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Abstract

We present a method for reliability assessment in extreme conditions from a numerical simulator through surrogate based impor-
tance sampling. As proposed in recent works in the literature, a Kriging surrogate is used to build an approximation of the limit
state function and the optimal importance density. Our contribution is then the use of a sufficient dimension reduction method
which enables the construction of the limit state function metamodel in lower dimension. The so called augmented failure prob-
ability and correction factor are recast in this dimension reduction framework. Simple strategies for metamodel refinement in the
dimension reduction subspace are described and, in the case of Gaussian inputs, a computationally efficient MCMC scheme aimed
at sampling the quasi-optimal importance density is presented. The case of non-Gaussian inputs is also laid out and it is argued
and demonstrated through simulations that this approach can reduce the number of calls to the computer model, which is a crucial
factor in reliability analysis. Advantages of this method are also supported by numerical simulations carried on an industrial case
study concerned with the extreme response prediction of a wind turbine under wind loading.

Keywords: Reliability analysis, Surrogate model, Importance sampling, Sufficient dimension reduction, Kernel dimension
reduction, time dependent response, rare event

1. Introduction

Structural reliability analysis often aims at assessing the probability of occurrence of an extreme event related to a

given structure. In the usual setting, we are given a limit state function g which describes the performance of a system

or structure with respect to some failure criterion or set of criteria for a given input vector x ∈ Rd. The failure domain,

F, corresponds to the set of inputs for which the performance function g is negative, i.e. F = {x ∈ Rd | g(x) ≤ 0}.

In our framework these inputs are uncertain and modeled as squared integrable random variables with know joint

distribution. Thus, the failure probability boils down to:

P f = P(g(X) ≤ 0) = E(1g(X)≤0) (1)
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with 1A the indicator function taking value one if A is fullfiled and 0 otherwise. This probability may readily be esti-

mated through standard Monte Carlo simulation, however since P f is often less than 10−4 it takes roughly 106 − 107

evaluations of g to obtain an estimate with a coefficient of variation (c.o.v.) less than 5 %. This is clearly problem-

atic for many engineering applications since most of the time g depends on the output of time-expensive to evaluate

computer model. Analytical approximations based on the most probable failure point, also called design point (DP),

have long been the practical alternative to Monte Carlo sampling. This has led to the popular FORM/SORM estima-

tions (Ditlevsen and Madsen (13)) later adapted to deal with multiple design points (Kiureghian and Dakessian (28)).

However these approximations are often poor whenever the non-linearity of g are non-negligible, the input dimension

is high (Katafygiotis and Zuev (27)) and do not provide any confidence bounds on the failure probability estimate.

Accelerated Monte Carlo techniques have been proposed in the literature to overcome these drawbacks (Morio and

Balesdent (40), Caron et al. (8)). In particular, Importance Sampling (IS) (Hammersley and Handscomb (24)) is a

standard variance reduction Monte Carlo method that can be used to estimate P f by sampling from an importance

density whose main contribution takes place near the limit state surface. A preliminary design point or multiple fail-

ure mode computation can be used to design an importance density with techniques such as a mixture of standard

distributions centred on the failure modes (Au et al. (3), Melchers (39)). In the same vein, Yun et al. (54) proposed an

IS estimator introducing a safety sphere and an IS density based criterion to reduce the number of costly model eval-

uations. To further reduce the estimation cost, Yao et al. (52) improved the latter by identifying the ”critical region”

which contains input samples with both high occurrence probability and high misjudgment risk. Still, these estimators

rely strongly on the DP point(s) estimation and the number of evaluations of the limit state function required to reach

a given accuracy may still be important specially in an high dimensional input setting (Katafygiotis and Zuev (27)),

limiting the applicability of such a scheme. Subset simulation (Au and Beck (2)) eliminates the need to design an

importance density by estimating the failure probability as a product of intermediate probabilities which are evaluated

by Monte Carlo Markov Chain simulations. However, the incurred computing cost is still usually prohibitive in many

industrial reliability cases. As a result, methods based on surrogate modelling have been devised to limit the number

of computer model evaluations. Nevertheless, using a too crude approximation of the limit state function can lead to

non-consistent failure probability estimators (Dubourg et al. (16)). Moreover, replacing the true model by an accurate

surrogate can still lead to an inaccurate probability estimation (Li and Xiu (34)). In fact, a good practice consists

in using the surrogate only/mostly as a guide for the selection of input values to be evaluated with the real model

in order to get a consistent estimator and a precise failure probability estimation. In this latter framework, Echard

et al. (20), Echard et al. (21) and Li et al. (36) proposed methods based on the active kriging principle, in which

the performance function g is replaced by a Gaussian process regression metamodel. This latter model is iteratively
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refined so as to provide accurate predictions in the vicinity of the limit state surface and suggests inputs values to be

evaluated by the real model. In the subset simulation framework, a similar approach has been proposed by Bourinet

et al. (7), where a SVM classifier is built to emulate the intermediate limit state surfaces. Alternative surrogate based

approaches emcompass the work of Sun et al. (49) involving a surrogate based proposal function incorporating the

inputs probability density. Li and Xiu (34) used a generalized polynomial chaos surrogate as the guideline for an MC

estimator and finally Au (4) proposed a stratified, with respect to a given surrogate output, estimator of the seeked

failure probability.

On the other hand, to ensure consistent importance sampling estimators, the Meta-IS (Dubourg et al. (15)) method

was introduced, where the sought probability is evaluated via an approximation of the Optimal Importance Density

(OID) based on a kriging emulator. The corresponding IS estimator of P f is cast as a product of the failure probability

relative to the metamodel - the augmented failure probability - and a correction factor based on the limit state function

g. Simulations on mechanical reliability problems have demonstrated the efficiency of this methodology both in terms

of accuracy and simulation budget.

However, it is known that fitting a kriging metamodel can break down in high dimensional settings (d ≥ 20− 30) if no

stronger assumptions are imposed on the function to approximate (our working hypothesis), or demand an unreason-

able amount of code evaluations to obtain sufficient accuracy in the failure region. Furthermore, in the methodology

of Meta-IS, sampling from the approximate OID is accomplished by resorting to an MCMC algorithm, most of which

are known to suffer from the curse of dimensionality. On the other hand, in the last couple of decades, dimension

reduction (DR) techniques have been an intense subject of research in computational statistics. For instance, to tackle

the ”curse of dimensionnality” within a kriging model, Lelièvre et al. (32), Lelievre (31) proposed a reduction dimen-

sion strategy to enable the construction of a kriging metamodel in high dimension by applying a PCA to the set of

hyper-parameters before their optimization but based its failure probability estimator solely on the surrogate predic-

tion. Another strategy was proposed in Jiang and Li (26) where an active subspace approach (Constantine (10)) is

proposed to reduce the input dimension. This latter DR technique is appealing but requires the knowledge or the esti-

mation of the gradient of the limit state function. Nevertheless, when dealing with an expensive numerical code with

no gradient information and an high dimensional input vector, the gradient estimation cost can become prohibitive.

The sliced inverse regression (SIR) method as a DR technique have also been coupled with a polynomial chaos ex-

pansion to overcome the dimensionality issue (Xu and Wang (51)). The SIR method is an efficient DR approach but

its application is circumscribes to Gaussian (or more generally to Elliptical) inputs distributions. To overcome these

latter limitations, methods such as kernel dimension reduction (KDR) (Fukumizu et al. (23)) and gradient-based KDR

(gKDR) (Fukumizu and Leng (22)) have been developped. The method based on gKDR presents practical advantages
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that will be discussed latter on the paper and, despite its name, does not require directly the limit state function gradi-

ent estimation because of its kernel based approach. We can ultimatly mention the work of Lataniotis et al. (30) which

proposes a general framework to couple a surrogate estimation with a DR technique by minimizing alternatively a

given loss function with respect to, on the one hand, the surrogate (hyper-)parameters and, on the other hand, meta-

parameters of the selected DR algorithm. We can notice that our approach almost lie within this latter framework.

