Supporting information

Trapping AsPh₃ via reaction with NiS/Al₂O₃ in H₂ atmosphere: reaction mechanism and kinetics

Angélique Jallais,^a Michel Thomas,^a Antoine Hugon,^a Igor Bezverkhyy^{b*}

^a IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, 69360, Solaize, France

^b Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon Cedex, France

Figure S1 Evolution of concentration of AsPh₃ as a function of time during blanc tests in the presence of γ -Al₂O₃ (230°C, 23 bar H₂) for two different initial concentrations: 29.2 mmol.L⁻¹ (red) and 2.9 mmol.L⁻¹ (blue).

Figure S2 TEM image of NiS/-Al₂O₃ sample used in the work.

Figure S3 Concentration of AsPh₃ as a function of time during reaction with NiS/ γ -Al₂O₃ for different As/Ni initial ratios (230°C, 23 bar H₂). Dotted black lines are the linear fits of the initial parts of the curves. Color full lines are guides for the eyes.

Figure S4 Conversion of AsPh₃ (diamonds) and Ni (crosses) as a function of time for four successive injections of AsPh₃ during reaction with the same sample of NiS/ γ -Al₂O₃ (total As/Ni ratio = 1, 230°C, 23 bar H₂).

Figure S5 Evolution of the concentration of the reaction products in the liquid phase during reaction of AsPh₃ with NiS/ γ -Al₂O₃ (C₀(AsPh₃) = 5.7 mmol.L⁻¹, initial As/Ni ratio – 0.2, 230°C, 23 bar H₂).

Figure S6 Conversion profiles of AsPh₃ under different H₂ pressures ($C_0(AsPh_3) = 28.6 \text{ mmol.L}^{-1}$, As/Ni = 1, 230°C).