffic emissions on every link of the road network is then performed by
considering the traffic volume estimated in the network by traffic detectors or traffic models.
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The contributions of this work are twofold:

• The proposed modeling framework is able to estimate time-varying and microscopic
road traffic emissions by only using easily obtainable macroscopic topographic and
traffic information on any given geographical area;

• A thorough model validation is able to highlight the model accuracy and the drastic
emissions estimation error when compared to well-established macroscopic emissions
models, such as COPERT [32]. In addition, our model is able to identify critical road
links in terms of pollutant emissions at a very high spatial resolution. Such a precision
is very valuable to understand what road segments should need careful investigation
and perhaps infrastructure modification, as well as to feed atmospheric dispersion
and air quality models with high-resolution emission sources.

The paper is organized as follows: Section 2 describes the modeling framework
comprising the driving behavior model, the employed microscopic emissions model,
and the meta-modeling approach to convert individual vehicle emissions into road traffic
emissions. Finally, a thorough validation analysis of each constituting block of the proposed
model is given in Section 3. Concluding remarks and main results are summarized in
Section 4.

2. Materials and Methods

As previously mentioned, the objective of this work is to estimate vehicular traffic
pollutant emissions in each segment of a road network by only using macroscopic topo-
graphic and traffic information. In the following, the methodology and the main modeling
blocks proposed to attain this goal are described in detail. An illustration of the modeling
framework is shown in Figure 1.

Figure 1. Illustration of the overall approach to translate macroscopic road information into road traffic environmental
impact. This work focuses on the central blocks computing the microscopic vehicle emissions from only macroscopic
available data.

2.1. Driving Behavior Model

Real-world driving speed measurements are not available everywhere and generally
difficult to obtain. Nowadays, the advent of vehicles connectivity and intelligent trans-
portation systems is making driving data increasingly easy to acquire. However, often,
the spatial and temporal coverage of these data are not sufficient to establish an accurate
driving behavior model on each segment (or link) of the road network. Thus, in order to
predict driving behavior on any road link, even in the absence of pre-recorded driving data,
the proposed model aims to relate macroscopic road and traffic data available everywhere
through commercial GIS (e.g., HERE Maps [33]) to typical dynamic (i.e., time-variant)
vehicle speed trajectories. The proposed driving behavior model is defined in a machine
learning framework as a sequence of cascaded sub-models which are inspired by empirical
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observation of real-world driving and traffic data. For the design and training of the
model, we used a data-set of real-world driving Floating Car Data recorded with the Geco
air application in the Greater Paris and Lyon area (France), consisting of approximately
200 thousand road segments and over 2 million data samples, or observations (i.e., driving
profiles). The structure of the model is illustrated in Figure 2 and discussed in detail in
the following.

Figure 2. Illustration of the cascaded driving behavior model.

2.1.1. Road Network Segmentation

When looking at the speed trajectories recorded on a given road link, it is often
observed that a large variety of trajectories exist and the associated statistical dispersion
is high. This is due to several factors impacting driving behavior on a same road link:
congestion levels, driving style, state of signalization, driving intentions with upstream
and downstream maneuvers, etc. In order to reduce statistical dispersion, the first step of
the model aims to separate driving maneuvers by redefining the road network as a list of
link triplets. Each road link generates a set of road link triplets, covering all the origin and
destination options for the considered road link. Each of these triplets is then composed by
the considered road link in the middle, plus an origin road link upstream and a destination
road link downstream. The road network redefinition in the triplets framework is then
performed in two steps: (i) divide the considered network into its constituting unit road
links; (ii) from the unit road links, build all the generated triplets.

2.1.2. Driving Behavior Categorization

Speed trajectories on the center road links of triplets share the same driving intentions
in terms of maneuvers, and thus they have similar shapes and characteristics and a lower
statistical dispersion, as observed in real-world driving data. In this second step of the driv-
ing behavior modeling approach, a heuristic decision tree is built only from macroscopic
road features and traffic conditions (signalization, road curvature, connectivity, traffic
congestion, etc.). The decision tree is used to group similar speed characteristics in a same
category (a tree leaf in Figure 3). Each category is defined based on chosen macroscopic
features that are reported in Table 1.

• Very high congestion: The congestion level, which is the ratio between the traffic
speed and the free-flow speed, is below a defined threshold.

• Traffic light: Traffic light presence in the middle road link of the triplet.
• No priority: Existence of stop or yield sign in the middle road link of the triplet. It

is also the case if the destination road link has lower functional importance than the
other downstream road links.

• Priority—Major and intermediate segments: The destination road link has more
functional importance than the other downstream road links. The triplet is a motorway,
a major road link, or a secondary road link with high volume traffic.

• Priority—Minor segments: The destination road link has more functional importance
than the other downstream road links. The triplet is a minor road link with low
volume traffic and low-speed limitation.

• High curvature: The triplet curvature is above a defined threshold.
• Low curvature: The triplet curvature is below a defined threshold. Then, three

categories are defined based on their functional importance within the Transportation
Network.

