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model: Impact on structural finite element analyses  

Abdul-Hameed Hemin, Roguet Eléonore, Brusselle-Dupend Nadège, Boulharts Habiba, Cangémi Laurent 
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Abstract 

The strong dependent behavior of semi-crystalline polymers can lead to the use of simplified material laws in 

Finite Element structural calculations for reasons of robustness to the detriment of the quantitative response of 

the models. This work focuses on numerical integration methods as a solution to overcome the possible 

convergence and robustness limitations of mean-stress dependent elastoviscoplastic material laws, typical of the 

semi-crystalline polymers mechanical behavior. 

What is proposed here is a rational application of three explicit integration methods (fourth and second order 

Rung-Kutta method, a hybrid schema between Runge-Kutta and Euler method) in engineering structural 

calculations, which provide a reliable solution for constitutive models of semi-crystalline polymer. These 

methods are examined for structure creep test and tensile test, in comparison with experimental data. The 

investigations have been done in terms of the stability toward convergence, the accuracy of results, the plastic 

consistency, and CPU time efficiency. 

This work, proposes an easy implementation of integration methods in any computational Finite Element code. It 

also provides a flexible modular implementation which is applicable to any different constitutive equations. An 

integration step sub-division technique is recommended. It is a powerful technique to improve the convergence 

of solution and accuracy of result by damping oscillation around stress Gauss point integration solution. The 

results obtained illustrate the effect of numerical integration schemas on structural analysis and provide an 

insight to select suitable method. 

Keywords: Viscoplasticity, Polymer, Deformation behavior, Structure analysis, Constitutive model, Integration 

method. 

1. Introduction 

Finite Element Analysis engineers appear as the end users of the material laws developed by the solid mechanics 

community. Easy calibration and robustness of material laws are required for designing structural applications 

and predicting their service life from Finite Element calculations. But the mechanical behavior of semi-

crystalline polymers (SCPs) is so strongly dependent (time, mean stress, temperature) that simplified material 

laws are generally favored regarding the convergence of the structural calculations to the detriment of their 

response. This work focuses on numerical integration methods as a solution to overcome the possible 

convergence and robustness limitations of mean-stress dependent elastoviscoplastic material laws, typical of the 

semi-crystalline polymers mechanical behavior. 

The contributions of semi-crystalline polymers (SCPs) in complex industrial structure, need a reliable 

constitutive model since their mechanical behavior is time-dependent and strongly nonlinear once undergo large 

deformation. An accurate computing of mechanical response is necessary to predict lifetime of structures. The 
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sophistication of the constitutive model depends on how to interpret phenomena occuring during deformation 

(including elasticity, plasticity, relaxation, and creep) with respect to internal (structure of polymer at different 

scales) and external (temperature, rate of deformation) factors, besides, numerical approaches and mathematical 

framework employed are important to attain accurate mechanical response. 

Over decades, many continuum-level constitutive models have emerged to predict the mechanical behavior of 

SCPs, taking into account nonlinearities and rate-dependence, as reviewed in many works [1-28]. However, the 

work of Brusselle and Cangemi [11] has been considered in with work, for its capacity of covering main features 

of SCPs such as time and mean stress dependence, volume change, cavitation development, strain hardening 

under large deformation.  

A complex mechanical behavior of SCPs requires an elaborate constitutive model incorporating all aspects of 

mechanical behavior. The choice of the numerical integration method is thus important. 

Importance of integration methods for the constitutive model: The time-dependent elasto-viscoplastic 

equations can be considered as a system of discontinues, nonlinear Differential Algebraic Equation (DAE), due 

to the yield condition and evolution of hardening variables with plastic strain [29]. Therefore, the mathematical 

structure of the constitutive law becomes very complex and mathematically stiff which causes a key problem for 

numerical integration methods to update the stress Gauss point and evolution of internal state variables.  

The difficulties associated with a reliable implementation of integration schemas have limited the employment of 

complex model [30-32].  

Modern constitutive laws aim to improve the quality of engineering structure calculations by involving complex 

models to capture the mechanical behavior of materials. Providing a reliable tool does not only focus on a 

reliable constitutive model based on a physical description, it also enhances the numerical integration tool for 

improving the constitutive models in structural computation [33]. Accurate result of complex models in 

simulations, conversely, depends on the robustness of solution of integration methods for the stress Gauss point 

integration. Therefore, constitutive models need to be provided with a robust numerical integration method to 

deliver an accurate solution.  

In structural computation, the stress updating at each Gauss point for specific strain increment in a nonlinear 

Finite Element is a key solution. This update occurs through integrating constitutive model equations. The 

constitutive model solution and internal state variables update need to reevaluate several thousand times during 

the structure calculation, depending on the complexity of structure design. Thus, the computational cost changes 

considerably with the complexity of the constitutive model and with the integration method schemas employed.  

In consequent, the accuracy and efficiency of variable update in each load step increment affect the entire 

structure solution [34].  

Criteria for choosing an integration schema: The choice of numerical integration methods in practice is 

important, however, an efficient integration method relies on: I) the numerical stability of the method; II) the 

accuracy of solution; III) the incremental plastic consistency; IV) the adaptability to implement in constitutive 

model equations; V) a low CPU time cost [30, 32]. The first two criteria are vital to satisfy the convergence of 

the numerical solution. To limit the accumulative error produced as a consequence of increment stepsize, a step 

sub-division procedure has been proposed which allows the increment stepsize to be divided into sub-increments 

and to reduce the error. This technique was proposed by Sloan [35]. The third criterion satisfies the keeping 

stress updated value at a time (tn+1) on the subsequent yield surface during incremental plastic deformation. The 
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fourth condition is a practical limitation: it does not change the results but represents major criterion for 

engineering use. Finally, computing time cost is also a significant factor in structure calculation within a Finite 

Element package.  

A lot of works have been achieved to apply integration methods to solve Initial Value Problem for DAE. 

