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Horizontal Axis Wind Turbine (HAWT) rotor is a system whose components are particularly exposed to fatigue damage, due to non-uniform winds and the rotating nature of the rotor. Individual Pitch Control (IPC) can help alleviating the fatigue loads on the rotor blades by rotating the blades independently from each other on their longitudinal axis. However, reducing the blades fatigue damage is often compensated by an increase in pitch activity, damaging the blade pitch actuators. An IPC regulator must thus optimize a trade-off between the fatigue damage of the blades and blade pitch actuators. This paper presents the derivation and implementation of a fatigue-oriented adaptive Model Predictive Control (MPC) IPC regulator using a data-driven fatigue-oriented cost function. This MPC allows to efficiently optimize the IPC fatigue trade-off and significantly reduce the expectancy of an HAWT rotor economic fatigue cost, compared to a finely tuned non-adaptive MPC. The methodology used for the derivation of the presented MPC allows to efficiently reduce an economic fatigue cost, while limiting the sensitivity to controller tuning.

Introduction

Horizontal Axis Wind Turbine (HAWT) rotor is a rotating system, composed of three blades and blade pitch actuators, allowing to pitch the blades on their longitudinal axis. An HAWT rotor is continuously disturbed by turbulent winds, whose speed and orientation vary in time and space. The recent largest HAWT installations are able to reach diameters of 150 and 200 meters in respectively on-shore and off-shore plants. The wind speed variations over the rotor plane can thus be significant. Therefore, the aerodynamic loads applied on a rotating blade with constant pitch angle will vary with wind speed in the rotor plane during a rotation, inducing oscillatory loads which are a source of fatigue.

The blade pitch actuators allow to pitch the blades on their longitudinal axis, in order to modify the aerodynamic properties of the rotor. Individual Pitch Control (IPC), consists in varying the blades pitch angles during its rotation in the rotor plane, in order to alleviate the oscillatory loads causing fatigue [START_REF] Bossanyi | Individual blade pitch control for load reduction[END_REF]. However, the blades oscillatory loads reduction has the drawback of increasing blade pitch activity [START_REF] Bossanyi | Individual blade pitch control for load reduction[END_REF][START_REF] Schlipf | Look-ahead cyclic pitch control using LiDAR[END_REF][START_REF] Mirzaei | An MPC approach to individual pitch control of wind turbines using uncertain LiDAR measurements[END_REF][START_REF] Pettas | Investigation on the potential of individual blade control for lifetime extension[END_REF] and eventually blade pitch actuators fatigue damage. There is thus an inherent trade-off between the fatigue damage of blades and the one of pitch actuators. A relevant way to evaluate this trade-off, proposed in [START_REF] Collet | A data-driven approach for fatigue-based individual blade pitch controller selection from wind conditions[END_REF], consists in defining a cost function, denoted by J , as the price-weighted sum of fatigue damages:

J (y) = Nc k=1 π k D k (y k ) (1) 
where y k , π k and D k are respectively the output trajectory, price of replacement and fatigue damage of the k th component of a multi-output process, y contains the process stacked output trajectories and N c is the number of HAWT components considered in J . The control strategy tailored to minimize a complex cost function such as J is Model Predictive Control (MPC). MPC can be defined in a nutshell as a control strategy that consists in solving an open-loop Optimal Control Problem (OCP) over a finite receding horizon, parameterized by the initial state of the prediction horizon, objective function and possibly constraints on the system [START_REF] Mayne | Constrained model predictive control: Stability and optimality[END_REF]. The first time instant input trajectory of the OCP solution is then given as input to the system by the controller. MPC is based on the fact that solving iteratively an OCP over a finite horizon should allow to approach the solution of the same open-loop OCP over an infinite horizon. The advantages of MPC are that it allows to optimally handle control problems under complex dynamics, constraints specifications and objective functions. Moreover, MPC allows to optimally anticipate disturbances which can be estimated, such as wind with Light Detection and Ranging (LiDAR) devices, in wind turbine control. On the other hand, the main drawback of MPC is the potential computational cost of solving the open-loop OCP. Moreover, the incorporation of the fatigue damages D k in the objective function J of an OCP is challenging due to fatigue estimation [START_REF] Barradas-Berglind | Representation of fatigue for wind turbine control[END_REF].