Those categories are based on heuristic assumptions. For instance, in the high con-
gestion case, where the traffic speed is significantly lower than the free-flow speed, the
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vehicle’s speed is very low and neither the signalization nor the curvature have a signif-
icant impact on the driving behavior. In other words, based on observations, when the
average speed is low, it is difficult to distinguish between infrastructure-induced stops
and traffic-induced stops. The same reasoning is applied for the traffic light case: speed
trajectories tend to show the same behaviors in a traffic light case whether there is an
intersection or not. Following this heuristic process, nine easily interpreted categories
are defined. With the recorded speed database used for training, the categories have a
balanced data distribution. Apart from the high curvature case, each category contains
between 10 and 20% of the training database. The high curvature case only represents 3%
of the training database, as such high curvatures are not common in the urban areas of
Paris and Lyon.

Table 1. Macroscopic features for the definition of categories.

Feature Description

Congestion level

Traffic light

Stop sign

Yield sign

Road network hierarchy

Road link curvature

Figure 3. Proposed decision tree, nine categories are identified.

2.1.3. Clustering of Driving Styles

For each category, we then consider all the recorded speed trajectories on the center
road links of all triplets belonging to the category. On this collection of speed trajectories,
we apply a clustering algorithm in order to determine a set of driving speed clusters for
each category. The objective of such a clustering phase is to identify the most representative
driving behaviors and to further reduce statistical dispersion of the real-world speed
profiles belonging to a certain link triplet, which in turn belongs to a certain category of the
decision tree. In other words, while the triplets aim to group driving behaviors associated
with the same maneuver, and categories group driving behaviors associated with same
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macroscopic road features, the clusters aim to group driving behaviors associated with
similar dynamic content (e.g., stop at a red traffic light, aggressive driving, etc.).

A clustering method, based on the microscopic features reported in Table 2, is used
to identify similar driving behaviors. Those features are computed for every recorded
speed trajectory in a triplet, and have been chosen to identify the most representative speed
dynamics characteristics.

The squared Euclidean distance is used for clustering, distances being computed from
normalized values of the microscopic features. Note that it is not mandatory to use all the
proposed features for all the categories. For each feature x, a minimum value xmin (resp.
a maximum value xmax) is computed, as the 5th percentile (resp. 95th percentile) of the
distribution of x. This helps to remove outliers. The normalized value is then computed as
(x− xmin)/(xmax − xmin).

Since all the features are numerical and the database is very large, the K-means
clustering algorithm was used for its efficiency and convergence speed [34]. The silhouette
metric [35] was used to evaluate the optimal number of clusters. The silhouette of a point
i in the space of normalized microscopic features is defined as Si = (bi − ai)/max(ai, bi),
with ai being the average distance to the other points in the cluster and bi the minimum
average distance from the points in the other clusters. By definition, Si ∈ [−1, 1].

For a category, the number of clusters was varied from 1 to 10 and the optimal number
of clusters was identified as the one maximizing the silhouette metric. A key advantage of
using this metric is its consideration of how close a point is to a cluster while comparing
it to the minimal average distance to another cluster. A negative mean silhouette value
means that the point is closer to another cluster. A mean silhouette value higher than
0.5 indicates a generally good clustering, in which each point is well matched to its own
cluster, and poorly matched to other clusters.

Table 2. Clustering features for the identification of driving behaviors.

Feature Description

Mean speed

Percentage of null speed

75% percentile of speed

Minimum speed

Sum of positive acceleration

Sum of negative acceleration

Difference between initial and final speed

The mean value of the mean silhouette metrics for all the categories is about 0.53,
with the minimum value being equal to 0.43 for the “Intermediate segments” category.
In total, 29 clusters are identified for the nine categories. Apart from providing good
clustering results, combining the silhouette metric with the K-means algorithm allows for
the identification of speed clusters that can be physically interpreted. For each cluster, the
dispersion level is very low and a typical driving behavior can be identified.

Finally, the proportion of recorded speed trajectories that each cluster groups can
be used to estimate occurrence probabilities of each cluster. Such probabilities are an
important property of the proposed driving behavior model and of the speed trajectories’
construction from macroscopic variables.

2.1.4. Driving Characteristics Extraction

In the model, the clusters obtained in the previous step serve two purposes. First,
macroscopic variables can be linked to the clusters’ features: initial speed vi (at the inlet of
the center road links), final speed v f (at the outlet of the center road links), plus a possible
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stop S within the center road links. Such a stop is defined by the relative positions of the
stops from the outlets of the center road links.

Once the relationship has been established, any triplet is linked, through macroscopic
variables only, to a set of vectors D = (vi, v f , S) for each cluster.

A random forest (RF) regression algorithm [36] is used to estimate the initial speed
vi and final speed v f for each cluster. The stopping point position S is also estimated for
some clusters. This supervised learning algorithm takes as inputs the previously defined
clusters and remaining macroscopic features, not used for the decision tree. Apart from the
traffic speed, these macroscopic features are computed for the center road links associated
with the cluster. For a cluster C,

[vi, v f , S] = RF(C, Nl , VOt, Vt, VDt, Vn, Ls, αs, αc, Ni, N f ) (1)

The definition of the RF inputs is given in Table 3. Bagging is used as the random forest
training method. It is an ensemble learning method which involves random sampling of
small subsets of data from the dataset. The selection of all the examples in the dataset has
equal probability. Each tree of the random forest learns from a different subset. By doing
so, the random forest model has a higher stability with less possible over-fitting.