In this paper, we lay out a methodology for importance sampling based on the sufficient dimension reduction (SDR)

framework (Chiaromonte and Cook (9)) for regression. SDR is based on the assumption that the output statistical

dependency on the input X can be described entirely by projecting X on a lower dimensional subspace. Based on

this assumption, we propose to build a kriging metamodel in the reduced dimension subspace, making the Meta-IS

algorithm tractable. Assuming that the input vector is Gaussian, we show that the augmented failure probability can

be estimated through Monte Carlo simulation in the reduced dimension subspace. As for the correction factor, which

is based on a sample from an approximation of the optimal importance density, we demonstrate how the sample gen-

eration can be achieved efficiently since MCMC sampling is only performed in the reduced dimension subspace. We

also discuss the case of application of SDR for Gaussian process emulation of complex models with non-Gaussian

inputs. The paper is organized as follows. Section 2 recalls the basics of metamodel-based importance sampling.

Section 3 gives an overview of two dimension reduction tools: KDR and gKDR. Section 4 is devoted to metamodel

based importance sampling with sufficient dimension reduction. Finally, in section 5 we numerically illustrate these

ideas on an academic example and on a relevant industrial case study which consists in the assessment of the struc-

tural reliability of a wind turbine, where the wind is modelled as a Gaussian process leading to a high dimensional

(d ≥ 100) case study.

2. Importance sampling with a kriging metamodel

Throughout this article, the input is a real d dimensional random vector X = (X1, . . . , Xd)T with density q. As

previously stated g denotes the limit state function.

Kriging models are flexible and efficient surrogates to complex computer codes. As most metamodels, they rely on

an initial design of experiments (DoE) D =
{
x1, . . . , xND

}
. The popularity of kriging stems among other things from

the availability of prediction uncertainty estimates, given by the kriging variance. This makes it possible to devise

refinement strategies aimed at increasing some measure of accuracy in the regions of interest. For reliability purposes

this region is in the vicinity of the limit state surface F.
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2.1. Gaussian process based model

Kriging is based on the assumption that the performance function g is a sample from a Gaussian process (GP) G so

that

G(x) = fT (x)β + Z(x) (2)

where fT (x)β is the GP mean and Z a zero-mean stationary Gaussian process. f =
(

f1, . . . , fp

)T
is a vector of basis

functions ∈ L2(Rd,R) and β a vector in Rp. Z is parametrized by its stationnary autocovariance function

C(x, x′) = σ2
GRθ(x − x′) (3)

where σ2
G is the GP variance and θ is a vector of hyper-parameters of the autocorrelation function R. The autocorre-

lation function is given a priori and is a key modeling ingredient for the surrogate. As can be seen in (4) and (5), the

prediction at any point x is written as the sum of a trend term and a linear combination of r(x) = Rθ(x− xi), moreover,

the variance predictor is deeply impacted by the kernel choice. Without prior information, we selected the anisotropic

stationary Matern-5/2 autocorrelation function which offers enough flexibility to adequately capture the variability of

numerous objective function depending on the choice of the hyper-parameters.

Prediction at a previously unobserved input x is based on the best linear unbiased prediction (BLUP) of G(x) given

the observations y = (g(x1), . . . , g(xND )) at the DoE D. The BLUP at x, denoted Ĝ(x), is a normal random variable

N(mĜ, σ
2
Ĝ

) where

mĜ(x) = fT (x)β̂ + rT (x)R−1(y − Fβ̂) (4)

σ2
Ĝ

(x) = σ2
G(1 − rT (x)R−1r(x) + vT (x)(FT R−1F)−1v(x)) (5)

are respectively the prediction mean and variance, R is the correlation matrix of the DoE defined by Ri j = Rθ(xi − x j),

i, j = 1, . . . ,ND. The term r = Rθ(x − xi), i = 1, ...,ND, is the cross-correlation vector between the prediction and the

observations while F is the matrix defined by Fi j = f j(xi), 1 ≤ i ≤ ND, 1 ≤ j ≤ p. The vector β̂ is the solution to a

generalized least-squares problem β̂ = (FT R−1F)−1FT R−1y and v(x) = FT R−1r(x) − f(x). More details on Gaussian

process modeling can be found in (45, 43).

2.2. Basics of metamodel based importance sampling (Meta-IS)

In this section, we give an overview of the Meta-IS algorithm originally due to Dubourg et al. (15). The method relies

on the use of a quasi-optimal importance density which mimics the intractable optimal importance density.
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Importance sampling is a well known variance reduction method where the quantity of interest is an expectation of

a squared integrable function. In the context of reliability methods, the expectation of interest is P f . Let q̃ be a

probability density function with support containing the one of 1g(x)≤0q(x) and such that Eq̃(1g(X)≤0q(X)/q̃(X)) < ∞.

IS stems from the equality P f = Eq̃(1g(X)≤0q(X)/q̃(X)). Given an i.i.d. sample from q̃, X(i) i = 1, . . . , n, the importance

sampling estimator of P f reads

P̂IS
f = n−1

n∑
i=1

1g(X(i))≤0q(X(i))/q̃(X(i)) (6)

The above estimator is unbiased and has a known variance which can be minimized with respect to q̃. An important

result from Rubinstein and Kroese (44) is that Varq̃(P̂IS
f ) = 0 for the following optimal proposal density

q̃opt(x) = 1g(x)≤0q(x)/P f (7)

which is generally difficult to sample from since it involves the failure probability we are trying to estimate. In Meta-

IS, samples are drawn from a quasi-optimal density obtained by replacing the indicator function with a continuous

probabilistic classification function linked to the kriging predictor:

π(x) = Φ(−mĜ(x)/σĜ(x)) if x < D and 1g(x)≤0 if x ∈ D (8)

where Φ is the standard normal cumulative distribution function (cdf). Now by swapping π(x) and 1g(x)≤0 in (7), one

obtains the following quasi-optimal importance density (Dubourg et al. (15)):

q̃∗(x) = π(x)q(x)/P f ,ε (9)

where P f ,ε =
∫
π(x)q(x)dx is the augmented failure probability.

Considering the defined quasi-optimal instrumental density, the failure probability estimate may now be broken down

as follows (Dubourg et al. (15))

PIS
f = P f ,εαcorr (10)

where P f ,ε is the augmented failure probability, which relies solely on the metamodel, and αcorr = Eq̃∗ (1g(X)≤0/π(X))

is a factor that corrects for the bias. Let X(i), i = 1, . . . ,Nmeta be an i.i.d. sample from the prior density q, then

P̂ f ,ε = N−1
meta

Nmeta∑
i=1

π(X(i)) (11)

6
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is an unbiased and consistent estimator of P f ,ε . The estimation error is quantified by the Monte Carlo variance

σ̂2
ε = [Nmeta(Nmeta − 1)]−1

Nmeta∑
i=1

(
π(x(i)) − P̂ f ,ε

)2
(12)

From a practical standpoint, sampling from q is usually straightforward whereas obtaining draws from q̃∗ given in (9)

requires adequate algorithms such as Monte Carlo Markov Chain simulation. Let t( j), j = 1, ...,Ncorr + b be a chain

with stationary distribution q̃∗, then from ergodicity

α̂corr = N−1
corr

Ncorr+b∑
j=b+1

1g(t( j))≤0/π(t( j)) (13)

is a biased finite sample estimate of αcorr where b is a burnin parameter. The standard squared error can be assessed as

σ̂2
corr = N−1

corr

N−1
corr

Ncorr+b∑
j=b+1

h(t j) − α̂2
corr

 (1 + γ̂corr) (14)

where h(t j) = 1g(t( j))≤0/π
2(t( j)) and γ̂corr is an estimator of 2

∑∞
k=0 Corr(h(t(0)), h(t(k))), which can be estimated as

detailed in Dubourg (14). In the original paper of Dubourg et al. (15), samples from the quasi-optimal density are ob-

tained through a modified Metropolis-Hastings scheme (Au and Beck (2)). To mitigate the inflation of the estimation

variance due to the dependence in the chain, thinning can be performed prior to the correction factor estimation, that

is taking one in k draws in the simulated chain. This of course increases the length of the simulated chain which must

be kNcorr long in order to retain Ncorr samples. From a computational perspective, the MCMC sampler only evaluates

the probabilistic classification function, and is therefore expected to be relatively efficient.

