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Abstract. In this paper, some applications of statistical physics (SP) concepts and techniques in applied
geosciences are reviewed. The domain includes hydrology, oil and gas industry, nuclear or CO2 waste
geological disposal, massive energy storage, heat recovery from geothermal formations and many other
applications. Several scales are considered: we start from applications of SP at the molecular scale to
understand the effect of extreme confinements concerning the fluid transport in nanopores in clay rocks.
The paper ends with coarse graining techniques that are employed to build operational models relevant at
the practical scale of several kilometers, including strongly fractured geological environments. Perspectives
are proposed regarding some issues about the practical use of these often over-parameterized models in
connection to random matrix and graph theories and the associated quenched disorder problems and “big
data” issues.

Résumé. Dans cette note, nous examinons quelques applications des concepts et outils de la physique
statistique (PS) aux géosciences appliquées. Les applications vont de l’hydrologie au stockage de déchets
nucléaires ou de CO2, au stockage massif d’énergie, en passant par l’industrie pétrolière ou gazière, et enfin
les applications géothermiques. Vu la complexité intrinsèque des applications de terrain, les ingénieurs
s’attachent en général à optimiser un critère économique, tout en veillant à maintenir la meilleure sécurité
et en minimisant l’empreinte environnementale des projets. Il s’agit donc d’employer les connaissances les
plus actuelles sur les transferts en milieu poreux. On s’intéresse à différentes échelles, des applications de la
PS pour formuler les lois de transport dans des milieux extrêmement confinés tels des nanopores constituant
la porosité des argiles. Ensuite, on présente les applications de la PS pour modéliser les écoulements à des
échelles kilométriques intéressant les ingénieurs en charge d’application. On est dans une situation typique
de désordre gelé, hors d’équilibre où les temps de relaxation peuvent être très longs, de l’ordre de plusieurs
siècles. Des perspectives sont proposées pour utiliser des outils issus de la théorie des matrices aléatoires afin
de faciliter l’utilisation pratique en “aide à la décision” de ces modèles bien souvent sur-paramétrés par des
données elles-mêmes incertaines.

Keywords. Statistical physics, Applied geosciences, Porous media, Disorder, Nanopores, Upscaling,
Quenched disorder.
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1. Introduction

In many applications of geosciences, the basic concern is to inject, to recover or to store some
fluid, waste or even thermal energy in subsurface formations at good economical conditions,
while minimizing overall environmental risks. As all these transport processes occur in the
porosity of natural rocks, studying flow in porous media at several scales is a major fundamental
issue. In order to do so, a concise macroscopic description of flow in porous media encompassing
several scales without knowing the exact microstructure of the pore space must be obtained. That
program is close in spirit to the program of SP, as it was acknowledged long ago by [1–4].

The paper will be focused on several applications of SP methods capable to treat subtle
interface effects at the nanometer-scale, as well as understanding the effect of the quenched
disorder of these porous rocks at large scales. It is well known that subsurface appears to
be heterogeneous from nm to km scales [5]. That feature can lead engineers to build over
parameterized numerical models that are used to help decision making on the field [6, 7]: well
implantation, injection or recovery strategy, uncertainty management etc. . . Practical questions
of major societal importance may be asked to anticipate the dispersion of some pollutant in
an aquifer. How organizing a geothermal plant avoiding as far as possible induced seismicity
having low social acceptance [8]? More long-term issues can be addressed: Global climate change
may imply strong dryness and/or floods: how karstic formations will react to that change of
solicitations is a question of major societal interest [9]. That can have dramatic consequences
over water supply, and could imply catastrophic hazards. In that paper, we will illustrate some SP
concepts that help to provide some methodology to answer such questions. These concepts arise
essentially from the area of phase transitions and disordered systems, e.g. percolation theory.
As the disorder is quenched, concepts and methods from spin glass theory may be useful. Self
organization theories may also provide useful tools, especially for describing strongly non linear
flows with retroaction between the flow and local rock transport properties. Finally, random
matrix methods and random graphs are likely to provide useful concepts and results.

The present goal is to provide some answers to the following questions:

(i) is there some change of the analytical form of Darcy equation and of other transport
equations if confinement effects due to small pore size arise? Are molecular simulations
able to provide quantitative results, by correcting systematic bias due to the finite size of
the simulation domain?

(ii) is there some change of the analytical form of the coarse grained Darcy equation and
other transport equations as the support scale is changing?

(iii) Is there some self-averaging property and convergence to an effective homogeneous
behavior of the system, and do we control this asymptotic convergence?

(iv) How to describe the large scale tracer advection/dispersion/diffusion in the associated
velocity field, and more generally the mixing processes occuring in these random velocity
fields?

(v) In the case of multiphase transport equations leading to hydrodynamic instabilitites such
as Saffman–Taylor [10] (viscous fingering) or gravity driven instabilities, how does the
development of the instabilities interact with the local conductivity heterogeneities?

(vi) A related issue concerns the strongly non-linear flow (such as non newtonian fluids, acid-
ification leading to local changes of the conductivity, rock fracturation processes), can we
observe some emergence of large scales patterns (fingers, wormholes) corresponding to
some self-organised processes?

We discard in that paper any discussion about the application of SP to the evaluation of
thermodynamics of bulk fluids required by applied geosciences as in many other applied science
area. In addition, we do not discuss the increasingly popular Lattice-Boltzmann method that
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originates from lattice gas automata (see [11] for the SP background of these methods) that is
used to upscale µCT scan images of rocks from pore to Darcy scale. A recent review may be found
in [12] and references therein. We will not discuss in depth the last item (vi), rich of essential SP
issues.