The widely used representation of fatigue consists in counting the number of hysteresis cycles contained in a time series, using a RainFlow Counting (RFC) algorithm [START_REF] Downing | Simple rainflow counting algorithms[END_REF], and summing the fatigue damages related to each hysteresis cycle with the Palmgrem-Miner linear damage rule [START_REF] Palmgren | Die lebensdauer von kugellagern[END_REF][START_REF] Miner | Cumulative damage in fatigue[END_REF]. The RFC algorithm has an algorithmic nature which makes its incorporation in an OCP objective challenging. Nevertheless, the methods described in [START_REF] Loew | Direct Online Rainflow-counting and indirect fatigue penalization methods for Model Predictive Control[END_REF][START_REF] Löw | Stage costs formulations of online rainflow-counting for model predictive control of fatigue[END_REF], consisting in parameterizing a MPC objective function with the results of a RFC algorithm performed over a previous solution time series, and turning the OCP into a tracking problem. This allows to efficiently reduce the fatigue damage of one process output. The shortcomings of this method are the fact that one RFC evaluation is needed per output, therefore the computational complexity of the method greatly increases with the number of components considered in J . Another fatigue-oriented MPC is designed in [START_REF] Barradas-Berglind | Fatigue damage estimation and data-based control for wind turbines[END_REF], where parameters of a quadratic cost function used as objective in the MPC are identified on-line, in order to match an on-line estimation of fatigue. Thanks to probabilistic considerations on random processes, it is possible to bypass the RFC algorithm and express fatigue damage as nonlinear expression of the zero, second and fourth order spectral moments, which are respectively equivalent to the variance of the zero, first and second time derivative of the process output. This expression is firstly established for narrow-banded processes in [START_REF] Rychlik | Note on cycle counts in irregular loads[END_REF] and extended to random processes in [START_REF] Benasciutti | Spectral methods for lifetime prediction under wide-band stationary random processes[END_REF]. Thus, it is possible to relate the fatigue damage to the variance of a signal and its time HAWT Data-driven fatigue-oriented cost function derivation (Section 2) This article is organized as follows. In Section 2, the derivation of the data-driven fatigue-oriented cost function is presented. In Section 3, a resolution method of the FO-OCP featuring a fixed-point problem, whose MPC stage cost adaptation law is based on, is detailed. In Section 4, the formulation of the MPC with adaptive stage cost, based on the FO-OCP and fixed-point problem formulation is depicted. In Section 5, it is shown that the closed-loop implementation of the MPC with adaptive stage cost presents a great reduction potential of the fatigue cost J . In Section 6, conclusion and perspectives on this approach are given. A summary of the MPC with adaptive stage cost design and the paper outline is given in Figure 1.

Data-driven fatigue-oriented cost function derivation

This section presents the derivation of the fatigue-oriented cost function to be used as objective in the FO-OCP. The approach considered here is based on the one defined in [START_REF] Collet | A fatigue-oriented cost function for optimal individual pitch control of wind turbines[END_REF], where the fatigue-oriented cost function is derived using a data-driven linear regression between the logarithms of variance and fatigue damage of signals. The derivation process comes in three steps:

1. The generation of N d time series, denoted by {y (1) , . . . , y (N d ) } representing a wide variety of possible outputs of a closed-loop process.

2. The estimation of variance and fatigue damages for the generated time series, denoted respectively by {Var(y

k ), . . . , Var(y

(N d ) k
)} and {D k (y

k ), . . . , D k (y

(N d ) k
)} for the k th output of a process. 3. The fit of a regressor for each component k, denoted by F k , allows to predict a fatigue damage estimation, denoted by Dk , from the variance estimates, such that

Dk (y k ) = F k (Var(y k )) D k (y k )

Time series generation

The first step consists in generating a set of time series, representative of the variety of outputs which a closed-loop process can yield. However, it is difficult to guess in advance what the dynamics of the closed-loop system will be, as the fatigue-oriented cost function and the OCP solutions depend on the data for which the regressors F k have been fitted on. Therefore, it is proposed for the time series generation to simulate a system representative of the HAWT dynamics in closed-loop with an efficient MPC under different wind conditions, as described in this section.