Meanwhile, few works have been done to implement numerical integration methods to update stress and its 

corresponding internal variables to capture the evolution of elasto-viscoplastic behavior of SCPs materials under 

large deformation within a Finite Element framework. In this contribution, the modular implementations of 

different integrations methods are proposed for an elastic-viscoplastic constitutive model of SCPs, this manner of 

implementation of integration schemas can be applied to any constitutive model. The varieties of integration 

methods implemented in this work provide an insight into a suitable integration tool for a different structure 

calculation loading conditions.  

In this work, explicit numerical integration schemas are employed. The explicit methods are straightforward, not 

need to build a matrix of algebraic equations system or iterative loop to obtain integrated variables, solutions are 

divided in time (t), the solution in current step time (tn+1) is computed directly from previous step time (tn).  

The explicit integration schemas that have been employed in this study are a second-order explicit Runge-Kutta, 

a fourth-order explicit Runge-Kutta method, and a Hybrid method (between second-order Runge-Kutta and 

explicit forward Euler method). These methods have been chosen due to the possibility to apply to elasto-

plasticity constitutive equations and their enhanced property comparing with other methods in terms of criteria 

explained above [29, 32, 36-37]. The very high order Runge-Kutta method is not recommended due to 

computing efficiency vs. obtained accuracy and stability. 

This work is organized as follows. Section 2 provides details of the two-phase elastic-viscoplastic constitutive 

model considered for SCPs. Then section 3 details the modular implementation of explicit numerical integration 

methods employed in this work into constitutive model within a Finite Element code. Section 4 presents 

experimental database and comparison with structural calculations. Finally, the work concluded in Section 5. 

2. Two-phase elasto-viscoplastic constitutive model for semi-crystalline polymers 

In this work, an elasto-viscoplastic constitutive model based on the thermodynamic framework of porous media 

is used. It has been originally proposed in [3] and extended to large strains in [11]. The proposed two-phase 

model intends to predict the large strains tridimensional behavior of SCPs, by also considering the other features 

of the mechanical behavior met during the life of a structure with plastic components (mean stress sensitivity, 

volume change evolution, short-term and the long-term viscous behavior). Considering their microstructure, 

semi-crystalline polymers can be represented as two-phase materials at mesoscopic scale. The first phase is a 

solid network corresponding to the crystalline phase and tied amorphous zones of the polymer, and the second 

one is a "fluid-like" phase corresponding to the very soft amorphous phase (free amorphous). The solid network 

can be compared to an open “porous” skeleton which is saturated by free amorphous phase. Moreover, a plastic 

yield surface inspired by porous-like materials (clays for instance) has been selected to describe the sensitivity of 

the mechanical behavior of SCPs to mean stress revealed for several decades in these materials. A non-

associated viscoplastic law also permits to catch both the plastic volume change and the viscous response of 

SCPs. 
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2.1 Kinematical framework 

The solid network deformation of continuum media, described by Lee [38], introduces the unstressed 

configuration of the representative elementary volume d , represented by Rd , which is obtained by unloading 

from the deformed configuration td . This concept leads to the following decomposition of the deformation 

gradient: 

(1) 
(vp)(e)

FFF . , 

F  is considered the deformation gradient transforming Rd  into td . 
(e)

F  is the elastic part of F , and 
(vp)

F  

the viscoplastic part of F  transforming 0d (initial configuration of d ) into Rd .  

For large strain, the strain rate tensor can be expanded as below: 

(2) 
sss )()()(

1111   (e)(vp)(vp)(e)(e)(e)
FFFFFFFFD  . 

However, we can consider for SCPs that the elastic part of the deformation remains small at large strains, which 

leads to the following approximation:  

(3) 11  e(e)
εF  with 1e

ε ,  

and to: 

(4)  
s)(

1
 (vp)(vp)(e)vp(e)
FFεDDD  . 

2.2 Constitutive equations of the two-phase model  

2.2.1 Mass balance and coupling equations 

A porous medium saturated by a fluid-like phase has been considered by the authors to introduce a natural 

coupling between the amorphous phase and the solid skeleton. This mobile and soft phase is supposed to be free 

and can move through the skeleton. Then, a mechanical loading imposes a differential movement of the 

saturating fluid with the skeleton, and the volume of matter d , which follows the movement of its skeleton, is 

able to exchange fluid matter with the exterior. The balance of the fluid mass contained in the volume d  thus 

holds: 

(5)       0)(~,,  dmmdttm aata XXXx  

where am~  is fluid mass variation between the reference and the actual state. In the porous media, the fluid mass 

per unit volume depends on the volumic mass a  and on the connected porosity a , can be formulated as: 

(6) aaam  . 

An additional internal variable can describe the irreversible volume change of the solid porous skeleton through 

the existence of a residual saturated porosity after an unstressed state ( R ), which leads to defining a 

viscoplastic porosity:  

(7) 0
(vp)   RpJ  with (vp)

FdetpJ  

The fluid mass variation into elastic part and viscoplastic part is given by Coussy [39], as follows, 

(8) (vp)(e) ~~~
aaa mmm  . 
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It allows formulating the plastic porosity as following: 

(9) 
0

(vp)
(vp)

~

a

am


  , 

where 0
a  is the volumic mass at the initial state. Furthermore, the viscoplastic porosity 

(vp)  can be related to 

the total viscoplastic deformation of the two-phase material by assuming a linear dependence with β . The 

second order tensor β  introduces an anisotropy effect linked to a non-isotropic initial microstructure. This 

tensor reduces to a scalar parameter once the material is isotropic. 

The previous considerations about fluid movements inside the porous crystal skeleton lay the foundation for a 

general framework which could be able to deal with mass exchanges of gas or liquids in the polymer. However, 

the exact formulation of this phenomenon should introduce the notion of molecular diffusion through the free 

amorphous phase. An attempt to construct a more precise approach can be found in [40]. In the context of this 

work, there are no exchanges supposed between the constituent sub-volumes d  and the external environment 

for SCPs, as a result, it considered a closed system, therefore 0~ am .  

Then, the mass variation of the plastic part per unit volume is results of deformation of the soft phase (free 

amorphous macromolecules) imposed by the deformation of the solid network. From this point of view, it is 

possible to consider the intrinsic evolution of volumic mass of the soft phase during plastic deformation of the 

skeleton.  