The paper is organised as follows: in next Section 1.1, we present some applications of
molecular dynamics Monte Carlo studies that permit to get quantitative descriptions of flow
in nanopores, even if important finite size bias must be accounted for properly. In a second
section, we address the application of SP concepts to understand the form of averaged Darcy
and transport equations in porous media characterized by random conductivity distributions
Section 1.2. Averaging flow in fractured rocks that is an extreme case is described in Section 1.3
introducing percolation theory, dual porosity models that allow to describe these systems having
highly contrasted relaxation times. Continuous time random walk techniques are presented, that
yield very efficient computational techniques. In Section 1.4, we show how these considerations
may be embedded using general random graphs and/or random matrix framework. Then some
applications of random walks to tracer transport are given in Section 1.5. Then we give some
elements regarding the influence of the disorder on two phase flows (Section 1.6) in which the
disorder couples with the viscous fingering, yielding quite interesting ideas about the up-scaling
of non-linear transport equations.

1.1. Molecular dynamics at the pore scale

Since the works of Darcy [13], developing a theory of flow through porous media from first princi-
ples was first viewed as a mathematical issue that can be treated by means of homogenization or
volume averaging theories [14–17]. Such approaches are correct if the pore-scale Navier–Stokes
description may be assumed on the bulk fluid. This description must be completed by the usual
no slip boundary conditions at the surface of the pores, yielding a well posed problem. This de-
scription relies on the assumption that pore sizes are larger than a typical mean free path if gas
transport is considered, or greater than several molecular diameters in the case of liquids. In that
case, surface effects (with the notable exception of capillarity effects) may be neglected. In or-
der to test the validity of this set of assumptions, a pioneering study was that of Koplik [18] in
which Molecular dynamics (MD) techniques were reported to verify the validity of Navier Stokes
description in a tiny pore. It was shown that the parabolic velocity profile as well as the Poiseuille
relation relating the mean flow-rate to pressure drop remains quit robust, even for pore sizes of
few molecular diameters. The longly debated question of the contact line motion between the
rock, oil and water can be elucidated using a combination of MD and continuum methods [19].
The robustness of the usual non-slip boundary condition which combined with Stokes equation
gives rise to Darcy’s law [20, 21] is more questionable. Experimental capacities, as well as im-
provements in SP description of non-equilibirum phenomena and continuous increasing power
of computers, led to the so-called nanofluidics [22]. In present times, MD may be used to get a
better understanding of moving contact lines too in realistic systems. The associated theoretical
tools provided by SP allow then to propose rigorous coarse-graining procedures providing macro-
scopic law of interest for geoscientists [20, 21]. Note that a simplified version of MD gives rise to
Lattice Boltzmann simulation algorithm in which molecular motions are over simplified, to give a
fast and faithful description of the large scale flow. That allows to estimate directly quantitatively
the permeability of rock samples using micro-scanner µCT images of the pore space [12].

Thanks to continuous increasing computing power, and to improvements in the characteriza-
tion of fluid and rocks, these MD techniques are presently adapted to model dynamics of com-
plex fluids confined between realistic mineral surfaces such as clays, the structure of which is
depicted in Figure 1.
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542 Benoît Noetinger

Figure 1. Sketch of molecular dynamics simulations of transport between clay layers. The
molecular structure of various clays is accounted for, as well as molecular motions under
an imposed pressure gradient. Reprinted (adapted) with permission from [23]. Copyright
2020 American Chemical Society.

Figure 2. Diffusion coefficient of molecules in a confined pore of thickness H . On the
right, the plain curve represents the result of the hydrodynamic calculation accounting
for the systematic bias due to the infinite set of images of the unit cell. The dots are the
set of values obtained by MD simulations for various H , showing the excellent agreement
between simulation and theory. Reprinted (adapted) with permission from [23]. Copyright
2020 American Chemical Society.

Such studies were at the origin of a better understanding of clay swelling phenomena [24, 25].
Density functional theories coupled with homogenization methods [26, 27] give quantitative
descriptions of these complex natural media. Tiny electrostatic effects are amplified as soon
as pore size may be compared with molecular dimensions, amplifying surface effects. These
swelling effects are of primary importance to understand whether cap rock integrity is preserved
in waste disposals or in CO2 geological storage. If mechanical stresses due to swelling induce
fracturation, the overall societal interest of the storage may be questionable. These successes
motivated many SP studies to describe fluid motion at the nanoscale [20,22,25,28–30]. The main
goal is to be able to quantify the net effect of slippage and of electrostatic interactions at the
pore boundaries, that may be neglected for usual pore sizes. But due to computing limitations,
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these MD simulations are carried out on rather small unit cells usually supplemented by periodic
boundary conditions. The convergence to large scale properties may be quite slow, inducing
systematic errors. Analytical expressions are proposed to correct these systematic errors, both
in the bulk or in nanopores, that is illustrated in Figure 2 [23, 31].

To conclude that section, SP tools such as MD or concepts (fluctuation theory, Kubo relations,
density functional), coupled with continuous improvements of the knowledge of molecular fluid
and rock properties are leading to rich applications that permit quantitative and more and more
predictive descriptions [32]. This fine understanding of flow in nanopores and the associated
changes in thermodynamical properties due to confinement have major consequences in ap-
plied geosciences, from nuclear waste disposal, CO2 [33–35], to osmotic energy conversion using
fresh and sea-water [36].