The proposed learning scheme also includes iterations on its inputs and structure
using K-fold cross validation [37]. This allows for better tuning the model and obtaining
the optimal topology while avoiding over-fitting. The basic idea is to test different hyper-
parameters and choose the ones with the best associated performance in the training, test,
and validation datasets. The supervised learning algorithm performance is assessed in
terms of the coefficient of determination R2:

R2 = 1−
n

∑
j=0

(yj − ŷj)
2/

n

∑
j=0

(yj − ȳ)2 (2)

where n is the number of measurements, yj is the jth measurement value, ŷj is the related
estimated value, and ȳ is the mean measurement value. A coefficient of determination close
to 1 means that the estimations and measurements are perfectly correlated. As a result
of the K-fold cross validation, the coefficient of determination is higher than 0.9 for the
test and validation sets for vi and v f . The stop S also gets good estimation results, with a
coefficient of determination equal to 0.81 for the validation set. It is challenging to increase
S estimation accuracy, since it depends on other macroscopic variables that are not usually
available, like the traffic light exact position for instance. In addition, in a very congested
case, the S position can be anywhere on the road link.

As with any supervised learning algorithm, the prediction accuracy depends on the
data quality. The data should be exhaustive for each model input dimension. In our
case, 22% of the data are redundant. This means that a similar prediction accuracy is
obtained with the remaining 78% of the data. In this case, the proposed supervised learning
algorithm convergence time is approximately 1 h on a laptop computer equipped with a
Central Processing Unit (CPU) at 2.8 GHz and 16 GB of Random Access Memory (RAM).

Apart from the satisfying estimation results, the random forest bagging trees algorithm
estimates the mean and also the standard deviation of each variable to be estimated.
Accordingly, speed trajectories parameters (vi, v f and S) can be generated with a Gaussian
distribution to take into account the stochastic nature of the driving behavior. This is
exploited in the construction of speed profiles presented in the next step of the model.
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Table 3. Features used as inputs of the RF algorithm.

Feature Description

Nl Number of lanes in the road link

VOt Origin road link traffic speed

Vt Center road link traffic speed

VDt Destination road link traffic speed

Vn Nominal speed

Ls road link length

αs Slope angle

αc Curvature angle

Ni Number of adjacent origin road links

N f Number of adjacent destination road links

2.1.5. Stochastic Speed Construction

The last step of the model consists of computing speed trajectories for each vector
D of each cluster. Let us recall that a cluster groups a part of all the speed trajectories
of the center road links of triplets that belong to the same category. This means that the
recorded speed profiles belonging to a cluster, although sharing similar characteristics,
may have very different duration due to the different lengths of the road links. Therefore,
we first normalize the description of these speed trajectories by considering a common
variable that is the relative position p from the end of the center road link (from 0 at its
inlet, to 1 at its outlet). At each discretization step pk of p, we assign a probability for ak
(acceleration at pk), conditioned to ak−1 (previous acceleration), vk−1 (previous speed) and
δk (difference vk−1 − v f ). Then, starting from an inlet speed vi, we sequentially construct a
speed trajectory. We will see in the sequel that, in practice, a set of less than 10 stochastically
constructed speed trajectories suffices to correctly represent driving behavior for a cluster.

For the construction of the vehicle speed trajectory, a probabilistic approach is used: a
multi-dimensional discrete Probability Density Function (PDF) approximates the stochastic
part of the driving behavior, which deterministic approaches fail to capture.

A PDF is constructed for each cluster, with the associated recorded speed trajectories.
It is used to get the next acceleration, based on the following equation:

ak+1∼P(ak+1|ak, vk, δk, pk) (3)

The parameters used in Equation (3) are computed for each recorded speed trajectory time
step in the center road link of a triplet. Then, they are grouped to construct the PDF.

Given vi (obtained with a random draw from its Gaussian distribution, given by
the RF algorithm), the next acceleration value is selected according to the constructed
multi-dimensional PDF (Equation (3)). Then, the next speed value is computed by adding
the computed acceleration to the previous speed. This procedure is repeated until the road
link end is reached. For clusters having a stop point, the same process is applied two times:
between the initial point and the stop point for the first part, and between the stop point
and final point for the second part.

At this point, several dynamic speed trajectories can be constructed on any road link,
and only macroscopic road features are needed as inputs.

2.2. Microscopic Emissions Model

The obtained dynamic speed profiles obtained as an output of the driving behavior
model can be now fed into a microscopic energy consumption and emissions model of
the vehicle. Figure 4 shows the cloud computing architecture used to estimate pollutant
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emissions from GPS measurements. The four inputs of this calculation, provided by the
user smartphone, are the registration number of the vehicle (ID) and GPS measurements
automatically recorded (i.e., position, speed and altitude). For brevity of presentation, this
section focuses on emissions of NOx, PM, and CO2 for Diesel vehicles, but the model is
applicable to all types of regulated pollutants and vehicle powertrains.