For infinitesimal strains, classical thermodynamics extended to porous continuous media and a quadratic choice 

of the free energy lead to the following state laws and dissipation inequality: 

(10) 
aa g0 - Bε:Cσ

(e)

s , 

(11)  (vp)(e)
ε:βε:B 

0

M

a

ag


, 

(12)    
J

JJa Ag 00

a   (vp)
ε:βσ , 

where the tensor sC  denotes the effective Hooke's elasticity acting on the solid network. The associated 

effective stress states as: 
(e)
ε:Cσ s . The term ag , the free enthalpy potential acting on the free amorphous 

phase, is homogeneous to a partial pressure aP  so that 
0

a

a

a

P
g


 . Thus, the Eq. (10) can be reformulated as: 

(13) aPBσσ s  -  . 

The Eqs. (10) and (11) describe the interactions between the solid network and the embedded soft phase as two 

springs acting in parallel, so that B, M, and β  appear as coupling parameters, where M is linked to the 

compressibility of the free amorphous phase within the solid network. The tensors B and β  allow to represent 

the evolution of the intensity of the macromolecular interactions between the hard phase and the soft phase 

through the tied amorphous zone.  
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The elastic tensor of the SCPs system can be deduced from BBCC s  M . In Eq. (12), the terms JA  are the 

affinities of internal variables J . 

Through Eq. (12) and free enthalpy equivalent to the pressure acting on free amorphous, an effective viscoplastic 

stress (vp)
sσ of the two-phase material associated with the viscoplastic strain can be presented as: 

(14) 
aPβσσ

(vp)

s  . 

A direct extension of the equations (11), (13) and (14) can be done from the previous kinematic framework at 

finite strains: 

(15) aap GJ 0 - Bσσ s
 

so that 
    (vp)

s DD:Cσ s 


, 
apa gJG  , and FdetpJ . 

 


sσ  is the so-called Jaumann derivative, which can be interpreted as the time derivative of the Cauchy stress 

tensor σ  with respect to a rotating frame.  D  and  (vp)
D  are respectively the strain rate tensor and its 

viscoplastic part.  

The second coupling equation takes the following form: 

(16)     (vp)vp
E:BβD:BβE:BD:B 


  )(

0

M

M

M

a

aa GG


,  

In Eq.(16), VE ln  where V is the left stretch tensor, and the viscoplastic strain  

t

0

d(vp)(vp) DE  where 

s)(
1

 (vp)(vp)(vp)
FFD  . 

Finally, the viscoplastic effective stress becomes: 

(17) 
aap GJ 0βσσ

(vp)

s  ,  

and can also be expressed as follows: 

(18) 
aa G0)( Bβσσ ss

(vp)   

2.2.2 Viscoplastic modeling of the solid phase  

The sensitivity to hydrostatic pressure and the volume change evolution generally observed in SCPs has led 

Cangémi and Meimon [3] to consider SCPs as porous-like materials similarly to clay materials. In these 

materials, the volume change is associated with hydrostatic pressure. SCPs also show this mechanical behavior 

feature, and [3] admitted to result from the difference in compressibility between the solid network and the free 

amorphous inside. A generalized "cam-clay" surface has thus naturally been considered as an appropriate plastic 

yield surface (f ) intended to the solid network of SCPs: 

(19)  s
s
eq pgf s    
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with   r 
p

p
pg

c

s
s 




















 
 s

ss

c
lnb1c , and  (vp)

sσJ1sp  and  (vp)

sσJ2
s
eq . Where f is the Von-Mises 

equivalent stress and sp  the mean stress associated with the solid phase. s  is an internal friction parameter 

which governs the pressure sensitivity of the SCP, sc  is a cohesion parameter acting on material resistance to 

pure hydrostatic tension, sb  is a parameter that controls the locking of the yield surface in the (
s
eq ,

sp ) plane. 

At sb  = 0, the Eq. (19) is reducing to a Drucker-Prager like criterion. The evolution of the yield surface also 

depends on the functions r  and
sp . They correspond to dual affinities JA  associated with the following 

choice of internal state variables J , which are linked to hardening and to the strain energy stored in the 

material: 

(20)    (vp)

vol

(vp)

dJJ EE ,
2,1



  with dE

t
(vp)

d )(I 
0

2
(vp)

D  and dE
t

(vp)

vol )(I 
0

1
(vp)

D  

Note that for simplification of writing, the following notations (vp)
dD  and (vp)

volD  are respectively used for 

)(I2
(vp)

D  and )(I1
(vp)

D  thereafter.  

(vp)

dE  and 
(vp)

volE  are the cumulative viscoplastic strain according to Von Mises, and to the volume viscoplastic 

strain respectively. 
(vp)

dE  and r  introduce a classical isotropic hardening effect as a consequence of cumulative 

plastic strain, whereas 
(vp)

volE  and 
cp  introduce a volume-dependent effect with plastic volume strain.  

The stored energy contribution of non-reversible phenomena occurring in the material outcomes of the following 

equations for r  and 
cp : 

(21) 
0(

0

r
d

vp)

d

d

(vp)

d

Ea

E




   

(22)  )

s

0

c expp vp

volc Ep (  

0

d  is the initial size of the yield surface, a  is a parameter controlling the rate of isotropic hardening and 

affects the transition domain between zero stress and perfect yielding, before the hardening stage at large strains, 

0

cp refers to residual confining stresses from process conditions related to the morphology of the material 

microstructure. It can evolve with texture structure evolution. Finally, s is a control parameter. 

A viscoplastic flow rule, especially a non-associated flow rule has been naturally proposed by [3] because of the 

viscous effects and the volume strain evolution accompanying plastic yielding in SCPs in general: 

(23)    (vp)
s

(vp)
σΛD f




1
 

where   acts as a long relaxation time and the function,  f  as an overstress function and  (vp)
sσΛ  gives the 

flow direction: 

(24)   














sk

f
fΦ sinh  
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(25)    
1

σdev
σΛ

(vp)
s(vp)

s 



















s
s

s

c32

3

s

s
eq

s
eq p




  

In Eq. (24), sk  is a parameter that controls the rate sensitivity at short times, the sinh function is based on the 

Eyring’s molecular approach to the viscosity phenomena within the framework of thermal activation theory [41]. 

