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Appendix A 

Upon dry impregnation, replacement of fluid inside the pore space (called capillary) by impregnation solution 

takes place through the action of capillary forces. Figure A. 1 shows a schematic picture of a cylindrical pore 

with radius Rpore in contact with the impregnation solution.  

 

Figure A. 1 - Capillary in contact with wetting fluid 

The evolution of the distance travelled by the liquid into the pore (z) as a function of time (t) depends on three 

different forces: capillary force, �⃗�𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦, friction force , �⃗�𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛   and gravity force, �⃗⃗�, which is negligible 

compared to the first ones [1]. 

The formation of bubbles that can occur in closed end pores was neglected (the gas phase is supposed to 

evacuate instantly from the pores). 

The following paragraphs explain how to obtain z(t) based on Washburn model. 

The linear momentum balance with respect to a control volume is given by the following equation [1]: 

(𝑆𝑢𝑚 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒)

= (𝑅𝑎𝑡𝑒 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑜𝑢𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒)

− (𝑅𝑎𝑡𝑒 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑖𝑛𝑡𝑜 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒)

+ (𝑅𝑎𝑡𝑒 𝑜𝑓𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒) 

Eq. A. 1 

 

Recalling the conservation of linear moment and Newton’s second law, Eq. A. 1 results in:  

∑ �⃗� =
𝑑(𝑚. �⃗�)

𝑑𝑡
 

Eq. A. 2 

Where,  

Σ�⃗� is the sum of forces acting on control volume,  



𝑚 corresponds to mass,  

𝑣 ⃗⃗⃗ ⃗ corresponds to velocity   

𝑡 stands for time.  

The evolution of the solution front is a result of capillary and friction forces Eq. A. 2 can be written as: 

𝑑(𝑚. �⃗�)

𝑑𝑡
= �⃗�𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 + �⃗�𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛  

Eq. A. 3 

Capillary force applied in the cross section (S) of the cylindrical pore is based on Young-Laplace equation 

(∆𝑃𝐿𝑎𝑝𝑙𝑎𝑐𝑒) and is defined in Eq. A. 4. 

𝐹𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 = ∆𝑃𝐿𝑎𝑝𝑙𝑎𝑐𝑒 ∙ 𝑆 =
2 ∙ 𝛾 ∙ 𝑐𝑜𝑠𝜃

𝑅𝑝𝑜𝑟𝑒

∙  𝜋 ∙ 𝑅𝑝𝑜𝑟𝑒
2  ↔ Eq. A. 4 

𝐹𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 = 2 ∙ 𝜋 ∙ 𝑅𝑝𝑜𝑟𝑒 ∙ 𝛾 ∙ 𝑐𝑜𝑠𝜃 Eq. A. 5 

Where,  

𝑅𝑝𝑜𝑟𝑒 stands for the pore radius,  

𝛾 is the interfacial tension, 

𝜃 is the wetting angle of the wetting fluid on the surface of the capillary.  

To define the friction force, a linear momentum balance within the control volume schematized in Figure A. 2, 

which represents the section of a cylindrical tube of radius R and length L is required. The following 

assumptions are adopted [51]: 

 Incompressible, continuous, Newtonian and viscous fluid flowing at steady state within a 

cylindrical tube  

 Fully developed fluid, which means that velocity profile does not change along the flow direction 

(in this case, z)  

 

Figure A. 2 - Control volume for a flow within a cylindrical tube of radius R [51] 

The momentum balance equation is based on Eq. A. 1. Since the velocity profile does not change along z 

direction, the resulting force acting on the system is zero. This resulting force is composed of: 

 Viscous friction forces (related with shear stress tensor τ), due to radial motion of momentum at a 

molecular scale 

r r+dr t

t+dt

z

P1 P2
v

𝑅𝑝𝑜𝑟𝑒



 Pressure forces (P) exerted at the extremities  

 Gravity force, which is negligible compared to the first ones [51] 

Additionally, the accumulation term is also zero.  

Therefore, the linear momentum balance with respect to the control volume schematized in Figure A. 2 is given 

in Eq. A. 6. 

(𝑃1 − 𝑃2) ∙ 2 ∙ 𝜋 ∙ 𝑟 ∙ 𝑑𝑟 + 2 ∙ 𝜋 ∙ 𝑟 ∙ 𝑧 ∙ 𝜏 − 2 ∙ 𝜋 ∙ (𝑟 + 𝑑𝑟) ∙ 𝑧 ∙ (𝜏 + 𝑑𝜏) = 0 Eq. A. 6 

With, 

𝜏 + 𝑑𝜏 = 𝜏 +
𝑑𝜏

𝑑𝑟
𝑑𝑟 Eq. A. 7 

Rearranging Eq. A. 6 the following relation (Eq. A. 8) is obtained, where ∆𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑃1 − 𝑃2: 

𝑑(𝑟 ∙ 𝜏) =
∆𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∙ 𝑟 ∙ 𝑑𝑟

𝐿
 Eq. A. 8 

Where, 

𝜏 =
∆𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∙ 𝑟

2𝐿
+

𝐶𝑡𝑒

𝑟
 Eq. A. 9 

The first boundary condition is given by:  

𝑟 = 0: 𝜏 ≠ ∞  

Thus, shear stress is defined in the following equation. 