Figure 4. Vehicle pollutant emissions model scheme.

The choice of the right modeling level is a trade-off between precision, number of input
parameters, and computation time. The desired models should be able to catch the impact
of real-world driving conditions and to identify situations where pollutant emissions are
particularly high or low. Moreover, the model has to deal with inputs sampled at low
rates, typically 1 Hz, as provided by the GPS sensor of most smartphones. This is a critical
point because the creation of pollutant emissions occurs during an engine cycle, typically
few milliseconds. An important remark is that the models are not based on the results
of a standard driving cycle (such as the New European Driving Cycle (NEDC)), which
often fails to represent real on-road conditions. On-road and on-cycle emissions can be
widely different for some pollutants and some engine technologies. The models integrate
realistic engine and after-treatment calibrations, which is essential for real-world emissions
modeling. In the following, we give an overview of the different sub-models composing
the overall microscopic emissions model.

2.2.1. Vehicle Model

This model takes into account the vehicle dynamics. It takes two inputs, the GPS
speed and altitude, to compute the engine speed and torque. It is based on the longitudinal
dynamics of the vehicle, which can be written as:

m
dv(t)

dt
= Feng − Fres − Fslope − Fbrk (4)

where Feng is the traction force of the engine, Fbrk is the braking force, Fres is the friction
force due to aerodynamic and rolling resistance, and Fslope is the gravitational force. The
force at the wheels is then written as:

Fwheel = Feng − Fbrk (5)

These equations allow for computing the engine traction force and then the engine
power Peng:

Peng =
vFeng

ρtrans
= (m

dv
dt

+ Fres + Fslope + Fbrk)
v

ρtrans
(6)

where ρtrans is the transmission efficiency. At every time step, the model calculates the
reduction ratio between the wheel and the engine crankshaft Re−w depending on v and
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Peng: Re−w = f
(
v, Peng

)
. It converts then the speed and power from the wheel to the engine

torque Teng and speed Neng at the crankshaft:

Neng = vRe−w, Teng = Peng
30

Nengπ
(7)

In the case of a hybrid vehicle, the engine power is not directly proportional to the
power necessary to move the vehicle. The power split between the engine and the electric
motor is chosen by the energy management strategy. This strategy is modeled to take into
account the effects of hybridization functionalities, namely pure electric drive, regenerative
braking, and engine operations’ optimizations. This strategy is coupled with a simple
model of the electrical components that take into account the impact of battery state of
charge variation, especially relevant for plug-in hybrids.

2.2.2. Engine Fuel Consumption Model

The first step of this sub-model is to evaluate the internal physical quantities on the
current operating point such as flows, temperatures, and concentrations. These quantities
will then be used to estimate the pollutant emissions, as well as the fuel consumption. The
model quantities are estimated, based on the following basic assumptions:

• Maximum torque curve and air-path architecture are known for the engine;
• Generic law for the friction mean effective pressure (FMEP), as a function of en-

gine speed;
• Constant gross indicated efficiency;
• Fuel air equivalence ratio equal to 1 in spark-ignition engines (except at high load

where it increases linearly with load), and varying between two values for compression–
ignition engines;

• The exhaust gas recirculation (EGR) fraction is known for each point of the engine map.
• The engine coolant temperature is modeled using a simple heat exchange model. This

model takes into account the heat produced by the combustion which is assumed
to be a function of the engine operating point and the ambient heat exchange. Cold
start effect on fuel consumption is then modeled with a coefficient function of the
coolant temperature.

These assumptions are combined in the iterative algorithm presented in Figure 5, and
applied for each point of the engine map to determine the pumping mean effective pressure
(PMEP), to deduce gross indicated mean effective pressure (IMEP) and fuel consumption,
considering the gross indicated efficiency assumption.

Thus, the iterative process is mainly aimed at computing engine fuel consumption
and PMEP, which require computing for each point of the engine map the air mass flow
rate (with equivalence ratio assumption) and the exhaust temperatures necessary for the
pollutant models, as well as the different pressures and temperatures in the air path. The
equations used to determine fuel consumption, total intake mass flow rate, and pressure
and temperature conditions in the air path are detailed in [38] for engines without EGR.
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Figure 5. Implicit algorithm applied to compute physical quantities.

These equations have been adapted for engines with EGR to improve the exhaust
mass flow rate estimation given to the emissions model. Basically, this adaptation ensures
that: Qexh = Qexh,tot(1− EGR) with Qexh the exhaust mass flow rate, Qexh,tot the total
exhaust mass flow rate coming from the cylinders, and EGR the fraction of exhaust gas
recirculated given for the engine operating point. Fuel consumption maps generated with
this model are consistent with measurements and overall they show estimation errors
below 10% compared to test-bench measurements.