In Eq. (25), the parameter s  controls the intensity of the volume strain. The sign of the volume strain depends 

on the evolution of the yield surface in the (
s
eq ,

sp ) plane. 

Most of the parameters of the material law concern the plastic yield surface making it possible to grasp the 

dependence of the mechanical behavior on mean stress in order to cover a wide range of multiaxial stress states 

possibly encountered in structural calculations. In addition, parameters relating to the viscous behavior and to the 

non-associated nature of the viscoplastic flow rule are involved. 

2.2.3 Features at large strains  

Whatever the external loading, the progressive orientation of the crystalline and amorphous parts during large 

strains accompanies the progressive destruction of the initial isotropic spherulitic mesostructure into an oriented 

crystalline structure. This can lead to two competing phenomena at large strains: macroscopic stress hardening 

by the evolution of the crystalline texture of the SCP and cavitation mechanisms in the amorphous phase to 

account for the macroscopic loading, as suggested in [11]. 

The model is based on the interpretation of the microstructure evolution at a mesoscopic level considering the 

evolution of a solid network containing a softer phase, like in soil-like materials. An interaction relation between 

the two phases is obtained from coupling equations between the solid network and the free amorphous inside 

through B  (Eq. 10). A specific yield surface is moreover associated with the solid network, which is supposed 

to be at the origin of the viscoplastic evolution of the material. The specific hardening behavior at large strains is 

supposed to result from the evolution at a mesoscopic scale of both the intensity of the interactions between the 

two phases, supposed isotropic initially (Eq. 26), and the residual confining pressure (Eq. 27). The reader can 

refer to [11] for details. 

(26)  



3,1, ji

jiij eebB  with 

n

1

0
k

tanh
Lb




























 

Ε
(vp)
ij

ijb  for ji  , and 0ijb  for ji  . 

The 
1L  is the inverse Langevin and 


  denotes the positive part operator. The authors have considered the 

evolution of an initially isotropic spherulitic mesostructure into an oriented crystalline structure dependent on the 

loading direction. For this reason, the parameter 
0
cp  in Eq. (22) has been introduced to capture the effect of a 

microstructural texture evolution; it is described in a phenomenological way, through two-phase interaction 

effects, by means of both parameters ijb  and the deviatoric part of E
(vp) , as following:  

(27)   E dev : B (vp)
s

00

c

0

c exppp   

00
cp  denotes the initial value of the residual confining stresses (

0

cp ).  
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Finally, a global energy criterion has been proposed to catch a possible process of cavities nucleation in the free 

amorphous phase of SCPs. The consequence of the cavitation process is traduced in the model by a sudden 

decrease of the compressibility modulus M which involves an increase of the volume plastic strain and a global 

stress softening. 

In the present work, B  and 
0
cp  have been considered constant and the energy cavitation criterion not activated 

for the sake of simplicity, also because it wasn’t the scope of the present work. However, applications of the 

models for large strains have been achieved in [11] and more recently in [42, 43] to deal with some mechanical 

specificities encountered with SCPs. 

 

A summary of the whole parameters involved in the constitutive model is finally presented in Table 1. 

 

Table 1. Parameters of the material law. 

Elasticity parameters of the solid network 

   Elastic modulus (Pa) 

   Poisson’s ratio 

Coupling parameters between the solid network and the free amorphous phase 

M Biot compressibility modulus of the free amorphous phase contained in the solid 

network of the SCP (Pa) 

0b  Biot’s ratio in isotropy case: B = 0b 1 

  Plastic Biot’s ratio in isotropy case: β  =  1 

Parameters associated with the yield surface 

s  Friction ratio of the material 

sb  Control parameter of the yield surface locking, between 0 and 1  

sc  Cohesion of the material, similar to a triaxial tensile limit (Pa) 

00

cp  Initial residual confining stresses (Pa) 

Parameters associated with the viscoplastic flow 

a  Intensity of the isotropic hardening 

0

d  Initial size of the yield surface 

s  Hardening parameter associated with viscoplastic volume strain 

s  Control parameter of the intensity of volume viscoplastic strain 

  Viscosity parameter equivalent to a long relaxation time (s) 

sk  Viscosity parameter equivalent to a short relaxation time (Pa) 

Parameters specific to large strains (not activated in this work) 

 ,n 
Parameters to describe the evolution of the interactions between the two phases at 

large strains 

Wm Cavitation energy of the material (N.m.kg
-1

) 

 

3. Implementation of numerical integration schemas  

The constitutive elastic-viscoplastic model presented in section 2 has been implemented into an UMAT (User 

MATerial subroutine in the Abaqus Software®). In a numerical calculation step, the mechanical subroutine is 

called at the beginning of each increment. Then, the stress tensor through the Eq. (18) and their corresponding 
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internal variables are calculated according to a given numerical integration process. For each element and each 

increment, the updated stress tensor and its corresponding internal variables are stored at the end of the 

increment, and is recalled at the beginning of the next one.  

The mechanical constitutive behavior established as a set of rate equations, has the general form of an initial 

value problem. In this constitutive model, the Eq. (18) is the main equation that required to be updated, indeed 

with its state variables. Each time increment (  ) is divided into J increments to become a sub-increment (  ) or 

( ), where (           ∑    ⁄ 
   ) and  (                ⁄ . The J parameter is an integer value 

equal or greater than one.  

The plastic consistency condition depends on stepsize increments: enlarging the stepsize will increase the error 

during the entire integration process. Thus in with work, the step sub-division technique is employed, which 

divides each increment stepsize into sub-increments. The number of sub-increments (J) is controlled manually 

(as an input value), in order to avoid extra calculation and increase the CPU time.   