1.2. From Darcy to large scale, up-scaling permeability and transport, anomalous disper-
sion

We jump from nanopore scale to more macroscopic aquifer or reservoir kilometric scales to
highlight applications of SP of disordered systems to geosciences, even if SP concepts and
methods such as percolation theory were usefully employed at the scale of the cores (some cm). In
Figure 3, we sketch the overall scales of reservoir (or aquifer) numerical simulations by depicting
the characteristic sizes that enter in any aquifer description in general followed by a numerical
simulation because very few analytical solutions are available.

Most applications share the following issue: solving a diffusion-like equation that reads:

φct
∂p(r, t )

∂t
=∇· (k(r)∇p(r, t ))+ f (r). (1)

Here, the parameters k(r), p(r, t ) and f (r) denote respectively the local conductivity, time-
dependent potential and a source term. Dirichlet or Neumann Boundary conditions are known
at the boundary of the domain. All these quantities depend on position vector r and time t . In
most cases, the quenched positive k(r), is represented as being a random function of position.
It is characterized by some mean-value and fluctuations that are measured by the geologist, by
means of the so-called geostatistical approach, originaly founded by Matheron using statistical
concepts [37–39]. Log-normal distributions (the logarithm of the conductivity is a Gaussian dis-
tributed variable) were observed at the core scale in well defined geological environments [40].
Note that in most cases, the amount of data is not sufficient to provide the form of the proba-
bility distribution function (pdf) of k, and high order correlation functions are impossible to de-
termine. As a consequence, even the input stochastic model is questionable. This explains the
quasi infinite set of approaches that exist to generate random fields compatible with geological
observations, the textbook [41] present the most popular approaches and methods.

The basic issue is to be able to quantify the net effect of heterogeneities about the behaviour
of the aquifer, as well as the related uncertainties. In that context, such issue were investigated
by hydrogeologists [40, 42–44], mathematicians [45, 46] and physicists, among other [47–54]. So
the basic issue is to transfer the small scale spatial fluctuations to a large scale support that
encompasses the low spatial frequency components of the fields of interest. The calculations
are carried out in practice using some numerical model in which the Laplace equation is solved
using a grid of resolution L generally considerably much coarser than the input fine geological
grid ∆ (notations in Figure 3), because the available computing power leads also to continuous
improvement of local geological 3D representations. This implies obtaining a coarse grained
Laplace equation with a renormalized conductivity map accounting as best as possible to the
local subgrid variations. This is a classical issue addressed long ago by Maxwell, Landau and
Lifzhitz among others, [40, 55–57]. There is a great amount of literature using SP concepts
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such as percolation theory, real-space renormalization techniques, field theoretical methods
including diagrams summation techniques [41,47–49,53,54,58–61]. A difficulty is to merge these
sophisticated techniques with the pragmatical needs of field engineers solving real time issues.
One can average the solution of (1) to get the average head (or pressure) 〈p(r, t )〉 in which the
ensemble-average 〈· · · 〉 is to be taken on the quenched disorder of the conductivity field k(r).

Once the velocity field is given, advection dispersion diffusion equation may be solved, e.g.
to anticipate the motion of some pollutant, or heat recovery. Modelling multiphase flow leads to
solve non linear equations involving the repeated solving of Laplace equation (1), as described in
Section 1.6.

1.2.1. Averaging Darcy’s law

It can be shown that under quite general hypothesis (statistical stationarity and convergence
conditions) that the average potential 〈p(r, t )〉 is driven by an effective equation that reads [61]:

φct
∂〈p(r, t )〉

∂t
=

∫ t

−∞
dt ′

∫
dD r′∇· (Σ(r− r′, t − t ′)∇p(r′, t ′))+ f (r). (2)

The average local flux is a spatially weighted time convolution of the average potential gradient
around the considered time and location. It means that the underlying disorder couples different
points. That is reminiscent of the “overlap” that arises in quenched average that are provided by
replica methods in spin glasses theories, that are the archetype of quenched disorder approaches
in SP [62]. The kernel Σ(r, t ) may be obtained as a result of a summation of 1P irreducible irre-
ducible diagrams of a perturbation expansion of the solution of (1), in a power series of the con-
ductivity fluctuations, a so-called self-energy [61]. The diagram resummation techniques famil-
iar to SP allows to build in a systematic manner from the perturbation expansion of the aver-
age solution 〈p(r, t )〉 the equation driving 〈p(r, t )〉. As the Green’s function of Laplace operator
is long-ranged, it is far more practical to manipulate an effective equation. The kernel Σ(r, t ) in-
volves a rather complex series of integrals involving the heat kernel and correlation functions of
the conductivity of higher and higher order. In the generic case, the spatial range of Σ(r, t ) is con-
trolled by the correlation length of the conductivity fluctuations, and it time range is a typical dif-
fusion time over this correlation scale. This structure explains the self-averaging character of the
Laplace equation: low frequency components of the potential on one single large realization of
the domain behaves like a Monte Carlo average of the potential over many independent realiza-
tions of the disorder [46, 61]. This explains why pumping tests (corresponding to point-wise so-
lutions) “homogenize” by themselves It may be shown that for an infinite domain, at long times,
the average potential is driven by the following equation:

φct
∂p(r, t )

∂t
=∇· (Keff∇p(r, t ))+ f (r). (3)

The parameter Keff-given formally by Keff =
∫ +∞

0 dt
∫

dD rΣ(r, t ) is called the effective conduc-
tivity. It corresponds to the “natural” large scale relation between the mean flux and the large
scale pressure gradient that can be provided by homogenization theories by means of the so-
called “auxiliary problem” to be solved numerically in x, y and z directions [46] and references
therein, as it is illustrated Figure 4. It can be shown that at long times, for any realisation of the
disorder, the behavior of the system will converge to this equation: this is another manifestation
of the self averaging property [46].