2.2.3. Engine-Out Emissions Model

The estimation of engine-out emissions is made using a physical modeling of the
engine using mostly equations of the literature with some adjustments to the available data.
This modeling is based on steady-state assumptions (i.e., assuming stationary operations)
for most parameters, but transient phenomena, such as the air path settling time and
thermal behaviors, are included using dynamic models. The cold-start effect is therefore
captured with a model that estimates the engine temperature at each time step. One of the
main contributions of this work is the NOx emissions models for Diesel engines which is
inspired from a semi-empirical model presented in [39]. The original model was:

log(NOx) = a0 + a1COC + a2mcyl + a3mO2 (8)

with NOx the mass of NOx per mass of fuel, the center of combustion (COC) (50% energy
conversion, from Top Dead Center (TDC)) and mcyl and mO2 the in-cylinder air and oxygen
mass per stroke and displaced volume, and a0, a1, a2, a3 model coefficients. This model
was modified to avoid needing the COC which is quite hard to estimate without engine
sensors and to include the strong effect of Exhaust Gas Recirculation (EGR). The new
model is:

log(NOxQS) = a0 + a1RBGR (9)

where RBGR is the in-cylinder Burned Gas ratio (BGR) estimated with the air path model
taking into account engine calibration and the dynamics of the EGR loop. Once engine-out
emissions are estimated, it is necessary to model the after-treatment impact on such emissions.

2.2.4. After-Treatment Model

The developed after-treatment model library is composed of six submodels, each of
which represents a physical after-treatment element of the exhaust line: Diesel Oxidation
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Catalyst (DOC), Diesel Particle Filter (DPF), Selective Catalytic Reduction (SCR), Lean NOx
Trap (LNT), Three-Way Catalyst (TWC) and PIPE (referring to a thermal model of a simple
pipe between two elements). These elements can be arranged to describe the diversity of
exhaust line architectures. As an illustration of this diversity, the most common Diesel
exhaust architectures are briefly mentioned thereafter. Most of the pre-Euro5 vehicles only
use DOC as an after-treatment device. Euro5 architectures commonly use a close-couple
DOC-DPF system. Euro6 standard is commonly addressed by the use of an SCR or an LNT,
additionally to the DOC and the DPF. Various architectures exist such as DOC-DPF-PIPE-
SCR, DOC-PIPE-SCR-DPF, etc. In particular, all the Euro6 after-treatment architectures can
be modeled using combinations of these “standard” submodels. An example of such an
arrangement is depicted in Figure 6.

Figure 6. Example of after-treatment submodels for a Diesel Euro6 exhaust line.

All the submodels take the physical quantities of gas flow rate, temperature, gas
composition (sHC, sCO, sNO, sNO2, soot, and sO2) at the element inlet as an input and
compute the same quantities at the element outlet as an output. Each variable represents
the cross-section-averaged quantity at a given axial location. It is then possible to describe
precisely the evolution of the gas temperature and composition through the different
elements, and to estimate the tail-pipe pollutant emissions.

Going into further detail, each element is in fact discretized spatially into several
“slices” to account for the non-uniform axial distribution of the properties inside the
element itself. This approach is fully consistent with classical models of packed-bed
catalysts developed since the 1970s (see, e.g., [40]). In particular, several benefits of this
approach make it necessary for our application: it leads to realistic dynamics of pollutants
conversion efficiencies during heat-up phases (such as start-up and sudden accelerations)
and during transient cool down phases as well (pedal release, slow driving), which would
not be captured by a simple map-based model. In addition, the models are adapted w.r.t.
gas flow rate, allowing us to capture precious information, like a drop in conversion
efficiency as the engine load is increased.

Other noteworthy model features include capturing catalyst light-off phenomenon,
taking into account SCR and LNT control laws to compute conversion, handling of the
engine shut-off for conventional vehicles and Hybrid Electric Vehicles (HEVs). Real time-to-
execution time ratios as high as 8000 have been measured on a classical laptop to simulate
a full DOC-DPF-PIPE-SCR Diesel exhaust line on transient cycles, which perfectly meets
our needs in terms of computational burden.

2.3. Microscopic Traffic Emissions

The third and last block of the proposed modeling approach aims to combine the
driving behavior model and the single-vehicle microscopic emissions model and to extend
the results at the traffic level. In other words, once the pollutant emissions of one vehicle
are calculated on one road link based on the estimated driving behavior, it is necessary to
calculate the overall emissions of all the vehicles in the whole road network under analysis.

In order to compute the contribution to the overall emissions of all possible vehicle
powertrains and after-treatment technologies, the vehicle fleet composition in the consid-
ered geographic area needs to be estimated. In this work, the estimation of the vehicle
fleet composition is not addressed, and it is considered as a data source. For brevity of
presentation, let us consider that the statistical vehicle fleet composition is given and
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retrieved from available public reports [1]. More precisely, the vehicle fleet composition
gives accurate estimates of the proportion of light-duty, commercial and heavy-duty ve-
hicles on every road link of the considered area. Note that all vehicle powertrains and
after-treatment technologies from Euro 1 to Euro 6 emission standards are defined in the
microscopic emissions model described in the previous section. The equivalent emissions
of a vehicle representing the entire fleet are simply obtained via a weighted sum of the
individual emissions of each vehicle type indicated in the fleet composition, where each
weight corresponds to the proportion of each vehicle in the total fleet composition.