3.1 Explicit numerical integration methods  

An explicit integration method is a direct calculation of dependent variables at a time step (ti+1) that can be 

computed in term of known quantities at the previous time step (ti).  In this section, the employed integration 

methods are presented briefly and the details of their implantations are provided.  

3.1.1 Forward Euler and Runge-Kutta methods implementation 

For the initial value problem of a general nonlinear system of first-order ordinary differential equations, such as 

    (   ) at  (     ), the solution can be obtained from:   (   )     ∫  ( )  
    

  
. The forward Euler 

method, thus can be formulated as: 

(28)            (     )  

 

The Runge method has modified the Euler method by adding further steps, in order to provide better accuracy. 

Afterward, the method was generalized by Kutta. The general form of Runge-Kutta method of s-stage can be 

written as follow: 

(29)     (     ) 

       (                ) 

       (           (           )) 

       (           (                  ) 

            (           ) 

The Butcher tables for a s-stage Runge-Kutta order (    ) are shown in Table2, where   is stage evaluation,   is 

a step size, and                                     are real coefficients,    can be determined as    

∑    
   
   . The stability function  ( ) for explicit Runge-Kutta method is given by [37]: 

(30)   ( )      
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where z     , and   is corresponding eigenvalues. The stability of the method is in positive correlation with 

value of ( ) .   

Table 2. Generalized Butcher table for s-stage order explicit Runge-Kutta method. 

0 0 0 0 0 0  

       0 0 0 0  

           0 0 0  

: : : : : :  

               …       

       … …         

Runge–Kutta has a structure of one-step methods, offering a possibility of multistage per step; this led to better 

accuracy and superior stability in general. The increasing number of the stages per step will increase evaluations 

of functional at each step, which is costly from a CPU time viewpoint [44]. The rigorous mathematical 

description of modifying the Euler method, expanding stages to upgrade to a higher order, generalizing of the 

methods, and evaluating the stability functions are out of the scope of this work. Readers are invited to refer to 

some  books [37, 45] for more details.  

The explicit Runge-Kutta general form of one stage of evaluation is equivalent to Forward Euler method. The 

numerical implementation of stress update with corresponding internal variables is shown in Fig.1. For non-

elastic deformation, the time interval is divided into sub-increments (J sub-increments are here considered). The 

corresponding variables of the constitutive model are recalling at the beginning of each increment, then 

estimation processes start and initialize the temporary memory of local arrays. In this case, 
1_sσ  is an estimation 

of the intermediate effective stress tensor, 
)(vp

_1E of the intermediate plastic strain. The number of intermediate 

effective stresses and its corresponding intermediate strains depend on the number of estimation stages of the 

employed method. The tensor sσ  is the effective stress of the solid matrix, t  is time increment, 1_sσ  is the 

intermediate effective stress rate, )(vp
E  is the viscoplastic strain, and )vp(

_1D  is the corresponding plastic strain 

rate. After initializing the intermediate effective stress ( 1_ss σσ  ), the computing of effective stress tensor 

through (Eq.18) is the next step. The internal variables have been thus updated : 
)(vp

volE corresponds to the 

volumic viscoplastic strain, 
)(vp

volE 1_
 is the intermediate volumic viscoplastic strain, and 

)(vp

volD  is the volumic 

viscoplastic strain rate, while 
)(vp

dE corresponds to the deviatoric viscoplastic strain, 
)(vp

dE 1_
 the intermediate 

deviatoric viscoplastic strain, and 
)(vp

dD  the deviatoric viscoplastic strain rate. The algorithm allows evaluating 

intermediate estimation for variables which are depending on stress update at each Gauss point, for the given 

incremental strains. For pure elastic, the effective stress is directly obtained from the elastic stress rate )(e
sσ .  

The processes indicated in the box with the red dashed line are the core numerical integration processes, for next 

numerical integration methods, the only processes in red dashed line box will be modified and repeated (as the 



12 
 

other parts are similar for all methods). The equations presented in the red dashed line box are main equations (in 

this constitutive model) which need to be updated at each Gauss point and at each time-step. This flexible way of 

numerical integration implementation allows applying the integration method to any constitutive model in future 

works. 
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Fig.1. Flowchart of stress-strain updates implementation in a finite element, according to the forward Euler 

integration method.  
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3.1.2 Second order Runge-Kutta  

The Runge-Kutta second order can be obtained by taking the initial derivative at each step to obtain midpoint 

across the interval. According to the generalized Butcher table for second-order (        ),  Runge-Kutta 

can be reduced as shown in Table 3, and thus, the Eq. (29) can be derived as:  

(31)     (     ) 

       (    

 
      

 
   ) 

                          

Table 3. Butcher table for second-order Runge-Kutta method. 

      

 

 
 

 

 
   

     

There are two evaluation stages in the Runge-Kutta second order method: first evaluation (  ) at the initial point 

and second evaluation (  ) at the middle of the interval. The process of stress and their corresponding internal 

variables update for both evaluation stages is carried out as detailed in Fig. 2.  The Fig.2 presents the integration 

process to evaluate the    at the beginning of the interval . Hence the estimation of    occurs at the mid-interval, 

the time interval   /J is divided by two : (  )/2J. To obtain variables update at (ti+1) the Butcher table (Table 3) 

and Eq. (31) are used. The variables  1_sσ  and  ̇     are intermediate effective stress rates for first and second 

estimation, 
)(

1_

vp

D  and 
)(

2_

vp

D  are plastic strain rates for first and second estimation, 
)(

1_

vp

volD and 
)(

2_

pv

volD  correspond 

to volumetric viscoplastic stain rates for first and second estimation, 
(vp)

vol_E 1
and  (vp)

vol_E 2
 to the volumetric plastic 

strain for first and second estimation, 
(vp)

d_D 1
 and 

(vp)

d_D 2
  to the deviatoric viscoplastic strain rate for first and 

second estimation, (vp)
d_E 1  and  (vp)

d_E 2   to the deviatoric viscoplastic strain  for first and second estimation.  
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Fig.2. Flowchart showing only stress-strain integration processes, according to Runge-Kutta second-order 

3.1.3 Fourth-order Runge-Kutta  

For each step in fourth-order Runge-Kutta, the derivative is evaluated four times, one time at the initial point, 

twice at midpoints, and once at the endpoint. As a result, the fourth order Runge-Kutta method is reduce as 

shown in below equation (32), and the corresponding Butcher table is depicted in Table 4.  