Many investigators proposed expressions relating Keff to the underlying disorder [64]. For 1 di-
mension, an elementary analytical calculation provides the harmonic average Keff = 〈k−1〉−1. For
D = 2, a nice duality argument [14] shows that Keff = exp〈Log(k)〉 if the conductivity distribution
is log-normal. No simple general analytical expression exists in the general case for D ≥ 3, even if
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Figure 3. Geometry of the problem on a simplified 2D section of an aquifer or reservoir
model domain ω. A working coarse grid made of blocks Ω of typical size L is super-
imposed to a geological fine grid of typical size ∆ in order to solve the mass conservation
equations of interest. The intermediate scale λ serves in posterior treatments for checking
the overall consistency of the model. Reprinted (adapted) from Ref. [63]. Copyright 2020
with permission of Elsevier.

Figure 4. Up-scaling geometry. The coarse block of size L have a detailed conductivity map
given by the geologist. It is up-scaled by solving a steady-state quasi Laplace equation to
determine an effective conductivity in the mean flow direction that will serve as input of
the simulator at coarse scales. Changing the direction of the mean driving pressure gradient
allows to determine a conductivity tensor. The boundary conditions are usually no-flux
parallel to the imposed mean flow, or periodic.

a great deal of research was devoted to develop such analytical expressions using additional hy-
pothesis. SP techniques such as field theoretical methods [47,48,53,60,63] were employed to find
some robust approximations. Many authors attempted to justify the so called Landau–Lifschitz–
Matheron (LLM) [14, 56] formula that reads:

Keff ≃ 〈k(1− 2
D )〉

1
(1− 2

D ) . (4)

C. R. Physique — 2020, 21, no 6, 539-560
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Figure 5. Monte Carlo study of the evolution of the effective conductivity pdf with coarsen-
ing scale λ. The overall flow is solved using several realizations of the input log conductivity
map (left). The associated local dissipation map (center) allows to evaluate a distribution
of coarsened effective conductivities averaged at scale λ [63]. The resulting pdf’s are plot-
ted (right). The self averaging (homogenization) is highlighted by the sharply peaked dis-
tribution around the geometric average for λ = 128 units, the stability across scales of the
Gaussian distribution may be observed too. Reprinted (adapted) from Ref. [63]. Copyright
2020 with permission of Elsevier.

This formula is found to be exact in 1 and 2D and up to fourth-order in the log-conductivity
variance [65]. It remains an approximation in 3D or more [43, 54, 66], moreover, it is quite robust
when compared with numerical tests in the case of log normally distributed conductivities [49,
63, 67]. Series resumation techniques [48], renormalization group (RG) arguments [48–50] give
some clues in favor of this robustness. The author still thinks that there is some hidden powerful
theoretical framework to be developed justifying its robustness and giving some sense to this
formula. In 2 dimensions, numerically the log normal distribution appears to be stable under the
up-scaling transformation, Figure 5 from [63], analogous to the central limit theorem. That may
be related to the duality argument of Matheron [14] that justifies the geometric mean in 2D. In
the 3D case, studying the emergence of a “stable” conductivity distribution invariant on the up
scaling (RG) transformation would also be useful for studying strongly correlated systems having
conductivity correlations decaying as a power law with the lag distance. A related question is to
give some sense to the so-called uncorrelated case which may only be valid at a given observation
scale that plays the role of the fixed scale while letting the ultraviolet cut off going at infinity,
but keeping observed quantities fixed to their nominal values [68]. This may be illustrated on
Figure 5 below: in the practical side, in most cases, at present times, using a numerical technique
is sufficient. In case of extremely heterogeneous media (that can correspond to bimodal media)
at percolation threshold, the well-known percolation transition may occur [58, 59, 63, 69, 70]. The
percolation second order transition may be observed on Figure 6.

1.3. Fractured rocks

1.3.1. Upscaling the fracture network

Rocks are almost always fractured, and it may be expected that these fractures control the
flow. In this paper, self-organization effects arising from geomechanics (a SP issue in itself!)
controlling the overall organization of fracture networks will be ignored [71]. Understanding
such flows is essential in many applications, such as geothermal applications, water resources
management and oil and gas recovery. That explains the many ad-hoc rather empirical models
that were developed, in particular the popular double porosity model that represent the rock and
the fractures as two superimposed continua [72, 73].

C. R. Physique — 2020, 21, no 6, 539-560
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Figure 6. Monte Carlo study of the evolution of the effective conductivity pdf with coars-
ening scale λ. The overall flow is solved using several realizations of the input bimodal
map (left). The associated local dissipation map (center) allows to evaluate a distribution of
coarsened effective conductivities averaged at scale λ [63]. The resulting pdf’s are plotted
(right). As the scale is increasing, the two peaks merge, the bimodal distribution disappears
and becomes a (log-normal like?) distribution. The convergence to this asymptotic distri-
bution shows critical slowing-down when the facies proportions are close to percolation
threshold. In the infinite contrast case, scaling-laws are recovered [70]. Reprinted (adapted)
from Ref. [63]. Copyright 2020 with permission of Elsevier.