Dynamic system definition

The National Renewable Energy Laboratory (NREL) provides a nonlinear HAWT simulator named Fatigue Aerodynamics Structures and Turbulence (FAST) [START_REF] Jonkman | Dynamics modeling and loads analysis of an offshore floating wind turbine[END_REF] where a linearization module is integrated. The FAST linearization module allows to obtain a first order linear dynamic model of the HAWT, for a variety of blades azimuth angles, denoted by ψ:

ẋ = Ã(ψ)x + B(ψ)ũ + Bd (ψ)v (2a) ỹ = C(ψ)x + D(ψ)ũ + Dd (ψ)v (2b)
where x, ũ, ỹ and v represent respectively the state, input, output and disturbance of the system, while Ã, B, Bd , C, D and Dd are matrices of appropriate dimensions. For IPC, it is often preferred to linearize the rotating blades dynamics in a non-rotating frame of coordinates, named Multi-Blade Coordinates (MBC), more adapted for control design purposes [START_REF] Bir | Multi-blade coordinate transformation and its application to wind turbine analysis[END_REF][START_REF] Bossanyi | Individual blade pitch control for load reduction[END_REF]. To pass from the blades rotating coordinates to MBC, the orthogonal MBC transform matrix, denoted by T (ψ), is created:

T (ψ) = 2 3   1 2 1 2 1 2 cos(ψ) cos(ψ + 2π 3 ) cos(ψ + 4π 3 ) sin(ψ) sin(ψ + 2π 3 ) sin(ψ + 4π 3 )   (3) 
The blade pitch angles, denoted by θ 1 , θ 2 and θ 3 can be thus turned into collective, yawing and tilting blade pitch angles, denoted respectively by θ col , θ yaw and θ tilt with the following matrix multiplication: A similar transformation can be performed with the states and outputs of the system relative to the blades. The interest of having the system expressed in MBC for IPC regulation is that the linear system (2) is approximated as a Linear Time Invariant (LTI) system. Moreover, the system is extended in order to take into account the blade pitch actuators dynamics, which are modeled with a first order differential equation:

  θ col θ yaw θ tilt   = T (ψ)   θ 1 θ 2 θ 3   (4) 
θi = - 1 τ act θ i + 1 τ act θ sp i (5) 
where θ sp i is the i th blade pitch angle setpoint and τ act is the time constant of the blade pitch actuator. These transformations eventually yield the following dynamic model: For the time series generation considered in the article, the LTI system is linearized from FAST with only the first flapwise degree of freedom activated and used as simulator. The turbine simulated is a Senvion MM82 whose characteristics are specified in Table 1. The parameters used for the linearization of the LTI system are summarized in Table 2. For the closed-loop control of this system, parameterized IPC MPCs with different parameters are designed.

ẋ = Ax + Bu + B d v (6a) y = Cx + Du + D d v ( 

Parameterized quadratic MPC definition

In order to obtain time series of the closed-loop process and define a benchmark controller for comparison, a parameterized quadratic MPC regulator is proposed, because its design is standard and has proven to be efficient in this task [START_REF] Mirzaei | An MPC approach to individual pitch control of wind turbines using uncertain LiDAR measurements[END_REF]. The proposed MPC should solve between each update of the control the following open-loop OCP:

min u J = t+T t y(τ ) T Qy(τ ) + u(τ ) T Ru(τ ) dτ (7a) s.t. ẋ = Ax + Bu + B d v (7b) 
y = Cx + Du + D d v (7c)
where the weighting matrices Q ∈ R Nc×Nc and R ∈ R nu×nu are respectively semi definite and definite positive matrices, t is the current time instant, T is the prediction horizon time length. Let u and v ol be temporal vectors, such that u(τ ) and v(τ ) are respectively the values of u and v ol at time instant τ over the prediction horizon [t, t + T ]. In order to efficiently reduce the fatigue cost of the turbine, the MPC weighting parameters must be tuned accordingly. However, it should be noticed that the weighting matrices Q and R contain respectively Nc(Nc+1)
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and nu(nu+1) 2 parameters, which leads to 13 parameters to be tuned, as N c = 4 and n u = 2. In order to reduce the computational complexity of the weighting matrices Q and R tuning, a relevant parameterization defined in [START_REF] Collet | A fatigue-oriented cost function for optimal individual pitch control of wind turbines[END_REF] is proposed:

Q(ν) = diag [1, 1, ν, ν] R(ν) = I nu min(ν, 1) × 10 -10 (8) 
where ν is the tuning parameter, which penalizes the actuation of the system. It should be noticed that this parameterization relies on the fact that the blades in rotating coordinates have all the same independent dynamics. Hence, the trade-off between pitch activity and blade fatigue loads alleviation must be weighted equally. Then, considering this trade-off in MBC yields the matrix Q(ν). The role of the matrix R(ν) is to prevent singularities in the OCP, as the penalization of the system pitch activity is already taken care of by the parameter ν. Therefore, the impact of R on the J value must be negligible. It is thus possible to generate realistic time series of a closed-loop HAWT provided relevant values of ν, T and disturbance trajectory for the closed-loop simulation, denoted by v cl .