(32)     (     )  

    (   
 

 
     

 

 
   ) 

    (   
 

 
     

 

 
   ) 

    (           ) 

         

 
 (             )       

where k1 is the slope at the beginning of the step, k2 is the slope at the middle of the step using k1,  k3 is the slope 

at the middle of the step using k2, and  k4 is the slope at the end of the step using k3. 
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Table 4. Butcher tableau for fourth order Runge-Kutta method. 

          

 

 
    

 
     

 

 
      

 
   

          

  

 
 

 

 
 

 

 
 

 

 
 

The Runge-Kutta fourth order has four intermediate estimations in order to achieve final estimation at (ti+1). The 

intermediate estimations carried out as mentioned in the Fig.3. The output of each intermediate stage estimation 

becomes an input for the next intermediate stage evaluation. Besides, at each step, the stepsize has to be adapted 

according to the Table 4.  For instance,    and    are evaluated with a time stepsize  equal to t /2J, while     is 

evaluated with a t /J  stepsize.  

The Fig.3 depicts the estimation procedures for all four stages and final estimation according to the Eq. (32). The 

indexes 1, 2, 3 and 4 refer to the first, second, third and fourth estimation respectively. 
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Fig.3. Flowchart showing only stress –strain integration processes, according to Runge-Kutta fourth-order. 
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not recommended to be employed alone due to the accuracy of the method. This Hybrid method offers an 

advantage over forward Euler method by being more accurate, and over Runge-Kutta second-order method by 

having a wider stable zone without adding extra evaluation stages. Thus, the computation time-cost remains the 

same as the second order Runge-Kutta but with a higher stability. This stability zone depends on a ( ) parameter 

that manages the importance of the forward Euler or the Runge-Kutta method in this Hybrid method, as shown in 

Fig.4. The Eqs. (28) and (31) can be reformulated as follows; 

(33) (    )           (     )=        

(34) (    )                       ( 

 
)  { [     ]   [     (    )     ]} 

The hybrid method thus can be obtained using Eqs. (33) and (34) as follows:  

(35)       (    )        (   )(    )            

               ( 

 
)  {(   ) [     ]  (   ) [     (    )     ]}   

 

Fig.4. Stability region of (Forward Euler/Runge-Kutta) Hybrid method [36]. 

where z     ,with   , the increment stepsize and   the corresponding eigenvalue. 

Two stages of estimations are required in this Hybrid method; at the first one, the explicit forward Euler method 

is computed, the result of this first evaluation becomes the input for the second evaluation using Runge-Kutta 

method. These evaluations are done as explained in the Fig.5 with respecting the time interval for each 

evaluation. The ( ) parameter is a percentage ratio between forward Euler and the second-order Runge-Kutta 

methods. It is set equal to 0.74 in this work for stability reason(Fig. 4).  
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Fig.5. Flowchart showing only stress–strain integration processes, according to Hybrid method. 

4. Experimental verification and evaluation of the integration schemas performance  

The constitutive model and numerical integration methods presented respectively in the Section 2 and the 

Section 3 have been coded via FORTRAN 90 and implemented in a commercial finite elements package 

ABAQUS
TM

/Standard (2014) through a user subroutine UMAT [46].  

Two mechanical loading cases have been simulating with the mechanical behavior law calibrated on a 

polyethylene industrial grade. The results obtained successively with the three explicit integration methods have 

been analyzing and comparing in order to evaluate their performance. The integration methods have been 

examined according to the stability of numerical integration method, the accuracy of the obtained solution, the 

plastic consistency criterion, and the CPU time efficiency. 

The first case of simulation deals with a classic uniaxial tensile test. The second one, a creep test, concerns a 

configuration related to a polymer structure in an engineering context. 

4.1 Uniaxial tensile test  

The typical results of experimental tensile stress tests performed on a polyethylene industrial grade at room 

temperature 23°C are depicted in Fig.6. The tensile force F was measured and converted to true axial stress 

according to the following relationship: 
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where S is current sample cross-section, S o  is the initial cross section,  o  is the nominal stress,  o  is the 

nominal strain and   is the Poisson’s ratio chosen to be equal to 0.4. Following a  classical analytical 

deterministic method, a set of parameters have been determined for the two-phase elasto-viscoplastic constitutive 

model.  

 

Fig.6. Experimental stress-strain evolution at 23°C and 0.5 mm/min vs. time for the employed semi-crystalline 

polymer. 

Calculations are performed on one linear cubic element C3D8. Three numerical simulation scenarios are 

conducted at 23°C with strain rate equal to 0.083 s
-1

 (equal to the one used in the experiment). The first scenario 

is conducted without sub-division technique. The second scenario is conducted with relatively coarse sub-

division, and a third scenario uses a finer sub-division. The maximum number of automatic cutbacks allowed for 

an increment and the increasing factor when two consecutive increments converge are set to 5 and 1.5 

respectively.  

It should be noted that the goal of this work is not to have a perfect material behavior (material parameters 

should be optimized to this) but more to compare the different numerical integration methods.  

 

The scenario I: In this scenario, the sub-division technique is not employed (it means that the value of J 

mentioned in section 3 is equal to one). 

The results of simulations are depicted in Fig.7 and Table 5. The Fig.7 shows the results of the three explicit 

numerical integration methods, which are the explicit Runge-Kutta second-order (RK2), the explicit Runge-

Kutta fourth-order (RK4), and the Hybrid Forward Euler with explicit Runge-Kutta second-order (Hybrid). At 

this simulation condition, the RK2 revealed dramatic oscillations around experimental data. However, the 

simulation converges despite these high oscillations. The result is less accurate than the ones obtained by the two 

other explicit methods. The RK4 exposes better stability with less oscillations amplitude, subsequently, the 
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accuracy of results are improved in comparison with the results obtained by RK2. These results confirm the 

superiority of RK4 in term of enhancing results due to a higher number of evaluation stages. The Hybrid method 

appears to be the most precise without oscillation and has the best stability condition compared to the two other 

methods. These results obtained for calculation by finite element code are in agreement with results obtained 

numerically by [36] for ordinary differential equations.   