While the estimation of the augmented failure probability P f ,ε only resorts to the Kriging predictor, its compu-

tation in a high dimensional space through standard Monte Carlo simulation can still be improved specially when

dealing with small probabilities. Therefore, we adopt a splitting estimator for P f ,ε , much like in subset simulation, as

introduced in Sudret et al. (48)

2.3. Kriging metamodel refinement

Before computing both quantities P̂ f ,ε and α̂corr, it is paramount to have a sufficiently accurate Kriging metamodel.

Otherwise, the approximation q̃∗ of the optimal importance density would be poor and yield high estimation variance.

To obtain an accurate emulator, one can iteratively enrich the initial design DoE with new limit state function evalu-

ations. This initial DoE can be any relevant space filling design. In reliability analysis, iterative refinement methods

are usually geared towards accurate approximation of a target region as evidenced by Vasquez and Bect (50), Picheny
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et al. (42) or Bect et al. (5). In our context the target region is the area where the sign of the model Ĝ is the most

uncertain. The target region is formalized as an in-fill criterion function to be optimized in order to get the next point

to be added to the doE (Bect et al. (5)). However, the in-fill criterion might feature multiple optima or cause the

optimizer to be stuck on a local plateau. Moreover, unless one uses a multi-start scheme (which would not guarantee

finding all local optima anyway), most iterative in-fill criteria do not allow for multiple points to be added to the DoE.

This has motivated sampling based design enhancements as in Bourinet et al. (7) which rely on a so-called margin

shrinking concept: initially these were based on adding multiple points in the margin of a support vector margin

(SVM) classifier and can be adapted to the Kriging metamodel enhancement. The idea is to draw a large number of

samples, from the weighted margin probability density defined as h(x) ∝ w(x)q(x) where w is the margin probabil-

ity (Dubourg (14)): the probability for the GP model to be within an interval centered on 0. Drawing samples from h

yields points with a high uncertainty on the sign of their Kriging predictor: these are good candidates to be added to

the DoE. In practice, an MCMC algorithm (e.g. slice sampling from Neal (41)) can provide a sufficiently large sample

with stationary distribution h. The k-means algorithm, with the euclidean distance, then provides Nadd clusters from

these samples, which centers are evaluated on the performance function and added to the DoE. The Kriging model is

then updated on the basis of this enhanced design.

The model refinement is iterated as long as a stopping criterion is not met. In the Meta-IS algorithm, the usual criterion

is a leave-one-out estimate of the correction factor which is defined as

αLOO = N−1
D

ND∑
i=1

1g(xi)≤0/π−i(xi) (15)

where π−i(x) = Φ
(
−m̂GD\xi

(xi)/σ̂GD\xi
(xi)

)
is the classification function obtained by removing observation xi from the

DoE D. A factor π close to 1 signifies accuracy of the classifier based on the Kriging classification function π. The

DoE enhancement can therefore be terminated whenever 0.1 ≤ αLOO ≤ 10 and the number of experiments ND is

higher than a pre-specified threshold (typically a few tenths/hundreds). It is also necessary to impose a maximum of

computer model evaluations during the initial space-filling and refinement phase, as there is no guarantee that αLOO

will get closer to 1 with a reasonable amount of limit state function evaluations.

3. Sufficient dimension reduction for regression and classification

3.1. Motivations and principle of sufficient dimension reduction

While flexible enough to cover a wide range of reliability analysis problems, the metamodel based importance sam-

pling procedure can sometimes be intractable when dealing with high dimensional inputs. Indeed, the Kriging meta-
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model usually needs a DoE with sufficient size to cover the input space. Furthermore, the Gaussian process training

which requires learning the kernel hyperparameters might be faced with matrix singularity during marginal likelihood

optimization, especially when the kernel is parametrized by a scalar parameter for each input variable.

Attempts have been made recently to propose adequate representations for high dimensional Kriging. For instance,

additive Kriging (Durrande et al. (17)) can be used by assuming an additive model for the emulator, i.e. that model is

a sum of univariate metamodels. This was shown to be more effective than using standard separable kernels on a few

test cases involving between 10 and 50 variables. Another relevant approach is to incorporate variable selection into

the Gaussian process regression framework as suggested by Yi et al. (53).

In this work, we take another approach which is motivated by the literature in supervised dimension reduction, specifi-

cally the sufficient dimension reduction (SDR) framework (Chiaromonte and Cook (9)). SDR focuses on the discovery

of a subspace S , of the initial input space, such that the projection of the inputs in S explains the behaviour of the

output. This latter is equivalent to say that the distribution of Y |X is the same as the one of Y |ProjectedS (X). To do so

a low rank matrix B spanning S is estimated which enables, in our context, to perform the regression of the output Y

on X only with respect to the projected inputs: BT X. Indeed, for many regression models, it is frequent for the output

to be the combination of non-linear functions depending on linear combinations of the inputs (or a subset) as well as

an optional noise independent of the inputs.

More formally, S B = span(B) is a dimension reduction subspace if

Y ⊥ X | BT X (16)

where B ∈ Rd×r and ⊥ stands for independence. In our case, (16) could be rewritten as Y = gr(BT X, ε) where ε is a

noise term independent of X and gr an unknown function. The interest of SDR for metamodeling is obvious: if we

could find a matrix B with sufficiently low rank r, a surrogate model of the link function gr can be built. Typically,

in structural reliability of offshore structures we might be dealing with over 100 input variables. If r ≤ 10 a usual GP

metamodel can then be applied to model the response Y = g(X) but in the subspace S B. Because, we have no prior

knowledge on the noise term, we may obtain a coarse metamodel by using the simplified model

Y = gr(BT X) (17)

In this case, the surrogate model is fitted to the link function gr. To deal with the fact that model (17) does not take

into account the noise in the original dimension reduction model, we suggest to use a nugget term in the correspond-

ing metamodel which value will be estimated jointly with the other hyper-parameters by maximizing the GP model

9
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likelihood. The fact that we are fitting a metamodel not to the true limit state function but to the link function gr in the

simplified regression model (17) should not necessarily hamper the metamodel’s performance if the regression noise

ε is not predominant. We call the importance sampling procedure with SDR subspace metamodelling Meta-ISDR,

where DR stands for dimension reduction. It will be outlined in 4.

A similar approach has been laid out in Xu and Wang (51) where the SIR dimension reduction approach is used before

constructing a polynomial chaos expansion of the limit state function with respect to the reduced variables. The SDR

approach we couple with a GP model is more general in the sense that, unlike in SIR, it does not impose any linear

assumption on the mean of the input variables conditionned on the output one neither any assumption on the inputs

distributions. Nonetheless, in the same manner as in Xu and Wang (51), the SDR method is used as a screening

approach. Moreover, we are interested in reducing the dimension for the regression of the output Y in a region that

is large enough to contain part of the failure domain. Therefore, it is necessary to obtain a training set consisting in

a random samples that fill the input space but also populate the failure domain. For this reason, the initial design of

experiment performed for the SDR purpose is a mixture of a global and a local design: a global uniform distribution

within a given maximal global hyper-sphere and local uniform distributions within spheres (of given radius) centered

at the discovered design points (included in the global sphere).

For the selection of variables important for the reliability analysis, the same approach could be directly applied to the

indicator output 1g(X)≤0 since the kernel dimension reduction method we use has the particularity of handling binary

output. The difficulty is then to start with a sample having enough 0-1 information for the SDR analysis since the

event considered is rare. Instead of performing the DR study before the reliability analysis, it might be possible to

incorporate the SDR approach within this meta-IS since the method generates sample points in the vicinity of the

limite state. However, the latter strategy will impose to work, at least at the beginning, in the high dimensional space.

This idea will be further investigated in another paper.

In the sufficient dimension reduction literature, the kernel dimension reduction method is relatively complex and re-

quire a non-negligible time of process. We clearly can not enter into all details of the theoretical background necessary

but hope to give the reader the main motivations and key ideas supporting its use. Refer to the literature cited for de-

tails on the methodology.

