Supplementary Material

Proof of lemma 1

Let $B \in \mathbb{R}^{d \times r}$ a matrix such that $B^{T} B=I_{r}$ and $\operatorname{span}(B)$ is a dimension reduction subspace for the regression of Y on X. Let $B_{a}=\left[B, B_{\perp}\right] \in \mathbb{R}^{d \times d}$ where the columns of B_{\perp} form an orthonormal basis of $\operatorname{span}(B)^{\perp}$. Now assume $X \sim \mathcal{N}\left(0, I_{d}\right)$.
X has density $q(x)=\varphi_{d}(x)=(2 \pi)^{-\frac{d}{2}} \exp \left(-\frac{\|x\|^{2}}{2}\right)$ where φ_{d} is the d dimensional multinormal pdf. If x_{B} and $x_{B_{\perp}}$ are the orthogonal projections of x on $\operatorname{span}(B)$ and $\operatorname{span}\left(B_{\perp}\right)$ respectively, then $x=x_{B}+x_{B_{\perp}}=B\left(B^{T} x\right)+B_{\perp}\left(B_{\perp}^{T} x\right)$ and $\|x\|^{2}=\left\|x_{B}\right\|^{2}+\left\|x_{B_{\perp}}\right\|^{2}=\left\|B^{T} x\right\|^{2}+\left\|B_{\perp}^{T} x\right\|^{2}$. Hence,

$$
\begin{aligned}
q(x) & =(2 \pi)^{-\frac{d}{2}} \exp \left(-\frac{\left\|x_{B}\right\|^{2}+\left\|x_{B_{\perp}}\right\|^{2}}{2}\right) \\
& =(2 \pi)^{-\frac{r}{2}} \exp \left(-\frac{\left\|B^{T} x\right\|^{2}}{2}\right)(2 \pi)^{-\frac{d-r}{2}} \exp \left(-\frac{\left\|B_{\perp}^{T} x\right\|^{2}}{2}\right) \\
& =\varphi_{r}\left(B^{T} x\right) \varphi_{d-r}\left(B_{\perp}^{T} x\right)
\end{aligned}
$$

and the quasi-optimal density is equal to

$$
\tilde{q}_{r *}(x)=\frac{\pi_{r}\left(B^{T} x\right) \varphi_{r}\left(B^{T} x\right) \varphi_{d-r}\left(B_{\perp}^{T} x\right)}{P_{f, \epsilon}}
$$

Now let $\tilde{X} \sim \tilde{q}_{r *}$ and consider the mapping $\tilde{X} \mapsto W=B_{a}^{T} \tilde{X}$. By a change of variable, for any continuous bounded function ψ from \mathbb{R}^{d} to \mathbb{R}^{d}

$$
\begin{aligned}
\mathbb{E}(\psi(W)) & =\int_{\mathbb{R}^{d}} \psi\left(B_{a}^{T} \tilde{x}\right) \tilde{q}_{r *}(\tilde{x}) \mathrm{d} \tilde{x} \\
& =\underbrace{\frac{1}{\left|\operatorname{det}\left(B_{a}^{T}\right)\right|}}_{=1} \int_{\mathbb{R}^{d}} \psi(w) \tilde{q}_{r *}\left(B_{a}^{-T} w\right) \mathrm{d} w
\end{aligned}
$$

which implies that the density of W is

$$
\begin{align*}
p_{W}(w) & =\tilde{q}_{r *}\left(B_{a}^{-T} w\right) \tag{1}\\
& =\frac{1}{P_{f, \epsilon}} \pi_{r}\left(B^{T} B_{a}^{-T} w\right) \varphi_{r}\left(B^{T} B_{a}^{-T} w\right) \varphi_{d-r}\left(B_{\perp}^{T} B_{a}^{-T} w\right) \tag{2}\\
& =\frac{1}{P_{f, \epsilon}} \pi_{r}\left(w_{1}\right) \varphi_{r}\left(w_{1}\right) \varphi_{d-r}\left(w_{2}\right) \tag{3}
\end{align*}
$$

where $w^{T}=\left(w_{1}^{T}, w_{2}^{T}\right)$. By the same argument, if W has density $p_{W}(w)=\frac{1}{P_{f, \epsilon}} \pi_{r}\left(w_{1}\right) \varphi_{r}\left(w_{1}\right) \varphi_{d-r}\left(w_{2}\right)$ then $\tilde{X}=B_{a}^{-T} W \sim$ $\tilde{q}_{r *}$. It is clear from (3) that to sample $W=\left(W_{1}^{T}, W_{2}^{T}\right)^{T}$ from p_{W}, it suffices to sample $W_{2} \sim \mathcal{N}\left(0_{d-r \times 1}, I_{d-r}\right)$, and $W_{1} \sim p_{W_{1}}\left(w_{1}\right)=\frac{\pi_{r}\left(w_{1}\right) \varphi_{r}\left(w_{1}\right)}{P_{f, \epsilon}}$.