Furthermore, in order to correctly evaluate the impact of traffic volume on the pollu-
tant emissions, the emissions of the equivalent vehicle representing the whole fleet need to
be multiplied by the estimated number of vehicles on every road link of the considered
road network. Usually, this information is given by macroscopic traffic models calibrated
on real-world traffic counts as an average annual daily traffic (AADT). This is also the
typical data source and input for other state-of-the-art macroscopic traffic emission models,
such as COPERT [32], in which the total traffic emission is obtained as the product of
AADT and emission factors as a function of an average driving speed. Note that our ap-
proach is microscopic because both the driving behavior model and the vehicle emissions
model are dynamic and microscopic (i.e., consideration of speed dynamics, road slope,
road infrastructure, traffic levels, temperature dynamics of engine and exhaust-line, etc.).
Finally, the microscopic traffic emissions are obtained in this work by multiplying the
microscopic emissions of the fleet-equivalent vehicle by the macroscopic traffic volume
information AADT.

3. Results

In this work, the experimental results are aimed at validating the proposed modeling
approach and at showing the importance of considering microscopic traffic emissions when
analyzing the impact of transport emissions on the environment. The results are separated
in three main parts.

Firstly, the driving behavior model accuracy was statistically evaluated with respect to
real-world recorded speed profiles in the test area. As a reminder, the data-set of real-world
driving Floating Car Data was recorded via the Geco air application. For each trip, the
available data are the 1 Hz GPS signals (i.e., latitude, longitude, speed, altitude, precision,
heading) and the vehicle characteristics (i.e., mass, fuel type, aspiration type, injection type,
displacement, Euro norm, after-treatment type).

Secondly, the vehicle microscopic emissions’ model precision was assessed with respect
to test-bench measurements, and the model sensitivity to driving style, type of itinerary, and
type of vehicle was analyzed in real-world driving conditions via experimental measurements.

Finally, the accuracy of the proposed microscopic traffic emissions model was assessed
at the scale of a city neighborhood and in comparison to an established macroscopic
emissions model. It should be noted that nowadays the reference methods to estimate traffic
emissions on a road network consist of using macroscopic emissions models or emission factors,
such as COPERT, and not microscopic models because in general high-frequency real-world
driving speed trajectories are not available. Our strategy fills this gap by transforming the
macroscopic information available on a geographic area into microscopic traffic emissions
thanks to the proposed driving behavior model and the adapted microscopic emissions model.
Thus, the proposed strategy does not require any costly microscopic traffic simulation in the
test area to generate the driving behavior data, and it can be directly deployed in a new test
area, just like the models based on emission factors.

3.1. Driving Behavior Model Validation

The driving behavior model was validated and tested outside of the training data-set.
In particular, while the model was trained on real-world driving data recorded in the urban
and suburban areas of Paris and Lyon, it was tested in the city of Marseilles. The objective
of this validation is to assess the extrapolation capabilities of the model for the dynamic
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speed profiles construction to be representative even in a different geographical context.
The performance of the model was assessed from both a qualitative and quantitative point
of view, by evaluating the driving behavior estimation accuracy and the statistical errors
with respect to real-world speed profiles recorded in the test area.

In the first part of the validation analysis, the proposed stochastic speed construction
method has been compared to a deterministic one. The deterministic approach is based on
constructing speed trajectories between vi and v f with first order polynomial functions,
the coefficients of which are estimated with the vi and v f values. In a stop case, two first
order polynomial functions are used, one between vi and a null speed at S, and the other
between the null speed at S and v f .

For this comparison, the recorded speed trajectories vi, v f and the S parameters are
used for the vehicle speed construction. This allows the evaluation of the stochastic and
deterministic approaches errors independently from the random forest estimation accuracy.
The mean absolute error distribution between the recorded and the constructed speed
trajectories in stop cases is presented in Figure 7. The error median is respectively equal
to 3.6 km/h and to 2.1 km/h for the deterministic and the stochastic approaches, with an
error reduction of around 40% brought by the stochastic approach. The 75th percentile is
reduced by 35% with the stochastic approach with an error distribution more concentrated
around the median. The error standard deviation is also reduced by 20% with the stochastic
approach. The PDF-based construction is more accurate than the deterministic one. It takes
complex driving behaviors into account better, especially in the case of a stop over the road
link, or for long road links.
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Figure 7. Constructed speed trajectory error comparison between deterministic and stochastic approach for stop cases.

The second part of the validation analysis aims to assess the vehicle speed trajectory
parameters estimation accuracy: vi, v f and mean speed vm. Figure 8 shows a comparison
example with 1 Hz driving speed recordings.