Recently, kernel methods have lead to the kernel dimension reduction (KDR) algorithm (Fukumizu et al. (23)) and its

gradient based counterpart (gKDR, Fukumizu and Leng (22)): these algorithms can cope with a scalar, vectorial or

binary output and impose no strict conditions on the distribution of the input vector X. As such, they lends themselves

well to the task at hand since the user has much more latitude in the choice of the sampling distribution. For this

10
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same reason we dismissed methods such as the one proposed in Li (35), Cook (11) and Li et al. (33) which impose

restrictions on the input distribution.

To our knowledge, all supervised dimension reduction techniques offering a mapping between the initial space and

the projected one, rely on projection on linear sub-spaces. We have seen few, yet un-published, attempts to extend

the approach to non-linear spaces but, as far as we know, they will rely on gradient informations which is to costly to

get in our computer experiment context. Therefore, in the paper we discard the possibility of discovering non-linear

functions g1, ..., gM from the initial space into R such that g(x) = gr(g1(x), ..., gM(x), ε).

Nevertheless, even if the KDR approach can only discover linear functions g1,..., gM , represented by the projection

matrix B, it is not restricted to a linear function gr of the projected inputs Bt x. Indeed, KDR will seek for the best

linear combinations of the inputs with respect to an output that can be complex combination of non-linear functions of

these projected inputs as well as an optional noise independent of the inputs. In very loose terms, a space of functions

(characterized by a given kernel) is considered as the set of non-linear functions, defined in the projected space, that

can approximate functions (from another kernel generated space) of the output. The optimal projection matrix B is

the one that minimizes the approximation error of the function of the output by an optimal function of Bt x selected

from the kernel-generated set. This latter explanation can be summarized by the following optimization problem:

min
B,BT B=Ir

∞∑
a=1

min
f∈HB

X

E
[
(ξa(Y) − E(ξa(Y)) − ( f (X) − E( f X))

]2
,

where the ξas form a complete orthonormal system of the reproducing kernel Hilbert space (RKHS) HY associated

to the kernel kY andHB
X

is the RKHS associated to the kernel kB
X

. The advantage of the KDR approach is to propose

an equivalent but much less expensive formulation of this latter optimization task. The kernels and more details are

presented in the next section.

For instance, assuming no noise, if g(x) = x1x4 + sin(x2 + x3), x ∈ R4, then the projection matrix would be the 4 × 3

matrix B with column vectors the normalized versions of: (1, 0, 0, 1), (0, 1, 1, 0) and (−1, 0, 0, 1).

As stated previously, we notice that the method can not project on non-linear subspaces and interaction terms, such

as x1x4 above, cannot be detected as one new variable unless you specificaly introduce this new variable in the x

input vector, for instance such that x5 = x1x4 and perform the dimension reduction analysis on the random vector

(X1, ..., X5). This latter fact introduce the possibility to a priori incorporate non-linear functions of the inputs in the

random vector X used in the SDR step.

11
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3.2. Kernel dimension reduction

The basis of KDR is to express the conditional independence criterion (16) as an optimization problem that reaches its

minimum for the appropriate dimension reduction matrix. The optimization problem is defined through conditional

covariance operators on reproducing kernel Hilbert spaces (RKHSs) that capture conditional independence. From a

practical standpoint these operators are estimated from Gram matrices of the data and a specific functional of these

Gram matrices is minimized to yield an estimate of a SDR matrix.

Let (X,Y) be a random vector on X × Y with probability distribution probability PXY where (X,BX) and (Y,BY)

are measured spaces. Let kX and kY be measurable positive definite kernels on X and Y respectively, with associated

reproducing kernel Hilbert spaces HX and HY. Furthermore, assume E(kX(X, X)) < ∞ and E(kY(Y,Y)) < ∞. The

conditional independence criterion of (16) in KDR relies on the cross-covariance operator ΣY X : HX 7→ HY defined

as in Fukumizu et al. (23) by

〈h,ΣYX f 〉HY = EXY (( f (X) − EX( f (X))(h(Y) − EY (h(Y)))) (18)

for all f ∈ HX, h ∈ HY. The covariance operator ΣXX is defined similarly. The conditional covariance operator ΣYY |X

follows as combination of ΣXX and ΣYY and some known bounded operators. Let B ∈ Rd×r a matrix such that span(B)

is a dimension reduction subspace and BT B = Ir. Letting kr be a positive definite kernel and kB
X

a positive definite

kernel defined by kB
X

(x, x′) = kr(BT x, BT x′), we define the (cross-)covariance operators w.r.t. kernel kB
X

as ΣB
Y X, ΣB

XY ,

ΣB
YY and ΣB

XX. The conditional cross covariance operator ΣB
YY |X associated to kB

X
is defined similarly as ΣYY |X. Under

mild conditions that are satisfied in particular if all involved kernels are Gaussian RBFs, the following fundamental

relationship links the dimension reduction subspace and the conditional cross-covariance operators (Fukumizu et al.

(23)).

ΣYY |X = ΣB
YY |X ⇔ Y ⊥ X | BT X (19)

In addition to (19), we have for all B: ΣB
YY |X ≥ ΣYY |X (with the order of self-adjoint operators). Thus, in order to

find the SDR matrix B, the KDR algorithm minimizes Tr(ΣB
YY |X) subject to BT B = Ir. A reformulation of the latter

optimization problem leads to the practical algorithm which takes as inputs n i.i.d. samples (xi, yi) from PXY and

solves

min
BT B=Ir

Tr
[
GY (GB

X + nεnIn)−1
]

(20)

where GY and GB
X are the centred Gram matrices defined by GB

X = HKB
XH, GY = HKY H, (KB

X)i j = kB
X

(xi, x j),

(KY )i j = kY(yi, y j), 1 ≤ i, j ≤ n and H = In −
11T

n . The parameter εn is a regularization term that facilitates matrix

12
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inversion. In KDR this non-convex optimization problem is solved by a steepest-descent with algorithm line search

(see Fukumizu et al. (23) for more details).

The considered kernels kY and kr are both isotropic Gaussian kernel involving one parameter each. The median of

pairwise distances of the X-data is estimated and denoted σmedian. Then, during the steepest-descent optimization,

for a fixed number of iteration lmax, the hyper-parameter of the kernel kr is sequentially increased taking the values

2σ2
median(1 + cl) for l = 0, ..., lmax and c a fixed step size. The same is done with the Y-data: the hyper-parameter of

the kernel kY is incremented with the same step size c. This procedure imply imposing more regularization as the

optimization proceeds. Fukumizu et al. (23) proposed to do the opposite by decreasing the regularization along the

optimization iterations. We believe that starting with less regularization would benefit by enabling to select a better

direction in the optimization at the beginning and then when more advanced in the optimization we can be less de-

manding and increase the regularization without loosing much in optimality. Numerical results are reasonnably good

with the proposed approach. Nevertheless, we believe that counter examples could be found to put into jeopardy the

strategy proposed in (23) and ours. As mentioned in (23): ”we are not aware of theoretically justified methods of

choosing these parameters; this is an important open problem”. Of course the best approach would be to optimize

with respect to B and the regularization parameters at the same time but then the cost could become prohibitive. An

improvement could be to replace the line search step in the gradient descent (w.r.t B) by some BFGS or L-BFGS strat-

egy that will require less iteration and further add a few gradient descent steps with respect to the kernels parameters.

The latter improvement has not been implemented for the moment and will be the subject of further works.

On the other hand, since the regularization term εn as the same purpose of the two previous parameters it is fixed

during the procedure to a default value of 10−4.

Finally we can notice that the following introduction of the g-KDR approach is in particular motivated by the resolu-

tion of the same problem with a less expensive-to-evaluate cost function; enabling to perform cross-validation to tune

the kernels parameters at a more reasonnable cost.

3.3. Gradient-based kernel dimension reduction (gKDR)

The previous kernel dimension reduction procedure is efficient and consistent under non-restrictive assumptions on the

joint and marginal distributions of X and Y . However, the required non-convex optimization step makes it somewhat

CPU intensive depending on the size of the training samples (xi, yi). Indeed, the KDR cost function involves the

inversion of a large matrix when the number of data points increases involving large computational time when cross-

validation is used for parameters selection. The gKDR method from Fukumizu and Leng (22) solves these issues with

a much faster algorithm for dimension reduction subspace identification by only using an eigendecomposition after
13
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Gram matrix manipulation.