In the case of fractured rocks, the heterogeneity is extreme: conductivity may vary by several
orders of magnitude between the matrix (that stores the quantity of interest, fluids, energy etc. . . )
and the fractures of almost vanishing measure which carry most of the flow to the outlet. These
fractures may have random orientations, power-law distributions of lengths an apertures [74–76]
leading to quite complex parameter space and phase diagrams. In that situation, continuous
perturbation theories break-down, and other methods must be employed. Percolation theory
approaches focused on the role of the fracture network connectivity [58,59,70,74,76–79] provide
an excellent framework for describing these systems controlled by connectivity effects, at least if
the system is close to the percolation threshold.

Fracture networks can be quite naturally represented as a random resistor network which cor-
responding graph shares vertices that represent the fracture intersections and edges representing
the connection (fractures) between these intersections. Although the mapping is straightforward
in 2D [66, 80], it is far more complex to derive it rigorously in the 3D case considering fractures
that are 2 dimensional objects [81, 82] embedded in the usual 3D space. The resulting random
resistor network corresponds to a low order approximation that can be improved systematically.
This random resistor network may be associated to a weighted Random graph. The associated
Laplacian matrix summarizes the hydraulic connections between fractures. Random graphs and
random matrices theoretical techniques could provide a useful framework [83–93].

1.3.2. Coupling the fracture network with the matrix, beyond the dual porosity model

Coupling the fracture network with the matrix characterized by larger relaxation times is
generally done using the classical dual porosity model of Barenblatt et al. [72]. This model allows
to account for the smallest relaxation time of the matrix that is related to the eigenvalues of the
Laplace operator acting on the matrix domain with Dirichlet boundary conditions [94]. More
refined models attempted to improve that description by adding several relaxation times [94–96].
Continuous time random walk (CTRW) techniques were proposed for fast computing of the
relaxation of the matrix, thanks to a direct relation between the first exit time distribution of a
particle undergoing Brownian motion in the matrix, and the matrix relaxation function directly
related to the residence time distribution in the matrix [82, 97, 98]. The same method allows to
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Figure 7. A percolation network p = 0.57, red = isolated clusters, black = backbone, green
= dead-ends. The zoom on the right shows the underlying matrix in which CTRW are
performed, in white. Reprinted (adapted) from Ref. [99]. Copyright 2020 with permission
of Springer–Nature.

Figure 8. Exchange coefficient computed for the percolation network p = 0.57. Reprinted
(adapted) from Ref. [99]. Copyright 2020 with permission of Springer–Nature.

compute the effective conductivity using Einstein relation for the mean square displacement of
the diffusing particle inside the fracture domain. Such a method was implemented on fracture
networks generated as 2D bond percolation Figure 7 [99].

In Figure 8, we plotted the dependence p − pc of the mean residence time 〈t〉 in the matrix
(of diffusivity one unit) with respect to the proportion of active fractures. The different set of
points correspond to different mean residence times 〈texit〉 inside the matrix that depend on the
fracture subnetwork that was kept, i.e., all the fractures including non-relevant isolated clusters,
or only the percolation backbone without dead ends. Intermediate curves correspond to different
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treatments of the remaining clusters. One can note that keeping the whole set of fractures (red
dots) (Figure 8) does not lead to any critical divergence of the mean residence times close to
pc . Further studies must be carried out to get a better characterization of the associated critical
exponents. It can be remarked that these mean residence time that can have different values
may represent relaxation associated to different transport models (pure diffusion in the matrix,
diffusion in the fractures, or advection diffusion in the fractures). In practice, it means that the
coupling coefficient determined by pressure tests (pure diffusion) on a given fractured reservoir
may not be directly applicable to geothermal applications (advection dispersion in the fractures,
heat diffusion in the matrix), that concerns the fracture network backbone.

1.4. Up-scaling, graph and random matrix theory

Fracture networks appear naturally as random graphs that provide Laplacian matrices In 2D
cases, in which fractures may be viewed as 1D tubes, solving the dominant flow in the fracture
network is stricly analogous to determine currents in a random resistor network, the nodes of
which being the intersections between fractures [80]. It can be shown that such a construction
can be carried out in 3D, even if the intersections between fractures are segments [81,82]. So, one
is led to solve large linear systems of equation that reads

∀i
∑

j∈〈i 〉
Ti j (P j −Pi ) = Qi (5)∑

i
Pi = 0. (6)

The source terms Qi are such that
∑

i Q j = 0. The set of labels 〈i 〉 denotes the set of vertices con-
nected to vertex i by one edge. Note that it is also the case for discretized equations correspond-
ing to Darcy flow in heterogeneous random systems discussed in Section 1.2. Considering the dis-
crete equation corresponding to a Darcy problem, the set of 〈i 〉 is essentially the 2D neighbours
of a given cell (using other numerical techniques will essentially change this set of neighbours
and the values of the Ti j ). The coupling coefficients Ti j are related to the underlying conductiv-
ity maps [63]. In the fractured case, the set of neighbours 〈i 〉 may be arbitrary large, so in that sit-
uation, two superimposed disorders are superimposed, one from the structure of the graph, the
other from the Ti j ’s. Gathering all the unknowns in N dimension vectors, the equations may be
written under a more compact form A ·P = Q. The operator A appears as a random matrix corre-
sponding to a weighted graph of an associated random conductivity network [85,86,100–103]. In
the fractured case, these matrices may be treated using methods of graph theory [92,93,104,105].