𝜏 =
∆𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∙ 𝑟

2𝐿
 Eq. A. 10 

This relation is valid for all viscous fluids in laminar flow in a cylindrical tube. As one of the hypothesis stated is 

that the fluid is a Newtonian one, the shear stress is given by: 

𝜏 = −𝜇 ∙
𝑑𝑣

𝑑𝑟
 Eq. A. 11 

Where,  

𝜇 is the shear viscosity of the fluid  

𝑑𝑣 𝑑𝑟⁄  is the velocity gradient that corresponds to the deformation rate of a fluid element. 

Combining Eq. A. 10 and Eq. A. 11 and integrating between radius, r and pore radius, Rpore: 

∫ 𝑑𝑣
𝑣𝑤𝑎𝑙𝑙

𝑣𝑟

= ∫ −
𝑅𝑝𝑜𝑟𝑒

𝑟

∆𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∙ 𝑟 ∙ 𝑑𝑟

2 ∙ 𝜇 ∙ 𝑧
 Eq. A. 12 



To solve integral given by Eq. A. 12, a second boundary condition is necessary.  

𝑟 = 𝑅𝑝𝑜𝑟𝑒: 𝑣 = 0 

Therefore, Eq. A. 12 gives: 

𝑣(𝑟) =
∆𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

4 ∙ 𝜇 ∙ 𝑧
∙ (𝑟2 − 𝑅𝑝𝑜𝑟𝑒

2 ) Eq. A. 13 

The average velocity is given by: 

�̅� =
∫ ∫ 𝑣

𝑅

0
(𝑟). 𝑟𝑑𝑟𝑑𝜃

2𝜋

0

𝜋𝑅2
 Eq. A. 14 

Hence, the average velocity results in Eq. A. 14, which corresponds to Hagen-Poiseuille equation that relates the 

average flow velocity with the pressure drop due to friction.  

�̅� =
∆𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∙ 𝑅𝑝𝑜𝑟𝑒

2

8 ∙ 𝜇 ∙ 𝑧
 Eq. A. 15 

Finally, friction force (Ffriction) applied in the cross section (S) of the cylindrical pore is defined in Eq. A. 16: 

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = ∆𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∙ 𝑆 
𝐴

⇔  

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 8 ∙ 𝜋 ∙ 𝜇 ∙ 𝑧. �̅� Eq. A. 16 

 

The friction force is more important as velocity increases. It is also proportional to the length z of the tube. Eq. 

A. 17 is then used to calculate the capillary impregnation dynamics, in which �̅� represents the penetration rate, 

which is given by the following equation: 

�̅� =
𝑑𝑧

𝑑𝑡
 Eq. A. 17 

 

Washburn model [2] is used to calculate the penetration rate. This model is valid for low Reynolds number 

(𝑅𝑒 < 1) and viscous fluid. It is also assumed that the flow of the impregnation solution in the pore is 

characterized by Poiseuille steady stated. Therefore, the small inertia effects are neglected. According to 

Washburn model, becomes: 

𝑑(𝑚. �⃗�)

𝑑𝑡
= �⃗�𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 + �⃗�𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 0 

Eq. A. 18 

Combining Eq. A. 5, Eq. A. 16 and Eq. A. 18, one obtains: 

2 ∙ 𝜋 ∙ 𝑅𝑝𝑜𝑟𝑒 ∙ 𝛾 ∙ 𝑐𝑜𝑠𝜃 − 8 ∙ 𝜋 ∙ 𝜇 ∙ 𝑧. �̅� = 0 Eq. A. 19 

Combining Eq. A. 17 and Eq. A. 19, it results: 

𝑑𝑧2

𝑑𝑡
=

𝑅𝑝𝑜𝑟𝑒 ∙ 𝛾 ∙ 𝑐𝑜𝑠𝜃

2 ∙ 𝜇
 Eq. A. 20 

 

Assuming that 𝑧(0) = 0, the distance z that the impregnation solution travels into the pore is given by: 



𝑧 = √
𝑅𝑝𝑜𝑟𝑒 ∙ 𝛾 ∙ 𝑐𝑜𝑠𝜃

2 ∙ 𝜇
∙ 𝑡 Eq. A. 21 
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Appendix B 

In order to validate the metal distribution profiles observed by 
1
H MRI, the same impregnated samples were 

characterized by EPMA technique. To this end, the radial intensity profiles of MRI images and the average metal 

concentration profiles obtained by EPMA were compared. The radial intensity profiles as a function of the 

distance from the edge of the support were obtained through image processing as described in [3]. These profiles 

were then corrected by a constant factor in order to take into account the relaxation times dependence as well as 

by a scaling factor applied by the MRI software in each image, as described in the following paragraphs.   