The gKDR approach relies on the fact that, supposing (17) holds, the derivative ∂E(Y | X = x)/∂x is contained

in the SDR subspace and can be further used to estimate the projection matrix B. A non-parametric estimator of

this derivative is obtained through covariance operators and the dimension reduction matrix B is identified as the

solution of an eigenproblem with few matrices inversions. This fast procedure enables regularization and kernel

parameter selection through cross-validation and can be applied to large training sets in high dimensions. For a

detailed description of gKDR, we refer the reader to the original paper by Fukumizu and Leng (22).

Note that both KDR and gKDR require a priori knowledge of the SDR subspace dimension r which is seldom the

case in practical applications. In the case of gKDR, we suggest a cross-validation procedure based on the mean-

squared error of the standard regression estimate of Y w.r.t. BT
r X where Br is the dimension reduction matrix of rank

r. This procedure can be made more efficient since gKDR defines the columns of the dimension reduction subspace

matrix estimate B̂ as the eigenvectors corresponding to the r largest eigenvalues of some symmetric n × n matrix (see

Fukumizu and Leng (22)). This implies that if r < s, then the columns of B̂r are the first r columns of B̂s, possibly up

to a sign. It is therefore sufficient to only compute B̂ for the largest candidate dimension for all cross-validation folds

leading to a faster algorithm.

4. Importance sampling and metamodeling in the SDR subspace

In our context, as stated in 3.1, the aim of sufficient dimension reduction is to enable Kriging metamodelling in a space

of much lower dimension, given by the dimension reduction subspace. We now consider a Kriging metamodel of the

limit state function output Y by using a Gaussian process model GP(fTβ,C) for the link function gr of the dimension

reduction model in (17). The ensuing Kriging predictor is denoted Ĝr. For reasons that will be clarified in the sequel,

we restrict ourselves to limit state functions that are defined for random inputs X with support in Rd.

4.1. Quasi-optimal importance density with metamodelling in the dimension reduced space

Consider the natural extension of the original quasi-optimal importance density defined as

q̃r∗(x) =
πr(BT x)q(x)∫
πr(BT x)q(x)dx

(21)

where πr is the probabilistic classification function of the Kriging metamodel in the SDR subspace

πr(z) = Φ
(
−mĜr

(z)/σĜr
(z)

)
(22)

14
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The potential error arising from the replacement of π by πr is taken into account with the nugget effect simultaneously

estimated with the others hyper-parameters of the GP model. Adding a nugget is almost equivalent to add a Gaussian

noise to the model with the only difference that we still interpolate the simulated data. This ”noisy” model is then use

to construct the BLUP and therefore propagate to the probability πr. This approach can be justified by a fisrt order

approximation of the prior Gaussian process taking into account a (small) error on the projection matrix that would

suggest to add a Gaussian error noise to Gr.

The ensuing augmented failure probability estimates and correction factor using the IS density q̃r∗ then read

P f ,ε = Eq(πr(BT X)) (23)

αcorr = Eq̃r∗

(
1g(X)≤0/πr(BT X)

)
(24)

4.2. Reduced Kriging metamodel refinements

Regarding the sampling based Kriging refinement strategy outlined in 2.3, a similar approach may readily be applied,

that is we define the weighted margin probability density

hr(x) ∝ wr(BT x)q(x) (25)

where wr is defined as w introduced in 2.3 but in the reduced space. The refinement strategy using a reduced meta-

model may now proceed as follows: given a sample xi, i = 1, . . . , n, drawn from a Markov chain targeting hr, Nadd

cluster centers are determined via an Euclidean based k-means algorithm and then projected onto the dimension re-

duction subspace using matrix B. These projected points can then be added to the DoE. However this runs the risk

that two cluster centers have very close projections which is inefficient for the construction of the metamodel of the

link function in the projected space (17) and furthermore can lead to numerical instability of the Kriging surrogate.

To avoid this, we suggest another strategy based on a clustering in the projected space. We first generate a space-filling

design, of size n, in the full space: a sphere of ”maximal radius” (to be presented later) in Rd. Then the following

three step are performed:

1. let zi = BT xi, i = 1, . . . , n be the projected samples,

2. find Nadd cluster centers {c j}
Nadd
j=1 of the zi dataset,

3. let i j be the index of the closest projections zi to c j: add (zi j , y j = gr(zi j )) by evaluating y j = g(xi j ).

The last step is a tweak that avoid the issue we would face if we directly back transform the cluster centers in Rr to

Rd by using a generalized inverse of the projecting matrix: B#. Indeed, in the case where the input domain X is not
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Rd, there is no guarantee that x = (BT )# z ∈ X.

4.3. The case of Gaussian inputs

The augmented failure probability and correction factor (23) and (24) normally require ordinary Monte Carlo or

MCMC sampling in a d-dimensional space. Admittedly, (23) does not resort to expensive limit state function evalua-

tions but a small value of the target failure probabibility may require a substantial amounts of sampling in Rd and calls

to the Kriging predictor. More importantly, the estimation of the correction factor requires sampling from q̃r∗ which is

achieved through an MCMC algorithm such as the Metropolis-Hastings (MH) algorithm. Tuning the MH algorithm

in high dimensions can prove cumbersome but approaches such as the modified Metropolis-Hastings algorithm (Au

and Beck (2)) may prove successful.

Let us assume that the input X is a standard multivariate random vector with Gaussian components. The estimation

of (23) and (24) is made more efficient as shown below.

Lemma 1. (i) The augmented failure probability P f ,ε can be expressed as P f ,ε = E(πr(Z)) where Z is an r dimen-

sional standard normal variable.

(ii) Let Ba = [B, B⊥] where the columns of B⊥ form an orthonormal basis of span(B)⊥. Let W2 ∼ N(0d−r×1, Id−r),

W1 ∼ pW1 (w1) = πr(w1)ϕr(w1)/P f ,ε where ϕr is the standard r-dimensional multinormal pdf and W = [WT
1 ,W

T
2 ]T .

Then X̃ = B−T
a W is distributed according to q̃r∗(x).

The first result regarding the augmented failure probability computation is a straightforward consequence of the fact

that Z = BT X ∼ N(0, Ir) since BT B = Ir. The proof of (ii) is deferred to the supplementary material.

The practical implications of these results are that:

• the estimation of P f ,ε requires sampling of a standard distribution in Rr instead of Rd.

• the estimation of the correction factor boils down to MCMC sampling in a space of expected much lower

dimension r which voids some of the limitations of high dimensional MCMC. The second part of the sampling

procedure is a straightforward standard Gaussian generation which makes the whole procedure faster than

performing MCMC sampling in Rd directly where d � r potentially.

• note that lemma 1 can also be used to sample the weighted margin probability density: the method is strictly the

same if one replaces the probabilistic classification function with the margin probability of the reduced Kriging

model. Also, given that we only need the projection of cluster centers of the samples onto the dimension

reduction subspace, this implies that we only need to simulate a chain with stationary un-normalized distribution

wr(w1)ϕr(w1).
16
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4.4. The general case

In the general case, one might simply consider the limit state function in the standard Gaussian space U, which is

denoted g0. The U-space formulation is classically achieved through an iso-probabilistic transform T : X ∈ X 7→

T (X) = U ∈ U so that g0(U) = g
(
T−1(U)

)
. In this paper, we consider the Nataf transform (see Liu and Kiureghian

(38), Dutfoy and Lebrun (18, 19) for details and the implications of this kind of transformation), defined by T = T2◦T1,

where

T1 : X 7→ Z = T1(X) =
(
Φ−1(F1(X1)) . . .Φ−1(Fd(Xd))

)T
(26)

T2 : Z 7→ T2(Z) = L−1
0 Z where L0LT

0 = R0 is the linear correlation matrix of Z, Φ is the standard normal cdf and

F1, . . . , Fd are the marginal CDFs of X.