It appears interesting to study the distribution of the “small” eigenvalues of A, (as well as the
corresponding eigenvectors), the null value having a multiplicity equal to the number of con-
nected components of the associated graph [83]. Retaining one component, these eigenvalues
may be denoted by λ1 = 0 ≤ λ2 ≤ λq ≤ λNC−1 n which Nc denotes the number of vertices of the
retained connected component. In order to illustrate the idea, consider the case of a simple path
graph (node i connected to nodes i −1 and i +1, at the exception of nodes 1 and Nc having only
one connection). The corresponding linear system (6) can be solved easily by recursion, its solu-
tion may thus be averaged over the disorder of Ti j . This solution is itself given by the solution of
an effective linear system sharing the same structure than the original one equation (6) by setting
Teff = 〈T −1

i j 〉−1 = 〈T −1〉−1. So in that simple case, the effective set of equations Aeff = 〈A−1〉−1 has a

spectrum given by 〈T −1〉−14sin2(πq/2Nc ). That spectrum is itself equivalent to [π2/N 2
c ]q2 (small

q) [83]. The reader should note that A−1 has a well defined sense working on properly defined sub-
spaces. In real space domain problems, small q corresponds to small frequencies (large length-
scales). But studying small eigenvalues keeps a well-defined sense without being embedded in an
Euclidean framework. On that aspect, homogenization theory states that for small q , a Laplacian
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operator with oscillating coefficients behaves may be replaced by an effective laplacian with an
effective conductivity Teff [46], with eigenvalues scaling as Teff[4π2/N 2]q2 (small q). Studying the
small eigenvalue spectrum combined with self-averaging properties may lead to new results con-
cerning up scaling: low frequency eigenvalues may behave as Teffq2. This implies that in the case
of a random graph with random weights Ti j , by identification of the distribution of the smallest
eigenvalues, it could be possible to get an effective conductivity Teff, and an effective dimension
D (possibly > 3 in case of highly connected media) that will characterize the average connectivity
structure of the problem at hand. In particular, is it possible to propose a simple averaging for-
mula such as Teff ≃ 〈T (1−2/D)〉1/(1−2/D)? In the considered case, the so-called uncorrelated con-
ductivity distribution has a well-defined sense, in opposition to the corresponding continuous
limit in which this concept is basically meaningless [63, 106]. Assuming uncorrelated Ti j sharing
the same probability distribution, Aeff must be related to the adjacency matrix of the graph of the
average Laplacian matrix 〈A〉. Considering the associated resolvent and Stieltjes transform will
provide information about all the moments of the random matrix and also about its density of
eigenvalues in the large N limit. In particular, the spectrum of such large matrices that depends
randomly on the geological input parameters may provide information about the effective num-
ber of relevant degrees of freedom that must be retained to describe the system [107]. Depending
on the degree of disorder, some eigenvalues of the associated Laplacian matrix can be expected
to provide information while other eigenvalues may follow some universal distribution such as a
Marchenko–Pastur distribution [108]. Such topics are deeply connected to classification methods
by neural nets [109, 110].

1.5. Transport and mixing issues for passive and reactive flows

A classical issue is to be able to model the spreading of a passive tracer undergoing advection
and diffusion/dispersion in a given steady state imposed flow in an heterogeneous/fractured
medium. That issue motivated many approaches since the early approach of Saffman [3]. The
porous medium was represented as a network of tubes connected at several pore intersections.
The tracer spreading was thus represented as deterministic motion of the tracer particles inside
the pores, being randomized by random choice of the pore at the intersection. This gives rise to a
macroscopic dispersion, the overall motion of a cloud of tracer being described by the following
equation:

φ
∂C (r, t )

∂t
+∇· (U(r, t )C (r, t )) =∇· (D∇C (r, t )). (7)

In that equation, U(r, t ) denotes the Darcy velocity, which is divergence free, implying strong
range spatial correlations. A great deal of efforts were carried-out at pore scale, including SP
techniques, in order to relate the value of tensor D to some descriptors of the velocity field and
to the molecular diffusion coefficient [111, 112]. The basic mechanisms include Taylor disper-
sion [113, 114], and the amplification of spreading due to the presence of stagnation point of the
flow. These points play the role of bifurcation like zones that over amplify local processes such as
smaller scale diffusion/dispersion can be pointed out [115–117]. Specific random walk simula-
tion techniques allow to estimate breakthrough times (BTC) for various Péclet numbers [99,117],
as illustrated in Figure 9 below: at a larger scale, stochastic hydrology [40, 42] techniques were
developed to obtain an up-scaled description of the tracer motion. The approach starts from a
Darcy scale description that includes an input dispersion tensor Deff ≃ 〈U 〉σ2