Realistic trajectories selection

In order that the fatigue-oriented cost function be relevant, it is necessary to consider realistic closed-loop controllers and exogenous disturbance trajectory v cl in the time series generation. For the exogenous disturbance trajectories, a set of N d wind disturbances, denoted by {v

(1) cl , . . . , v (N d ) cl
}, is generated using the NREL wind generator TurbSim [START_REF] Kelley | NWTC computer-aided engineering tools (TurbSim)[END_REF], which allows to generate realistic random hub-height winds from given average wind speed and turbulence intensity. For the wind generation, the average wind speed is fixed to 12 m/s, as the LTI system is linearized around this wind speed, and 10000 turbulence intensities are randomly drawn in a realistic distribution of turbulence intensity, obtained from a 10 years long NREL measurement campaign [START_REF] Jager | NREL national wind technology center (NWTC): M2 tower; boulder, colorado (data)[END_REF]. An histogram of the turbulence intensity distribution is plotted in Figure 2.

In order to have a realistic and performing closed-loop controller, the MPC defined by ( 7) is implemented with a prediction horizon T = 2 s, as longer prediction horizons did not seem to improve further the control quality. The stage cost of this MPC is parmeterized by equation [START_REF] Downing | Simple rainflow counting algorithms[END_REF], and 50 parameters of ν are tested, spanning in a logarithmic space ranging from 10 1 to 10 4 . In Figure 3 is plotted the evolution of the fatigue cost J with the ν parameter for several winds, normalized by the minimal fatigue cost J obtained for the corresponding wind. It can be observed that for a given wind, the fatigue cost J varies with the value of ν and it is not always the same value of ν which minimizes J . Let J mpc (v cl , ν) be the fatigue cost obtained in closed-loop with the MPC parameterized by ν, under a given wind disturbance v cl . Let us define ν ideal and ν mean , the values of ν that respectively minimizes the fatigue cost for a wind disturbance v cl and for the set of

wind disturbances v (1) cl , . . . , v (N d ) cl : ν ideal (v cl ) = arg min ν J mpc (v cl , ν) (9a) 
ν mean = arg min ν N d i=1 J mpc (v (i) cl , ν) (9b) 
From Figure 3, it can be claimed that

J mpc (v cl , ν mean ) ≥ J mpc (v cl , ν ideal (v cl ))
There is thus an interest in adapting the value of ν depending on v cl , in order to minimize the fatigue cost in all circumstances. Let MPC mean and MPC ideal be controllers whose behaviors correspond to the MPC having respectively ν mean (fixed) and ν ideal (varying) for parameter. It is thus desirable to have a controller approximating the behavior of 195 MPC ideal for every wind in the set, as the fatigue cost of MPC ideal is always lower or equal than the one of MPC mean . Therefore, in order to approximate the fatigue-oriented cost function corresponding to MPC ideal , only the time series generated with MPC ideal in closed-loop are kept for the fatigue-oriented cost function derivation. It should be noticed that MPC ideal , as opposed to MPC mean , is not an implementable controller,
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because the value of the parameter ν ideal is given by an off-line estimation and not an on-line adaptation law.