First, the software ImageJ  is used to export MRI image data into 16bit.tiff files. From these data, an IFPEN 

software for image processing [4] is used to calculate on each image the radial intensity profiles as a function of 

the distance from the edge of the support. For each distance, a minimum, a maximum and an average intensity 

are computed, and provide associated profiles. In this study, the measured intensity profiles are referred as the 

apparent intensity (I) profiles as they do not take into account neither relaxation times dependence nor 

normalization carried out by Paravision software.  

These apparent intensity profiles (I) are corrected with K factor (see Eq. B. 1 [5]) in order to take into account 

the relaxation times dependence.  

I = I0 𝐾 Eq. B. 1 

In Eq. B. 1, I0 is the signal that would be measured immediately following a 90° pulse and K is defined 

according to Eq. B. 2: 

K = e−tp 𝑇2
∗⁄ 𝐺(

𝑇𝑅

𝑇1

, 𝛼) Eq. B. 2 

Where tp corresponds to the encoding time, T2
*
 corresponds to the transverse relaxation and 𝐺(𝑇𝑅 𝑇1⁄ , 𝛼) 

describes the signal attenuation from the Ernst-angle excitation pulse, 𝛼 (see Eq. B. 3). 

𝐺 =
1 − E

1 − 𝐸2
sin(α) Eq. B. 3 



Where, 

cos(α) = 𝐸 = 𝑒−𝑇𝑅/𝑇1 Eq. B. 4 

In Eq. B. 4, TR corresponds to the repetition time and T1 corresponds to the longitudinal relaxation. 

Additionally, the apparent intensity profiles (I) are also corrected by the scaling factor of each image applied by 

Paravision software (Visu Core Data Slope parameter). The mathematical equation to obtain average radial 

intensity profiles (I0) is shown in Eq. B. 5.  

𝐼0 =
𝐼 × 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟

𝐾
 Eq. B. 5 

The comparison between average concentration profiles obtained by EPMA and the corrected radial intensity 

profiles (I0) obtained by MRI is shown in Figure B. 1. The shaded area delimits the maximum and minimum 

radial intensity profiles. Both techniques show the presence of nickel ions in the same positions of the catalyst 

pellet regarding the spatial resolution of each technique. Slight differences may be observed due to the signal to 

noise ratio of MRI images, since the sensitivity of MRI technique is lower than EPMA. Yet, no quantitative 

information about the evolution of the concentration profile of nickel ions inside the pellet can be obtained 

through this approach.  

 

Figure B. 1 - Comparison between average metal concentration profiles by EPMA (spatial resolution of 50 µm) and radial 

intensity profiles I0 obtained through image processing of MRI images (spatial resolution resulting from image processing is 

increased to 14µm/pixel by means of high quality spline interpolation [6]). Both analyses were carried out in the same γ-

alumina pellet at equilibrium state after dry impregnation corresponding to approximately (a) 12h in the case of with 0.05M 

[Ni2+] solution and (b) 30 min in the case of 0.2M [Ni2+] solution. Shaded area delimits the maximum and minimum radial 

intensity profiles (I0). 



[3] L. Catita, A.-A. Quoineaud, D. Espinat, C. Pichon, O. Delpoux, Impact of Citric Acid on the Impregnation of 

CoMoP/γ-Al2O3 Catalysts: Time and Spatially Resolved MRI and Raman Imaging Study, Topics in Catalysis 

(2018) 1474–1484. 

 [4] M. Moreaud, F. Cokelaer, Flowing Bilateral Filter: Definition and Implementations, Image Anal Stereol 34 

(2015) 101–110. 

[5] S. Gravina, D.G. Cory, Sensitivity and Resolution of Constant-Time Imaging, Journal of Magnetic 

Resonance, Series B 104 (1994) 53–61. 

[6] P. Thévenaz, T. Blu, M. Unser, Interpolation revisited, IEEE Transactions on Medical Imaging 19 (2000) 

739–758. 

Appendix C 

 

Figure C. 1 - Evolution of advancing front of water calculated from Erreur ! Source du renvoi introuvable.) as a function 

of time: z corresponds to the distance travelled by liquid into the pore (m) and Rp to the porous radius (m) 



Appendix D 

 

Figure D.1 - Influence of the parameters (a) 𝒒𝒕 and (b) 𝑲𝒂𝒅𝒔 on the objective function (see Erreur ! Source du renvoi 

introuvable.) 

 