Table 5 presents the results of integration methods. This table illustrates the number of increments to finish the 

simulation, the automatic incrementation cutbacks, the number of iterations necessary to complete the 

calculation, CPU time consuming and the CPU time rate. The CPU time rate is obtained by considering the 

method which consumes the least time as the reference.  

The Hybrid is the most efficient method, in this case, it consumes 4.92 (sec) CPU time, thus its CPU time is 

considered to be the reference, it accomplished the simulation in just 177 increments with zero automatic 

cutbacks. RK2 and RK4 methods are respectively consuming 2.04 and 1.73 times more than the Hybrid method. 

Thus in this scenario, it can be noticed that the Hybrid method has a superior property in terms of accuracy of the 

result, the stability of calculation, and CPU time efficiency.  

Table 5. The efficiency of numerical integration methods with sub-increment (J=1) for tensile simulation. 

Method RK2 RK4 Hybrid 

Increments 273 255 177 

Cutbacks 45 39 0 

Iteration 759 514 184 

CPU time (sec) 10.05 8.50 4.92 

CPU time rate 2.04 1.73 1.00 

 

Fig.7. Experimental vs. simulation data for different numerical integration methods at (J=1) under tensile test.  

The scenario II: in this scenario the sub-division technique is used, each time increment is divided by 3 (J = 3). 

The rest of simulation conditions mentioned in scenario I are remaining the same. According to the results, all 
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the integration methods are in good agreement with the experimental data : quite similar result in term of stress-

strain mechanical behavior are obtained from experimental and numerical results (Fig.8). Once again, the goal is 

not to be perfectly predictive but more to compare the different integration processes.  

 

Speaking of time-consuming, Table 6 clearly presents the benefits of sub-division technique: compared to the 

first scenario (I), the efficiency of different integration methods approaches to the efficient one. The Hybrid 

method is still the most efficient one. It is worth mentioning that despite sub-division, the total CPU time of all 

the method decrease in comparison with the first scenario (decrease approximately by half for RK2 or RK4). For 

the Hybrid method, CPU time decreased from 4.92 to 4.78 (sec), this is a tiny difference for one element but for 

a complex system with thousands of elements, for example, it could become an important issue. This result led to 

a third scenario with a finer sub-division to observe the outcome of different methods.  

Table 6. The efficiency of numerical integration method with sub-increment (J=3) for tensile simulation.  

Method RK2 RK4 Hybrid 

Increments 177 177 177 

Cutbacks 0 0 0 

Iteration 184 184 184 

CPU time 5.11 4.93 4.78 

CPU time rate  1.069 1.031 1.000 

 

Fig.8. Experimental vs. simulation data for different numerical integration methods with (J=3) under tensile test.  

The scenario III: the finer sub-division has been designed in this scenario, each increment is divided into 10 

sub-increments (J=10). The other conditions are the same as for scenario (I). Simulation results indicate that 

there is no significant difference between the methods in terms of stress-strain accuracy for relatively high sub-

division which means smaller stepsize, as depicted in Fig. 9. The RK4 method became more efficient in CPU 

time-consuming viewpoint, as is illustrated in Table 7. This result is in agreement with the work of other authors 
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[30, 32]. Table 7 shows the efficiency of each numerical integration methods. In spite of two times more 

estimation processes, the RK4 method is the less time-consuming method.   

Table 7. The efficiency of numerical integration method with sub-increment (J=10) for tensile simulation. 

Method RK2 RK4 Hybrid 

Increments 177 177 177 

Cutbacks 0 0 0 

Iteration 184 184 184 

CPU time 4.97 4.93 5.00 

CPU time rate  1.008 1.000 1.014 

 

Fig.9. The experimental vs. simulation data for different numerical integration methods with (J=10) under tensile 

test.  

4.2 Structural analysis under creep test 

Creep experiments have been performed at different loads and temperatures conditions. The highest level of 

flowed material under the applied creep load has been measured at the end of the experiments. An axisymmetric 

finite element model has been designed according to the dimension of the corresponding experimental sample as 

outlined in Fig.10. The Fig.10b illustrates the typical flow of the polymer through a gap due to the pressure 

applied to the polymer. The highest level of flowed material (highlighted in red color on Fig.10-b) under creep 

load  are analyzed for the different integration methods and are compared to the experimental database.  

The stepsize is automatically chosen by ABAQUS
TM

 between 1x10
-5 

to 1000s, the maximum number of 

automatic cutbacks allowed for an increment, and the increasing factor when two consecutive increments 

converge are set equal to 12 and 1.2 respectively. In this section, the potentials of all numerical explicit 

integration methods mentioned in Section 2 are investigated for structure calculation under creep test (two 

conditions of loading are analyzed: case I and case II, depicted in the following). The accuracy of simulation 

results, the stability of integration schemas, the CPU time efficiency, plastic consistency are still the scope 

debated of this section.    



24 
 

 

Fig.10. Axisymmetric model for creep simulation. (a) Dimension and boundary condition of the model. (b) 

Typical evolution of a polyethylene-kind material under creep according to the elasto-viscoplastic model 

presented in Section 2. The red dot corresponds to the maximal creep level recorded during experiments. 

The case I: The creep tests has been conducted under 21 MPa at the temperatures of 40 and 90°C during 

1.5x10
+6 

seconds. Each integration time increment is divided into 10 sub-increments. The simulations results are 

outlined in Table 8 and 9. These tables exhibit the number of increments required to complete the simulation, the 

automatic incrementation cutbacks, the number of iterations, the CPU time cost and CPU time rate to indicate 

the most efficient schema among employed methods. Besides, a deviation is calculated to illustrate the error 

between the experimental and the simulation results (the highest level of flowed material corresponds here to the 

major result).  