Qualitatively, the constructed speed trajectories reproduce the dynamic behavior
(acceleration and stopping point) of recorded speed trajectories for the considered road
link. In general, the higher the number of stochastically constructed speed trajectories, the
more accurate the estimation. Here, six speed trajectories have been constructed for each
cluster, which appears to be the best compromise between speed trajectories accuracy and
computational time. The driving behavior dispersion level is also well reproduced. The
model is able to capture the variations of vi, v f , and S that are found in the recorded speed
trajectories. Table 4 summarizes the results for more than 300 road links in Marseilles,
with at least 30 recorded speed trajectories for each road link. The mean of the mean
absolute error is less than 2.5 km/h for vm, vi and v f . This corresponds to a relative error
lower than 10%. Thus, the results show a promising extrapolation potential of the method.
Note that the driving behavior estimation changes overtime as a function of real-time
traffic predictions, retrieved every 5 min from HERE Maps, but any other digital map
webservice could be employed. The proposed speed construction method could also take
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traffic incidents into account. This can be done by adding new categories to the decision
tree related to each incident, for instance, road hazard, accidents, etc.

Figure 8. Comparison between constructed and measured vehicle speed trajectories for a road link.

Table 4. Errors between modeled and measured speed trajectories for the validation case (Marseilles, France).

Error vi vm v f

Mean absolute error 2.22 km/h 2.26 km/h 2.32 km/h

Relative error 8 % 8.5 % 9 %

3.2. Microscopic Emissions’ Model Validation

The first part of the emissions model validation aims to compare the results of the
emissions models against experimental data. For now, this comparison is only made
against engine test bench and dynamometer results, but PEMS validation is planned in the
near future to be a step closer to real-world driving conditions. The tests were conducted
on a set of 24 vehicles with different powertrains (i.e., gasoline, Diesel and Hybrid) and
after-treatment technologies, and on three to five driving cycles for each vehicle. The
purpose of this validation was to evaluate the relevance of the general approach and the
order of magnitude of precision of each submodel.

This validation showed a good behavior of the models, even if the strong assumptions
inherent to a virtual sensor approach cause non-negligible errors. The estimations of fuel
consumption and CO2. Emissions are the most precise with a typical modeling error from 5%
to 10% depending on the vehicle and the trip (an example is given in Figure 9). In this case, the
main source of error is the estimation of the gearbox ratio in the case of a manual transmission.
Among pollutant emissions, the estimation of NOx emissions is the most effective with typical
errors ranging from 5% to 20%. For NOx emissions, the most critical situations are short
trips with a modern Diesel engine fitted with an after-treatment system highly sensitive to
the warm-up duration. CO emissions for gasoline engine and PM for Diesel are the most
critical emissions to a model with a typical error of 10% to 25%. Nevertheless, this accuracy is
consistent with the level of complexity of the pollutant models.
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Figure 9. Comparison between the estimates (red curve) and experimental measurements (black curve) of Fuel Consumption
(left figure) and NOx emissions (right figure) for a Diesel Euro5 on the WLTC driving cycle.

In the second part of the validation analysis, the objective is to show the model
sensitivity to the influence of the type of vehicle, the trip and the driving behavior on
the pollutant emissions. The tests were conducted on real-driving data recorded with a
smartphone GPS sensor.

3.2.1. Impact of the Driving Behavior

The first interesting result is the significant sensitivity of pollutant emissions to the
driving behavior. Figure 10 presents the result of emissions estimated on different speed
profiles acquired on a same itinerary with the same vehicle but with different drivers.
The speed profile of each driver was recorded during an experimental campaign. On this
example, the NOx level of this Euro5 Diesel vehicle can vary by a factor 3 for a fixed trip
and vehicle depending only on the driver’s behavior.

Figure 10. Example of NOx sensitivity on a sample of 26 drivers, on a same trip with the same vehicle (Diesel Euro5).
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3.2.2. Impact of the Trip

The second interesting result is the sensitivity of the pollutant levels to the trip char-
acteristics. An example is given in Figure 11 showing NOx emissions’ levels on different
trips with the same driver and the same vehicle (Euro5 Diesel). The level of pollutants
emitted per kilometer vary by a factor 10 depending on the trip length, its contextualization
(congestion, signalization, etc.) and its slope profile.

3.2.3. Impact of the Vehicle

The last result is the analysis of the impact of vehicle and engine characteristics on
the pollutant emissions level. Figure 12 gives an example of the NOx emissions for the
same speed profile on a sample of 50 vehicles, with diesel and gasoline engines from
Euro3 to Euro6. The emissions of recent vehicles are globally lower, but it is interesting to
observe that, for some pollutant, the real driving emissions did not decrease as much as
the standard level did.

3.3. Microscopic Traffic Emissions

In this third part of the experimental results, our objective is to demonstrate how
the previous two blocks of the proposed workflow (i.e., driving behavior model and
microscopic emissions model) can be combined to estimate traffic pollutant emissions in
a geographical area. In order to do so, as illustrated in Figure 1, additional data sources
are required: information about the traffic volume on the road links of the considered
area and information about the overall vehicle fleet composition. The results are aimed at
showing the added value of the proposed modeling approach in predicting microscopic
traffic emissions over the state-of-the-art methods, such as COPERT [32], merely using
emission factors per type of vehicle neglecting the dynamic content of the driving behavior.
In order to establish this analysis, we benchmark both the proposed model and COPERT
against a common reference. Since we do not have a true measurement (PEMS) of pollutant
emissions in the experimental area, the reference used in the comparison is the emissions
calculated by the microscopic emissions model using as input the Geco air real-world speed
profiles recorded on the different links of the road network. Note that the speed recordings
in the test area were used only in validation and not in the training of the driving behavior
model. In the following, for brevity of presentation, only NOx emissions results will be
shown in the figures.