One could simply try dimension reduction on the response model Y = g0(U), but, because of the non-linear nature of

the Nataf transform, even if there exist a projection matrix B that reduces the dimension in the X-space, with respect

to the function g, there is no guarantee that it is also the case in the U-space with respect to the function g ◦ T−1. If

T was linear then it would be the case. The U-space formulation being convenient for practical reliability analysis

it might be preferable to work in it after achieving dimension reduction in the X-space. A quasi-optimal importance

density in the U-space is then obtained as

q̃r∗(u) = πr(BT T−1(u))ϕd(u)/P f ,ε (27)

with P f ,ε =
∫
πr(BT T−1(u))ϕd(u)du. The correction factor reads

αcorr = Eq̃r∗

(
1g0(U)≤0

πr(BT T−1(U))

)
(28)

Now, because of the non-linear transformation, drawing samples from (27) is not as simple as in the case of Gaussian

inputs X. A chain targeting q̃r∗ has to be simulated in Rd via a relevant MCMC method. For this purpose, we suggest

using a modified Metropolis-Hastings algorithm (Au and Beck (2)).

As far as the sampling based refinement criterion is concerned, we redefine the weighted margin probability in a

similar fashion, that is

hr(u) = wr(BT T−1(u))ϕd(u) (29)

Since this density may have modes that are far apart, slice sampling is recommended as an alternative to standard

Metropolis Hastings which typically struggles in this setting, as noted by Dubourg (14). Once samples are obtained,

we back-transform them to the physical input domain X and proceed as outlined in 2.3.
17
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4.5. The Meta-ISDR algorithm

We hereafter sketch the Meta-ISDR algorithm, assuming X to be a standard Gaussian vector. The general case may

be obtained by considering the modifications stated in 4.4. Note that we assume a preliminary single/multiple failure

points search but this is optional. The main parameters of the algorithm, along with sensible default parameters values

(in brackets) are:

• x∗1, . . . , x
∗
m : m ≥ 1 most probable failure points (optional)

• NS DR: number of samples for the SDR basis estimation

• rmax: maximum SDR subspace dimension

• Kcv (5): number of CV folds for the reduced dimension estimation

• kX, kY : Gaussian kernels used in SDR.

• Nmax: maximum number of limit state function evaluations

• Rmax: radius of the hypersphere enclosing the design of experiments

• N init
D (2d): initial size of DoE

• N f ill (105) number of samples generated for the space-filling design

• Nmin
D , Nmax

D minimum/maximum number of points in final design of experiments

• Nadd: number of points added to DoE during refinement step

• αmin
LOO (0.1), αmax

LOO (10): min/max of leave-one-out criteria for the metamodel quality assessment

• Naug: number of samples used for the estimation of the augmented failure probability P̂ f ,ε

• δε , δα: target coefficient of variation (c.o.v.) for P̂ f ,ε and αcorr

Although the random input vector is not bounded, the radius parameter Rmax, which defines the domain of the Kriging

metamodel, can be set by choosing Rmax such that P(‖X‖2 > R2
max) is much smaller than P f . For instance if P f >> 10−b

for some positive integer b then solving P(‖X‖2 > R2
max) = 10−b yields Rmax =

√qχ2
d ,1−10−b where qχ2

d ,1−10−b is the

quantile of order 1 − 10−b of the chi-squared distribution with d degrees of freedom. The complete algorithm is given

in algorithm 1.

5. Numerical illustrations

We now investigate the performance of the metamodel-based importance sampling procedure with dimension reduc-

tion on two analytical test cases and a realistic high dimensional industrial application consisting in estimating the
18
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Algorithm 1 Meta-ISDR algorithm for standard Gaussian inputs
SDR Basis estimation:
0. Research of design points. (optional)
1. Sample NS DR SDR learning points. If step 0 is skipped, sample xi

S DR from a uniform distribution in the hyper-
sphere of radius Rmax Else combine the latter distribution in a mixture with (local) uniform distributions within spheres
of given radius centered at the discovered DP. Compute yi

S DR = g(xi
S DR).

2. Using gKDR algorithm find a dimension reduction subspace estimate B̂, r̂ ← gKDR(xS DR, yS DR, kX, kY,Kcv, rmax)
Initial DoE:
1. Add design points x∗1, . . . , x

∗
m to DoE (optional)

2. Space-filling design: sample N f ill points in the hypersphere of radius Rmax and, following the clustering strategy
presented at the end of section 4.2, add N init

D −m initial DoE points in the reduced subspace by evaluating yinit
j = g(xinit

j ),
j = 1, . . . ,N init

D − m
3. Initial metamodel: fit a Kriging model to initial DoE and compute α̂LOO
4. Metamodel refinement:
While ND < Nmin

D or α̂LOO < [αmin
LOO, α

max
LOO]

sample n1 ∈ [104, 5 × 104] points zi, i = 1, . . . , n1 from hr (defined in (25)) using procedure from lemma 1.
add Nadd points to DoE according to the procedure outlined in 4.2.
ND ← ND + Nadd.
IfND > Nmax

D break
end If

end While
Failure probability estimation:
1. Augmented probability estimation: compute P̂ f ,ε , δ̂ε using standard Monte Carlo or the splitting introduced in
section 2.2
2. Correction factor estimation: run an MCMC of length Ncorr = b + Nmax − NS DR − ND targeting q̃r∗ as described in
lemma 1. Compute α̂corr and δ̂α = σ̂corr/α̂corr according to (13) and (14)

3. Failure probability estimate: P̂ f = α̂corrP̂ f ,ε , δ̂ =

√
δ̂2
α + δ̂2

ε + δ̂2
αδ̂

2
ε
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failure probability of a wind turbine under stationary wind loads.

5.1. Academic examples

We consider two analytical limit state functions whose dimensionality can be varied to illustrate the impact of an

increasing number of inputs. The Meta-ISDR strategy presented here is confronted with standard reliability methods,

namely FORM, standard Monte Carlo simulation, importance sampling with a proposal centered on the design point(s)

(IS-FORM) and the standard Meta-IS extrated from the R package MISTRAL. Note that, with the exception of FORM,

we only consider methods that yield consistent probability estimation. The design point in FORM was computed using

a sequential quadratic programming algorithm as described in Liu and Der Kiureghian (37). In all numerical tests,

when d > 2, the maximum projection space dimension: rmax, was set to 10 and 2 when d = 2.

First test function. The first performance function extracted from Bourinet (6) reads g1(X) = d + aσ
√

d − bT X

where the Xi are d i.i.d. lognormal variables with mean 1 and standard deviation σ = 0.2, a = 3 and b =

(
1 · · · 1

)T
.

We consider 3 cases with increasing dimension: d = 2, 50, 100. It is obvious that a sufficient dimension reduction

subspace is spanned by b so we can expect sizeable performance improvements in high dimensions for the Meta-ISDR

method. As can be expected for d = 2, the dimension reduction might not worth it since it comes at an additional cost

of limit state function evaluations. In table 1, d = 2, we notice that the total number of calls to g1 for Meta-ISDR is 5

times that of standard MetaIS because of the SDR extra cost. With 300 simulations assign to the dimension reduction

step, the method selects two projection vector which correspond to a rotation of the initial canonical dimensions. The

first unit vector is very close to a normalized b. The method balance the latter approximation by adding a second

orthogonal dimension. For higher dimensions however, it appears that the metamodelling, in a reduced space, limits

the number of limit state function evaluations: this reduction occurs at the Kriging model construction but is even more

noticeable for the correction factor estimation. This is probably because a more accurate Kriging model is obtained

in the reduced dimensional SDR subspace leading to an importance sampling density closer to the optimal one hence

achieving lower estimation variance. The selected reduced dimension was 5 with one of the unit vector close to a

normalized b. Again, to balance for the approximation, a few additional dimension were added by the method.

Second test function. The second test function is a 2-dimensional non-linear function: g2(X) = 1.2−X2+0.2(X1+X2)4.

The purpose of this function is to illustrate, in a non-linear context, how the dimension reduction technique proposed

can retrieve a basis well suited for following reliability analysis. A similar example is also studied in dimension

d = 50 such that only the fifth first variables are influential: g2(X) = 1.2 − X5 + 0.2(c1X1 + c2X2 + c3X3 + c4X4)4.

with c = (0.1, 1, 0.5, 1). The purpose of this latter extension is to demonstrate the efficiency of the proposed strategy

to retrieve an appropriate basis when faced with a non-linear model and unequal importance weights on the variables.
20



M. Munoz Zuniga, A. Murangira, T. Perdrizet / Reliability Engineering & System Safety 00 (2020) 1–30 21

In both instances of function g2, all the variables follow a standard normal distribution.