At 40°C, the Hybrid seems to be the less expensive schema, followed by RK2 then RK4 as depicted in Fig.11, 

while at 90°C the CPU time cost for the different schemas changes relatively, it can be noticed that the RK2 

becomes the most efficient schema. Concerning accuracy, the RK4 demonstrates a very good precision with the 

lowest deviation in comparison with other methods as shown in Fig.12. In conclusion, choosing a method in this 

example faces a dilemma between accuracy of obtained result and CPU time cost efficiency.  

Table 8. Performance of numerical integration methods with sub-increment J=10, and temperature 40 °C for 

creep test. 

Method RK2 RK4 Hybrid 

Increments 4255 4262 4256 

Cutbacks 0 0 0 

Iteration 4731 4776 4724 

CPU time (sec) 4797 5962 4705 

CPU time rate  1.02 1.267 1.00 

Deviation % 27.63 4.93 27.63 
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Table 9. Performance of numerical integration methods with sub-increment J=10, and temperature 90 °C for 

creep test. 

Method RK2 RK4 Hybrid 

Increments 3459 3445 3446 

Cutbacks 2 0 0 

Iteration 3991 3934 3950 

CPU time (sec) 3591 4711 3933 

CPU time rate  1.000 1.312 1.095 

Deviation % 14.55 6.86 14.62 

 

 

Fig.11. Total CPU time cost vs. different integration schemas for creep test. (a) At temperature 40 °C. (b) At 

temperature 90 °C. 

 

Fig.12. The deviation between experimental and simulation result, for different integration schemas, under creep 

test. (a) At temperature 40 °C. (b) At temperature 90 °C. 

The case II: In this case, the creep test is conducted under 69 MPa at 23 °C during 1.5 x10
+6

 seconds. Two sub-

divisions are investigated; first, each stepsize increment is divided into 20 sub-increments then into 200 sub-

increments. 

On one hand, at sub-increment (J=20), all three explicit methods RK2, RK4 and hybrid method are diverging 

and running out of calculation without accomplishing the simulation due to unsatisfying plastic consistency at 

that significant amount of applied load. Thus the results of sub-division (J=20) are not depicted. At the other 

hand, at the sub-division (J=200), all integration explicit schemas are able to complete the simulations as 
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presented in Table 10. It worth mentioning that, with relatively large integration stepsize the explicit methods are 

condemned by instability.  

Table 10, illustrates the three integration methods at sub-increment divisions (J=200). It can be noticed that the 

Hybrid method is the most expensive method among employed methods; it achieves the calculation with 494 

cutbacks due to instability. While the RK4 has a better stability, it achieves the calculation with only 62 

cutbacks, as shown in Fig.13.   

The example of this case illustrates that the amount of applied load on the system changes the stiffness behavior 

of constitutive model equations. In case I, the Hybrid methods has the best CPU time efficiency but it becomes 

the most time-consuming method in Case II. This result led to explore other integration schemas than explicit 

schemas for future works in order to provide an insight into the effect of applied load on the mathematical 

stiffness behavior of constitutive model equations.  

Fig. 14 plotted creep time vs. the increments, it illustrate the capacity of numerical integration schemas to reach 

the convergence. The RK4 converges rapidly: it needs 6515 increments to complete the calculation vs. 10268 for 

RK2 and 18708 for the Hybrid method. In conclusion, the RK4 has a better stability property than two other 

methods.  

Table 10. The efficiency of numerical integration method with sub-increment J=200, and temperature 23 °C 

under creep test. 

Method RK2 RK4 Hybrid 

Increments 10268 6515 18708 

Cutbacks 288 62 494 

Iteration 18816 10461 27921 

CPU time (sec) 43230 48891 75636 

CPU time rate  1.00 1.13 1.75 

 

 

Fig.13. Total CPU time cost for the different integration schemas, at J=200 under creep test.  
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Fig.14. Numerical integration schemas rapidity toward convergence at sub-increment J = 200 under creep test.  

5. Concluding Remarks 

In this work, different explicit numerical integration methods have been investigated to update stress-strain in a 

mean-stress dependent elastic-viscoplastic constitutive model for SCPs. Three explicit numerical integration 

schemas (fourth and second order Rung-Kutta, and a hybrid method between Runge-Kutta and Euler method) 

have been coded in FORTRAN to be used in a UMAT user subroutine in ABAQUS
TM

. The numerical 

integration schemas have been investigated in real engineering structure problem with viscoplastic materials 

such as thermoplastics. The criteria considered to examine each method are the stability of the method toward 

convergence, accuracy of the result, satisfying plastic consistency for the elastic-viscoplastic constitutive model, 

and CPU time cost. 

The numerical integration schemas have been implemented into the constitutive model in a flexible modular 

way, which allows applying these methods to any different constitutive model in future. The implementations are 

achieved by involving sub-division technique. This technique proves an important impact on the accuracy and 

convergence of numerical integration methods.  

For a tensile test without sub-division, the simulation shows that the Hybrid method demonstrates better 

performance with very good stability, accuracy and an efficient CPU time-consuming in comparison with two 

other schemas. 

For a tensile test with a sub-division technique, relatively at small integration interval, the integration methods 

are equivalent in terms of stability, accuracy of result, and CPU time efficiency. It worth mentioning that, the 

CPU time consuming for both RK2 and RK4 are improved largely with the sub-division technique. In spite of 

more calculation are performed in the sub-division technique, it consumes less CPU time to complete the 

simulation.  

The experiments and simulation are also driving for creep tests on a structure with different temperature and load 

conditions at different integration time interval. The RK4 schema exhibit to be very competitive in terms of 

accuracy, stability and CPU time cost particularly at small integration interval. Results of creep tests on a 

structure demonstrate that load conditions change the performance of numerical integration schemas; it may be 

due to the change of mathematical stiffness behavior of constitutive model equations. Therefore, these results 

initiate the idea of investigating implicit integration schemas for future works in order to provide an insight into 

the effect of applied load on the mathematical stiffness behavior of constitutive model equations.  
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