Log k lc that accounts
for subscale effects, that is the so called macrodispersion phenomenon that yields a large scale
Fickian like description, as soon as the spatial correlations of the conductivity are short-ranged.
In that context, the second order moment of the tracer spreading grows linearly with time. In an-
other study, Matheron and de Marsily [118] shown that transverse diffusion effects on a stratified
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Figure 9. Left: three-dimensional visualization of the pore network (blue) and the con-
nected microporosity (yellow) for a sub-volume of 1203 voxels of the (0.8 mm3) Berea
sandstone sample studied by [117]. Right: BTCs for pore-scale mobile-immobile transport
through the Berea sample for different values of the Peclet number computed by TDRW,
Reprinted (adapted) from Ref. [99]. Copyright 2020 with permission of Springer–Nature.

flow may lead to non-diffusive over all behaviour for the longitudinal dispersion. This surprising
phenomenon is mainly due to the strong probability of return to the origin regarding transverse
diffusion that creates long time tail correlations leading to superdiffusion in the direction of strat-
ification that has an infinite correlation scale. Many contributions, including the one of [119,120]
led to more general descriptions. In another study, renormalization-group ideas “à la Wilson”
were set-up to compute the spreading of a tracer in a heterogeneous medium [121]. Field appli-
cations provide encouraging results. At the pore and core scale, anomalous dispersion effect lead-
ing to a description in terms of fractional derivatives were proposed [122–126]. NMR techniques
allow to determine the “anomalous” parameters from laboratory tracer experiments. In the case
of fractured media, approaches combining anomalous transport concepts and multiple media
ideas may be combined to advanced continuous time random walk techniques [92,93,95,99,127].
This results in the possible emergence of robust stable laws that can be tested on real field exper-
iments. A major related issue of interest that must be addressed in the case of reactive flows is
to describe the intimate mixing occurring between fluids flowing in porous media, in which the
useful concept of lamella diffusion appears to be very promising [27, 128–131].

1.6. Non-linear issues, coupling between the quenched disorder and flow instabilities

In this section, we are interested by strongly non-linear processes that arise in two phase flow
displacements by fluids having different mobilities in the rock. This can be the case of water
displacing oil, of CO2 injection etc. . . This issue gives rise to the well-known Saffman–Taylor
instability called viscous fingering if the displacing fluid is more mobile than the fluid initially in
place [132]. Due to its importance for the secondary oil recovery applications (displacing oil with
water), this seminal work gave rise to many subsequent works [10, 133–135]. Many SP concepts
such as diffusion limited aggregation (DLA) corresponding to the extreme case of air displacing
a liquid, fractals were illustrated by experiments involving fingering [10]. The question of the
selection of the ultimate finger pattern received many attention [136] in the eighties.
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Many of these studies were performed in Hele-Shaw cells on in well-controlled micromodels.
Analogous phenomena occur in natural porous media, and the stability criteria can be adapted
using the standard description of two phase flow using relative permeability concepts in 3D rocks,
as it was explained in the relatively ignored paper of King and Dunayevsky [137] and references
therein. It is well known that in that case, it appears a well defined sharp front separating the
fluid originally in place and a rich phase that moves at the local velocity of the fluid, as shown
in Figure 10, top. That front may become in turn unstable, by the same mechanism than the
Saffman–Taylor instability, as shown in Figure 10, bottom. That phenomena arises from the
coupling between the fluid motion and the up dating of the local mobility, the criterion being the
so-called total mobility jump evaluated ahead and behind the front. The finger selection process
is mainly controlled by the underlying heterogeneity of the rock. It is easy to understand that a
highly mobile fluid will follow high velocity paths, its presence amplifying thus that advantage
by a positive feed-back loop. This is the so called channeling issue. This problem was addressed
by De Wit and Homsy [138, 139], and revisited in the stochastic context by [140–142]. The idea of
the latter contributions was to adapt the theory developed by King and Dunayevsky [137] using
single phase flow perturbation theory techniques. The underlying equations reads:

∇· [λ(S(r, t ))k(r)∇p(r, t )] = 0 (8)

φ
∂S(r, t )

∂t
+∇· ( f (S(r, t ))U(r, t )) = 0 (9)

U(r, t ) =−λ(S(r, t ))k(r)∇p(r, t ). (10)

Here, (S(r, t )), λ(S(r, t )) and f (S(r, t )S) denote respectively the water saturation (local % of water,
total mobility and the so-called fractional flow of water). This set of coupled equations may be
solved numerically (it is at the heart of any multiphase flow in porous media simulator, to which
additional complexities such as phase transitions and boundary condition management must
be added). The saturation equation (9) is hyperbolic, leading to the formation of a shock front,
whose stability is controlled by the jump of the total mobility λ(S(r, t )) at the front.