In table 2, on the d = 2 version of the function, with only an hundred simulations the SDR method find a projection

basis which corresponds to a rotation of the canonical one where the first unit vector point in the direction of the

design point as illustrated in figure 1. We then achieve a precise probability estimation with 200 additional function

evaluations. Although, a more suitable rotation can be achieved by adding more model evaluations to the SDR step.

Indeed, with 300 simulations for the SDR step, the first unit vector of the orthogonal basis point in the direction of

greater variation of the limit state function around the design point as illustrated in figure 1. Again 200 additional

evaluations are necessary to achieve the same coefficient of variation as previously. In table 2, facing the high di-

mensional non-linear function version of g2, a large number of samples (3500) were requiered to learn precisely the

expected basis of projection. Indeed, the estimated first basis correspond to a close approximation of a normalized

c and the second basis correspond to the standard fifth dimension basis. However, to compensate for the two first

basis approximations, one additional basis was proposed by the SDR method. On this specific example, we see that

an IS strategy centered on the DP is a good compromise because of the unimodal and localized main area of failure.

Nevertheless the SDR method enables to recover relevant informations about the influential part of the feature space.

The following MetaIS analysis requires a non-negligible number of evaluations mainly related to the αcorr estimation.

The MetaIS parameters were set to default values and a reduction of the number of evaluations can be expected with a

finer adjustement of these parameters. Further numerical tests, not presented here, suggest two possible improvement

of the Meta-ISDR method: first to remove the orthogonal constraint on the projection basis and second to replace the

linear model used in the tuning (by cross validation) of the projection dimension (r) by a non-parametric model such

as a Kriging model (potentially scaled for a fast model estimation). We can also emphasize the fact that the Meta-IS

algorithm (independently of the SDR) requires a fine tuning when facing high dimensional and non-linear models.

5.2. Reliability assessment of a wind turbine in stationary conditions

We now turn to an industrial case study where the goal is the reliability analysis of an onshore wind turbine under

wind loading. We use a 5MW wind turbine mode developed by the National Renewable Energy Laboratory (NREL).

The turbine has a 90m hub height and implements a blade and generator control strategy. The mechanical response

to the wind inflow is obtained using the FAST software which provides extreme and fatigue loads for a wide array of

turbines. The random wind field is described in terms of its (u, v,w) coordinate where u is a vector pointing in the

same directions as the mean wind flow, (v,w) completes the orthogonal basis and thus mean wind speeds in the v and

w directions are zero. For the purpose of our analysis, we neglect the turbulent wind flow components in the v and w

directions and consider the wind speed along u as the random input load.
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Method FORM Monte Carlo IS-FORM Meta-IS Meta-ISDR
d = 2

N 18 5 × 105 8818 121 519(300)
P̂ f 3.81 × 10−3 4.93 × 10−3 4.90 × 10−3 4.88 × 10−3 4.86 × 10−3

c.o.v. - 2% 2% 1.3% 1.3%
d = 50

N 255 1.4 × 106 14255 3255 1281(500)
P̂ f 1.54 × 10−3 1.89 × 10−3 1.95 × 10−3 1.87 × 10−3 1.85 × 10−3

c.o.v. - 1.9% 1.9% 2% 1.9%
d = 100

N 505 1.5 × 106 18505 5505 2288(1000)
P̂ f 3.74 × 10−5 1.73 × 10−3 1.76 × 10−3 1.76 × 10−3 1.71 × 10−3

c.o.v. - 1.8% 1.9% 2% 1.9%

Table 1. Failure probability estimation: analytical limit state function g1(X) = d + aσ
√

d − bT X. N is the overall total number of function
evaluations. For Meta-ISDR, NS DR is specified in parentheses.

Method FORM Monte Carlo IS-FORM Meta-IS Meta-ISDR
d = 2

N 64 6 × 104 9064 537 265(100)
P̂ f 8.6 × 10−2 3.3 × 10−2 3.3 × 10−2 3.7 × 10−2 3.4 × 10−2

c.o.v. - 2.1% 2.3% 4% 2%
d = 50

N 306 104 3306 NA 6306(3500)
P̂ f 8.2 × 10−3 3.6 × 10−3 3.6 × 10−3 NA 3.4 × 10−3

c.o.v. NA 5.2% 3.9% NA 4.9%

Table 2. Failure probability estimation: analytical limit state functions g2(X). N is the overall total number of function evaluations. For Meta-ISDR,
NS DR is specified in parentheses.

5.2.1. Wind speed model

The wind speed process {X(t), t ≥ 0} was modelled as a stationary Gaussian process according to a spectral expansion

model, as in Shinozuka and Deodatis (46),

X(t) = U10 +

n∑
i=1

(uiσi cos(ωit) − ūiσi sin(ωit)) (30)

ui, ūi are standard independent normal variables, ωi are the frequencies with increment dωi = wi+1 − wi and σ2
i =

S (ωi)dωi where S is the power spectrum density (p.s.d.) of {X(t), t ≥ 0}. U10 is the 10-minute mean wind speed. The

spectrum was estimated from real measurements on the Danish coastal site Hornsrev. To achieve near-stationarity,
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Figure 1. Illustration of the limit state function g2 with d = 2 (bold red curve), failure area (shade of grey) and design point (blue dot). New axes
defined by the obtained 2d projection basis with respectively 100 (blue lines) and 300 (red lines) sufficient dimension learning samples.

we extracted 10-minute wind speed time series corresponding to a turbine rated mean speed of U10 = 11.5 m/s and

turbulence intensity I = 6%. These measurements where broken down into 5 minutes segments. A power spectrum

density estimate was then obtained by averaging the periodograms of each segment. For simulation purposes, the

spectrum is discretized into n = 50 harmonics so that the random vector U = [u1, . . . , un, ū1, . . . , ūn] describing the

random process X is 100-dimensional.

5.2.2. Time variant reliability analysis

The objective of this reliability analysis problem is to evaluate the 10-minute failure probability of the turbine. Failure

is hereafter characterized as the exceedance of a distance threshold s by the tower-top displacement due to fore-aft

forces. Letting {Y(t), t ≥ 0} be the mechanical response, we seek the following quantity

P f (T ) = P(∃t ∈ [0,T ] | Y(t) ≥ s) (31)
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where T = 10 minutes. Equivalently, we may introduce a time-varying limit state function g(t,U) = s − Y(t) where U

are the coefficients of the spectral expansion model, which yields P f (T ) = P(∃t ∈ [0,T ] | g(t,U) ≤ 0).

It is well known (Andrieu-Renaud et al. (1)) that a related quantity is the expected number of downcrossings (of level

0 by the limit state g) which bound the seek failure probability and which is given by the integral over time of the

outcrossing rate defined as

ν+(t) = lim
∆t→0

P (g(t,U) > 0, g(t + ∆t,U) ≤ 0) ∆t−1 (32)

The outcrossing rate is the actual quantity of interest in the usual time-varying reliability framework. In most random

vibration models, the response Y is modelled thanks to a linearized stochastic differential equation. The non linearity

and non Gaussian nature of Y is then due to the loading force term (see Jensen et al. (25). Assuming wind speed

stationarity, one does not automatically obtain output stationarity because of the coupling that goes on between the

loading force and the response. However, simulations show that for stationary wind conditions, the response can

generally be considered stationary after a transitory period which corresponds to the memory of the system. This

means ν+ is independent of the time t for sufficiently large t. Therefore, its computation can be obtained by considering

the limit state function at a fixed time t0. In practice, the simulation length must be sufficiently high so as to discard the

initial transient part of the response signal. We however acknowledge that the stationarity assumption of the response

assuming stationary inputs must be assessed more carefully but this is left out for a future study.