Figure 11. Example of NOx sensitivity on a sample of 104 trips, with the same driver and same vehicle (Diesel Euro5).
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Figure 12. Example of NOx sensitivity to the vehicle, on the same real-world speed profile (i.e., same trip and same driver).

Figure 13 shows histograms of errors in the estimation of NOx emissions, for more
than 300 road links. In addition, 75% of the road-links have less than 100 mg/km error
with the proposed model, compared to 30% with COPERT. The model mean of the mean
absolute error is around 98 mg/km for the proposed model and 219 mg/km for COPERT.
The mean absolute error is reduced by more than 55%. A similar error reduction is obtained
for the CO2 emissions. The proposed model has a mean absolute error of 21 g/km while
it is around 45 g/km for COPERT. This represents respectively 12% and 25% of the mean
CO2 emissions for the recorded speed trajectories.

Figure 13. Comparison of errors between the proposed model and the COPERT approach.
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From a qualitative point of view, if we look at the traffic emissions on a map and
compare them with the reference emissions (Figure 14), it is possible to see that the proposed
models reproduce the true variability of NOx emissions well, as depicted by the reference,
while COPERT tends to remain close to the global average by preventing to clearly highlight
the critical areas in terms of emissions. Figure 15 illustrates a comparison of maps for
vehicle NOx emissions in a neighborhood of Marseilles on all road links. Both COPERT
and the proposed models have the same average NOx emissions. However, the proposed
model shows more sensitivity: the infrastructure impact on traffic emissions is better taken
into account than with the COPERT model.

Figure 14. Map of NOx emissions in Marseilles, France, and comparison of the estimate with the reference and COPERT.
Only road segments with sufficient measured driving data are displayed.

Figure 15. COPERT vs. proposed model. NOx emissions maps comparison in Marseilles, France. Colorbar color scale is
black at 630 mg/km. Above this value, the road-link is considered a high emitter. The black color saturation is used to
identify more easily critical road links.

Figure 16 shows the map of relative NOx emission difference between the microscopic
and macroscopic approach. Close values of microscopic and macroscopic emissions are
indicated by a blue color. A red color means that, on the considered road link, there is more
than 80% difference between the two approaches. On average, there is a 40% difference
between COPERT and the microscopic model, with 7% of the road links having more than
an 80% difference. Results show an increased accuracy of the estimated emissions at a
reduced scale. Subsequently, this model could be used to monitor the pollutant emissions
level and identify critical areas. Apart from the NOx emissions maps, the model can also
be used to generate CO2 and other pollutant emissions maps at a high spatial resolution.
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Figure 16. NOx emissions relative difference between the proposed model and COPERT.

The microscopic and macroscopic approaches show noticeable NOx emissions esti-
mation differences in road segments of different lengths. Figure 17 illustrates the NOx
emissions estimation error of both approaches as a function of this length. Those models
have been compared to the previously defined reference. For each distance bin, road
segments of different lengths have been grouped together in order to obtain at least 50 error
estimations. For segment lengths lower than 500 m, the microscopic emission error is
reduced by more than 50% in comparison to the macroscopic one. This represents 91% of
the road segments in the studied area, for which the mean length is around 55 m. For higher
distances, the NOx emission error is reduced, and both approaches converge towards the
same NOx emissions error for a segment length around 2700 m. In this case, the spatial
resolution is relatively low and the microscopic approach presents no contribution over the
macroscopic one.

Figure 17. Microscopic and macroscopic NOx estimation errors as a function of the road segment length.

4. Conclusions

In this work, a complete modeling framework to estimate road traffic microscopic pol-
lutant emissions from easily obtainable macroscopic road topology and traffic information
was proposed. The model was trained on a rich data-set of real-world driving speed pro-
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files, but it can be applied on any road network and is able to predict driving behavior and
pollutant emissions as a function of simple macroscopic features. The coupling between
the road-link-level driving behavior model and the microscopic vehicle emissions model is
able to provide high resolution (both in time and space) pollutant emissions’ estimations.
Validation results show that the estimation error is significantly reduced, by more than
50%, with respect to well-established macroscopic emissions models, such as COPERT.
Furthermore, as a key result, this study shows that the state-of-the-art macroscopic methods
to estimate transport-related pollutant emissions are fundamentally inaccurate for spatial
resolutions of the order of hundreds of meters, as it is the case in urban road networks.
Thus, the proposed methods aim to fill the precision gap for pollutant emissions estimation
on relatively small road segments, where the speed variability and the impact of traffic and
road infrastructure are more relevant. At the same time, estimation accuracy on longer road
segments is not degraded. Finally, the proposed modeling framework may also be used as
a more precise road-transport emissions source for atmospheric dispersion and air quality
models. Both high-resolution pollutant emissions and pollutants concentration could then
be used by cities to detect critical areas and/or infrastructure elements negatively affecting
local air quality.
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