The technical difficulty for setting-up a perturbation expansion comes from the presence of
the front that implies a mobility jump that renders perturbation theory a bit tricky [137,141]. The
difficulty may be avoided by a suitable change of variable, using a working variable x(S, y, t ) rather
than S(x, y, t ). It is thus possible to introduce the function x(S f , t ), in which S f is the saturation
of water just behind the front M f is the corresponding total mobility jump M f = λ(S f )/λ(S = 0).
The randomness of the underlying conductivity field propagates to the randomness of x(S f , t ), of
average value 〈U〉t. At long times, the associated two point correlation function can be shown to
converge to a well defined function in the stable case, while in unstable case it diverges, a mani-
festation of the spreading of the front (even if some logarithmic singularities are remaining, due
to the singular character of the instability at large wavelengths [143,144]). A possible approach of
practical interest close to the single phase flow approach would be to look at an effective equation
driving the ensemble-averaged water saturation 〈S(r,t)〉, or the Y -averaged saturation S(x, t ). A
diffusive regime arises in the case M f = 1, that corresponds to a marginal stability criterion (cor-
responding to an order parameter of a phase transition), leading to a macrodispersion equation
similar to (7). In the general case, several proposals were reported long ago for characterizing
the emerging large scale transport equation [145–149]. In the unstable case, one can consider
that long fingers parallel to the imposed flow may be treated as a stratified medium. This leads
to modify the fractional flow function with an ad-hoc change [145]. In the stable case, it can be
shown that the competition between the disorder that distorts the front and the viscous forces
that tends to sharpen the front [141] must lead to another form of the effective fractional flow, in-
cluding some macrodispersion representing the net effect of the averaged disorder. In the infinite
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Figure 10. Simulated dynamics of a two phase flow front in a heterogeneous rock, imposed
mean flow from left to right, underlying random log normally distributed conductivity map
top (a) stable case, (b) Y averaged saturation at different times, bottom (c) fingering in the
unstable case, (d) associated Y -averaged saturation at different times.

contrast case (e.g. immiscible gas injection) diffusion limited aggregation (DLA) models were pro-
posed, leading to a very rich literature involving percolation invasion models, fractals [150–153]
with many contributions of SP.

1.7. Conclusions and some perspectives

In that short review, some connections between statistical physics approaches and applied
geosciences were presented. These connections are not new and are continuously enriching both
communities. At the molecular scales, SP techniques including molecular dynamics tools help to
find the form of the constitutive relation relating fluxes to gradient of potential, even for charged
real fluids in extremely confined environments. At pore scale, SP may help to describe complex
multiphase flow, in particular [19] and by improving lattice Boltzmann methods.

In practice, an essential feature of these natural systems is their overall insufficient charac-
terization, implying that the modeller must find the optimal balance between the details of the
model, and the lack of information. A very beautiful model, but completely over-parameterized
can be useless [73]. So, one of the first task of the modeller is to be able to identify flow regimes,
and the aggregates of most relevant input parameters by means of phase diagrams highlight-
ing the most relevant parameters that control the overall behaviour of the system. Geoscientists
must manage huge parameter space and the propagation of the uncertainties due to the lack of
an exhaustive description of the system. SP tools help to understand the role of the quenched
disorder of the medium present at all scales. Drawing the “phase diagram” of the problem at
hand, i.e. the set of dominant parameters controlling the overall behaviour of the system, and
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providing descriptions of the critical behaviour of the system between the different regions of the
phase diagram. Providing coarse renormalized equations describing averaged potential spatial
variations, or tracer spreading moments with accuracy with few parameters is a promising ap-
proach [154, 155]. Studying the strong coupling (competition or amplification) between the dis-
order of the porous medium, and the development of viscous and gravitational instabilities such
as Saffman–Taylor viscous fingering remains a deep issue. Focusing on the front dynamics mov-
ing in a random medium using some KPZ like approaches [156] could be a rich research avenue.
A combination of the methods developed by King and Dunayevsky [137, 141] and of stochastic
perturbation theory could be an interesting approach, although the existence of a local equa-
tion driving the front dynamics remains questionable, in view of the long range character of the
Laplace equation Green’s function. Such approaches could help to improve empirical descrip-
tions [132, 141, 142, 149, 156, 157].

Studying self-organization phenomena that arise once the transport processes at hand mod-
ify the porous media structure with a strong feed-back, implying a strong non-linear cou-
pling [71, 158, 159] using SP concepts is a major research avenue. For engineers, this may help
to constrain the parameter space of the problem at hand, in particular the stochastic models
of discrete fracture networks that may be over parameterized. These models are close to mor-
phogenesis models of SP [160–162] that may help to describe overall fracture network organiza-
tion. Such models may be relevant in the context of geomorphology, that could in turn provide
some information about the statistical properties of the quenched disorder that was discussed
throughout the paper. Those topics involving advanced geoscience and SP concepts, coupled to
global climate evolution are well beyond the scope of present paper [153, 163–165].

Subsurface is intrinsically a quenched system that falls in the area of spin glasses issues [62].
The considerable number of degrees of freedom made it a natural candidate for using big
data and/or artificial intelligence techniques in order to help the engineers to manage their
intrinsic complexity, and to select the most relevant approaches and parameters. As ir was
suggested in Section 1.4, studying the spectrum of such large random matrices depending on
the geological input parameters may provide information about the effective number of relevant
degrees of freedom that must be retained to describe the system [107]. Depending on the
degree of disorder, some eigenvalues of the associated Laplacian matrix can be expected to
provide information while other eigenvalues may follow some universal distribution such as a
Marchenko–Pastur distribution [108]. Such topics are deeply connected to classification methods
by neural nets [109, 110]. This set of techniques may be relevant for solving the inverse problems
(modifying the model parameters or the model itself to account for continuously arriving data).
Such inverse problems may be solve by minimizing a suitable error functional accounting for
both these data and prior information [166–169]. All these topics are connected to each other by
means of recent developments of spin glass theories [62,170] that provide useful approaches and
algorithms to provide rigorous and operational foundations to uncertainty management allowing
to make the best decision with large random parameter sets associated with complex physics. We
expect that this short overview highlights numerous applications of statistical physics to applied
geosciences and that it will stimulate discussions to build bridges between very active areas of
research in statistical physics and geosciences.
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