An approximation of the outcrossing rate may be obtained by considering an integration time-step ∆t << 1 so that

ν̂+ = P
(
Ht0,t0+∆t(U) ≤ 0

)
∆t−1 (33)

where Ht0,t0+∆t(U) = min (−g(t0,U), g(t0 + ∆t,U)). In our settings, we consider a threshold on the tower-top displace-

ment s = 0.4 m and ∆t = 0.01 s. The simulation length t0 is one minute.

5.2.3. Instantaneous failure probability

To illustrate the performance of the Meta-ISDR algorithm with respect to other simulation-based reliability algorithms,

we first look at the instantaneous failure probability at time t0 = 60 s denoted P f ,t0 := P (g(t0,U) < 0). As for the

academic examples, we also implement for comparison purposes a design point based method, an importance sampler,

and subset simulation (Au and Beck (2)).

• We considered a multiple failure point (MFP) search based on the approach of Der Kiureghian and Dakessian

(12): this method has the ability to find several failure points which contribute significantly to the failure

probability. This algorithm essentially modifies the limit state function in the vicinity of a previously found
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design point thus redefining a new constrained optimization problem geared towards finding a failure point

far enough from previous solutions. The constrained optimization method used in our simulations was the

sequential quadratic approximation (SQA) algorithm from Sinoquet and Langoüet (47), a gradient free method

which proved efficient in terms of number of limit state function evaluations. The MFP search was done with a

limit of 5 distinct design points since no more dominant failure zone are expected from the failure function.

• The importance sampler used a mixture proposal where each component was a unit covariance Gaussian distri-

bution centered on a failure points identified by the MFP approach and has the same weight in the mixture.

• The subset simulation algorithm was ran using the original algorithm by Au and Beck (2) with an added thinning

step and with a different length for the MCMC chain. The conditional probabilities where set to p0 = 0.1 and

a modified Metropolis-Hastings chain of length Nsubset = 1000 was generated at each subset level, using a

thinning interval of length 3.

The Meta-ISDR algorithm was implemented with the following setup.

• The maximum dimension of the SDR subspace is fixed to rmax = 6. This choice is case/user dependent. In our

case, we selected the value rmax = 6 such that the overall calculus time was reasonnable with regard to the

computing time for one evaluation of the used simulator.

• The dimension reduction subspace was estimated with the KDR algorithm using NKDR = 1000 training samples.

The training set was constructed by drawing 50% samples from a uniform distribution in the hypersphere in

Rd of radius Rmax =
√qχ2,1−10−8 and 50% samples from a Gaussian mixture distribution centered on the design

points . Note that this Rmax parameter corresponds to a lower bound on the instantaneous failure probability

of 10−8 (see section 4.5). As discussed in section 3.1, this latter training DoE enables the detection of the

projection space which explains the output not only globaly but also around the limit state,

• A kriging model with constant trend β and an anisotropic Matern-5/2 covariance function is considered. The

trend, the kernel correlation lengths and the nugget were estimated by maximizing the concentrated log-

likelihood.

• The initial DoE used for the kriging learning stage is of size N init
D = 10r + m: Latin Hypercube Sampling of size

10 × r and the additional m ”design points”, where r is the estimated reduced dimension.

• The minimum/maximum size of the DoE for the kriging model refinement are set to Nmin
D = 60, Nmax

D = 300.

• The number of points added to the DoE during one step of refinement is Nadd = 2r.
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For all methods, the target coefficient of variation was 7%. For the Meta-ISDR algorithm, a maximum number of

Nmax = 11000 limit state function evaluations was set, including the number of calls due to the preliminary multiple

failure points.

P̂ f ,t0 c.o.v. # G calls P f ,ε αcorr

Multi-FORM 3.78 × 10−6 NA 4657 NA NA
IS 2.68 × 10−5 7% 84657 NA NA
MetaIS 2.41 × 10−5 5.3% 14657 5.49 × 10−5 0.44
Meta-ISDR 2.34 × 10−5 5.8% 10645 3.25 × 10−5 0.7198
SS 2.73 × 10−5 27% 57000 NA NA

Table 3. Instantaneous Failure probability estimation: method comparison

The multiple failure points algorithm found two significant design points. A FORM approximation based on the

lowest reliability index was then performed, while both design points were used in the importance sampler and Meta-

ISDR algorithm. The results in table 5.2.3 indicate the good performance of the Meta-ISDR algorithm as it achieves

both the target coefficient of variation while also requiring the least amount of limit state function evaluations. The

estimated reduced dimension was r̂ = 2 and the first projection basis matched the direction of the main design point.

The standard MetaIS requires 37% more limit state evaluations. The performance of the subset simulation algorithm

in terms of estimation error is due to the limited length of Markov chains simulated at each level, which is not enough

to mitigate the chain’s autocorrelation. A better error can be achieved by increasing the thinning interval for instance

but this results in running a longer chain and more evaluations of the limit state.

5.2.4. Outcrossing rate estimation

As previously stated, the object of interest for time-variant reliability analysis in stationary conditions is the out-

crossing rate ν+. The formulation (33) lends itself to standard reliability analysis algorithms and is used to compute

numerical outcrossing rate estimates. The FORM outcrossing rate was computed using an approximation due to Koo

et al. (29).

Surprisingly, the FORM approximation for this case study seems more accurate than the corresponding instantaneous

failure probability computed in the previous subsection and is comparable to the estimation of Meta-ISDR. We how-

ever expect the FORM outcrossing rate estimation to be inaccurate for more pronounced non-linearities. Again the

estimated reduced dimension was r̂ = 2 and the first projection basis matched the direction of the main design point.

Since the Meta-ISDR cost includes the MFP search, we can see the difference of number of calls to the failure function
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ν̂+ c.o.v. # G calls ν+
f ,ε(Q) αcorr(Q)

Multi-FORM 2.50 × 10−5 NA 4657 NA NA
Meta-ISDR 1.99 × 10−5 0.16 10657 2.07 × 10−3 9.63 × 10−3

Table 4. Short-term outcrossing rate estimation

between the two approaches as the price to pay, for this specific case study, to get a certified result on the outcrossing

rate. In this example, a posteriori, this price to pay is not necessary but still should always be recommanded.

6. Conclusion

A concern of Monte Carlo based methods for structural reliability assessment such as standard importance sampling or

subset simultation is their high computational cost as the dimension exceeds a few tenths and/or the failure probability

gets below 10−4.

Recently, the MetaIS algorithm, which combines a Kriging metamodel of the failure surface and an importance

sampling procedure, enables more efficient estimation by sampling a so-called quasi-optimal density which acts as

a surrogate to the optimal IS density. In high dimensional settings however, the Kriging metamodel construction

requires a non-negligible number of limit state function evaluations so as to achieve sufficient accuracy in the vicinity

of the failure region. This number influences directly the achievable variance reduction by the IS scheme.

Considering that in some reliability problems, the performance function depends on a projection of the input variables

on a lower-dimension subspace, we have suggested to build a surrogate to the limit state function in this reduced

subspace. The proposed approach leverages recent sufficient dimension reduction techniques to find this subspace.

A cross-validation type procedure is suggested in order to infer the dimension of the reduced subspace. The MetaIS

algorithm is then cast into this framework and yields particularly efficient MCMC sampling for Gaussian distributed

inputs. Its applicability in dimensions up to 100 is demonstrated on a known academic example which illustrates the

impact, of constructing a metamodel in the reduced subspace, on the efficacy of the probability estimator for a given

confidence level. Finally, an industrial case study focused on the extreme response prediction of a wind turbine shows

a notable reduction in the computational cost, compared to existing approaches which yield consistent estimators such

as: subset simulation, standard importance sampling and standard MetaIS.

We believe that the Meta-ISDR approach can be further improved by removing the orthogonal constraint on the

projection basis and by replacing the linear model, used in the tuning of the projection dimension parameter, by a

non-parametric model such as a Kriging model (potentially scaled for a fast model estimation) or some cheap-to-

evaluate non-linear regressor. Choosing the relevant number of evaluations to allocate to the SDR estimation is also

27



M. Munoz Zuniga, A. Murangira, T. Perdrizet / Reliability Engineering & System Safety 00 (2020) 1–30 28

an important question since a bad SDR approximation can lead to difficulties in the following reliability analysis

specially in high dimension.
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