Variance and fatigue damage estimations

The fatigue-oriented cost function defined in [START_REF] Collet | A fatigue-oriented cost function for optimal individual pitch control of wind turbines[END_REF] is based on a data-driven relationship between variance and fatigue damage. The variance, denoted by J Var , is defined as follows:

J normalized v (1) cl v (2) cl v (3) cl v (4) cl v (5) cl v (6) cl
J Var (y k ) = 1 t f -t 0 t f t0 y k (τ ) 2 dτ -µ (y k ) 2 (10a) = 1 t f -t 0 t f t0 (y k (τ ) -µ (y k )) 2 dτ (10b)
where

µ (y k ) = 1 t f -t 0 t f t0 y k (τ )dτ (11) 
where y k (τ ) is the value of the trajectory y k at time instant τ , t 0 and t f are respectively 205 the initial and final time instants of the evaluated time series. The damage D k is estimated from the time series y k with the RFC algorithm [START_REF] Downing | Simple rainflow counting algorithms[END_REF] and Palmgrem-Miner rule [START_REF] Palmgren | Die lebensdauer von kugellagern[END_REF][START_REF] Miner | Cumulative damage in fatigue[END_REF]. For the Palmgrem-Miner rule, an ultimate fatigue load and Wöhler exponent, denoted respectively by L ult k and m k , must be defined for every components k. These values are selected in order to yield realistic fatigue damages and are summarized in 210 Table 3. .

Fit of the regressor

For the regression of the fatigue damages D k (y k ) from J Var (y k ), it can be observed in Figure 4 that the relationship between the logarithms of the fatigue damage and J Var is approximately linear. Therefore, a logarithmic transformation is performed on both J Var and fatigue damage. Hence, a linear regression is fitted between the logarithms of J Var 10 JVar(y k ) and the fatigue damage. Eventually, the predicted logarithm of fatigue damage, denoted by Dk for the k th component, can be expressed as follows:

D k (y k ) k = 1 k = 2 k = 3 k = 4
log Dk = w k log J Var (y k ) + b k ( 12 
)
where w k is the linear regression coefficient and b k is the bias term. Therefore, from (1) and ( 12), J can be approximated by the fatigue-oriented cost function, denoted by Ĵ , which is expressed as follows:

Ĵ (y) = Nc k=1 π k e b k J Var (y k ) w k Dk (y k ) (13) 
where the values of π k , w k and b k are summarized in Table 4. Moreover, it can be noticed that, as the w k values are all above 1, the function Ĵ is convex, as a sum of compositions of convex functions. In the remainder of this article, the FO-OCP which uses the fatigue-oriented cost function Ĵ as objective is presented and a solution allowing to efficiently optimize the FO-OCP in a MPC is detailed.

Fixed-point formulation: Quadratic stage cost adaptation

The derivation of the fatigue-oriented cost function Ĵ allows to approximate an original OCP using the fatigue cost J as objective, by using Ĵ as cost function. However, the resulting FO-OCP is not a standard Quadratic Programming (QP) because w k = 1 for several components:

min u Ĵ (y) = Nc k=1 π k e b k J Var (y k ) w k (14a) s.t. ẋ = Ax + Bu + B d v (14b) 
y = Cx + Du + D d v (14c) 
where J Var (y k ), defined by [START_REF] Miner | Cumulative damage in fatigue[END_REF], can be expressed as the integral of a quadratic form over time. In this section, a first order Taylor expansion of Ĵ is first presented, showing 220 that Ĵ can be approximated with a quadratic form whose weighting matrices depend on an output trajectory y (iiter) . Then, a fixed-point problem aiming at finding the right y (iiter) is derived.

Successive approximations of the FO-OCP

It is possible to solve the FO-OCP using an NLP solver, after its discretization in time. However, this black-box optimization might not take advantage from the quadratic nature of J Var in the cost functional Ĵ . Indeed, quadratic forms are known to behave very well in OCP, allowing to have a convex and smooth cost function, with a constant Hessian in gradient descent algorithms. Let us approximate Ĵ with a first order Taylor expansion around the trajectory y (iiter) , where i iter is the iteration number in the resolution of a fixed-point problem:

Ĵ (iiter) (y)) = Ĵ (y (iiter) k ) constant + Nc k=1 π k      e b k w k J Var (y k ) w k -1 α k y (i iter ) k   J Var (y k ) -J Var (y (iiter) k ) constant        + ε y (iiter) negligible (15)
Hence, assuming that y (iiter) is known, this leaves us with a linear combination of quadratic forms J Var (y k ), for k ∈ {1, . . . , N c }. The original FO-OCP using J as a cost function can thus be approximated by a quadratic form whose weighting matrices values depend on y (iiter) :

min u Ĵ (iiter) (y) = t f t0 y(τ ) T Q y (iiter) y(τ )+ L y (iiter) T y(τ )+ u(τ ) T R y (iiter) u(τ ) dτ := J OCP p y (iiter) , y (16a) 
s.t. ẋ = Ax + Bu + B d v (16b) 
y = Cx + Du + D d v (16c)
where Q, R and L matrices are respectively definite semi-positive, definite positive matrices and column vector parameterized by y (iiter) , and:

p y (iiter) = Q y (iiter) , R y (iiter) , L y (iiter)
is an array of parameters defining the OCP. The matrices Q and R, along with the vector L, are derived from the α k , defined in [START_REF] Benasciutti | Spectral methods for lifetime prediction under wide-band stationary random processes[END_REF], and J Var expressions:

Q y (iiter) =      π 1 α 1 y (iiter) 1 . . . 0 . . . . . . . . . 0 . . . π Nc α Nc y (iiter) Nc      (17a) R y (iiter) = min π 1 α 1 y (iiter) 1 , . . . , π Nc α Nc y (iiter) Nc × εI nu (17b) L y (iiter) = -2      π 1 α 1 y (iiter) 1 µ(y (iiter) 1 
) . . .

π Nc α Nc y (iiter) Nc µ(y (iiter) Nc )      (17c)
where ε > 0 must be small enough in order to avoid introducing bias in the approximation of Ĵ with R. It should be noticed that R is introduced in ( 16) only in order to avoid singularities in its resolution. Therefore, the contribution of R in the value of Ĵ (iiter) must be negligible compared to the other terms. Hence, p depends on a given output trajectory y (iiter) , while the resulting output trajectory, denoted by y (iiter+1) , depends on the value of p(y (iiter) ) used in the OCP. The approximation of Ĵ by J OCP in the OCP defined by ( 16) is only accurate around y (iiter) . Hence, y (iiter) must be chosen close to the solution of the FO-OCP. A schematization of the interdependence between y (iiter) and p is given in Figure 5. This kind of problem is a fixed-point problem whose formulation is detailed in the next subsection.

Fixed-point problem derivation

For a given y (iiter) , we have an array of parameters p which parameterizes the quadratic cost function J OCP . On the other hand, the solution output trajectory of the QP of ( 16)

Standard OCP

Open-loop simulation

y (i iter +1) y (i iter ) p Computation v ol x 0 Approximation Fatigue-oriented J OCP (p(y (i iter ) ), y (i iter ) ) Ĵ (y (i iter ) ) u (i iter +1)
p(y (i iter ) )

Figure 5: Schematization of the fatigue-oriented open-loop optimization using the fatigue-oriented cost function Ĵ , where u (i iter +1) and x 0 are respectively the solution and initial condition of the OCP.

depends on the value of p. There is thus an algebraic loop that consists in finding the right y (iiter) and p(y (iiter) ) for the FO-OCP approximation. This kind of algebraic loop can be solved with a fixed point algorithm defined by Algorithm 1, for given initial state

x 0 and disturbance trajectory v ol .

Discussion on the fixed-point convergence

It is not proven that this fixed-point problem will converge. However, it can be assumed that if it does converge, it should converge to a local minimum or saddle point of the FO-OCP. From experience, it was observed that the fixed-point problem can have convergence issues and that filtering the fixed-point using an appropriate parameter β ∈]0, 1[ allows to help the fixed-point in converging, as suggested in [START_REF] Alamir | Fixed-point based hierarchical MPC control design for a cryogenic refrigerator[END_REF]. However, the parameter β can slow the convergence down but does not introduce any bias in the fixed-point solution. Hence, finding the global optimum with this method should mainly rely on the convexity of Ĵ in the FO-OCP.

Algorithm 1 Fixed-point algorithm allowing to solve y (iiter) = y (iiter+1) for given initial state x 0 , disturbance trajectory v ol and filtering parameter β.

i iter ←-0 y (iiter) ←-Initialize the output trajectory y (iiter+1) ←-Initialize another output trajectory while y

(iiter+1) = y (iiter) do i iter ←-i iter + 1 p y (iiter) ←-Solve (17) u (iiter+1) ←-Solve (16) ŷ(iiter+1) ←-Integrate the system dynamics y (iiter+1) ←-(1 -β)ŷ (iiter+1) + βy (iiter) end while
The advantage of this method compared to the one solving directly the FO-OCP NLP is that it allows to:

Express the OCP under a standard quadratic formulation Understand the role of the weighting matrices and how they should be adapted to reduce the fatigue cost It was shown in [START_REF] Collet | A fatigue-oriented cost function for optimal individual pitch control of wind turbines[END_REF] and [START_REF] Collet | Non quadratic smooth model of fatigue for optimal fatigue-oriented Individual Pitch Control[END_REF] that this kind of data-driven quadratic cost function and open-loop optimization featuring a fixed-point resolution, allow to significantly reduce the fatigue cost J compared to OCP using quadratic forms as objective. It is thus interesting to use the FO-OCP in the internal control problem of a MPC, in order to have a controller able to efficiently reduce J in closed-loop. However, the computational cost of the fixedpoint algorithm in the FO-OCP resolution makes its use in a MPC prohibitive. Therefore, an efficient quadratic MPC stage cost adaptation, based on the J OCP weighting matrices adaptation in the fixed-point algorithm iteration (see equation ( 17) and Algorithm 1), is derived in the next section.

Filtered adaptive MPC formulation

This section presents an adaptive MPC formulation based on the FO-OCP resolution using the fixed-point algorithm 1. The proposed adaptive formulation, featuring several filtering mechanisms, allows an efficient reduction of Ĵ when implemented in closed-loop.

It is clear that the natural and naive implementation of a MPC aiming at minimizing Ĵ would be to directly use the FO-OCP as open-loop OCP. In the remainder of this article, this implementation is named MPC direct and will be used for comparison. However, the fixed-point formulation described in Section 3 highlights the fact that the FO-OCP consists in adapting the stage cost of a quadratic MPC, based on the variance of the optimal output trajectory, or more physically the level of vibration of the system:

min u J = t+T t y(τ ) T Q (y) y(τ ) + L (y) T y(τ ) +u(τ ) T R (y) u(τ ) dτ (18a) s.t. ẋ =Ax + Bu + B d v (18b) 
y =Cx + Du + D d v (18c)
where the weighting matrices Q, L and R are functions of the output trajectory y, which is the solution of the fixed point problem. This kind of open-loop optimization can be efficiently solved by NLP or QP solvers, depending on the nature of the constraints and dynamical system involved. Moreover, this kind of quadratic OCP is well known and widely used in the MPC literature. Therefore, MPC direct can result in an adaptive MPC which brutally changes its parameters value. This brutal changes are likely to prevent efficient reduction of Ĵ when MPC direct is implemented in closed-loop. This is the reason why, along with the prohibitive computational cost, another formulation denoted by MPC filt , limiting and smoothing the variations of a quadratic MPC parameters, and computationally efficient, is proposed. In order to limit the quadratic MPC stage cost variations, the proposed solutions are: 2. Filter through time the variations of the updated matrices in order to limit the effects of noise or outliers on the weighting matrices estimation.

The fixed-point formulation shows implicitly that the stage cost of ( 18) depends on the variance, or current level of vibration of the closed-loop turbine, and increasing the time length of y aims at better approximating this level of vibration. However, increasing significantly the prediction horizon would result in increasing the computational burden and trust unreasonably the predictions of the internal model. As a solution for estimating the level of vibration, it is proposed to consider y on previous time instants of the simulation. Therefore, y is measured instead of predicted, but the variance estimation is slightly delayed. Moreover, p(y) does not depend on the OCP solution anymore, which breaks the fixed-point problem. Therefore, the computational burden is reduced as the MPC optimization problem becomes the one defined by [START_REF] Bir | Multi-blade coordinate transformation and its application to wind turbine analysis[END_REF].

A schematization of MPC filt is proposed in Figure 6. The standard MPC array of parameters p is obtained from the filtration of the array of parameters, denoted by p, given by the approximation of the FO-OCP defined by [START_REF] Benasciutti | Spectral methods for lifetime prediction under wide-band stationary random processes[END_REF]. The derivation of p depends on the system output trajectory over the previous time instants, denoted by y. The various operations necessary for the derivation of the matrices Q, L and R, contained in p, are depicted in the remainder of this subsection. 

Derivation of the non-filtered array of parameter

p From the fixed-point formulation detailed in Section 3, the non-filtered updated values of the weighting matrices Q, L and R, denoted by Q, L and R, are expressed as follows:

Q(y) ij = π k α k (y k ) if i = j = k 0 otherwise (19a) L(y) k = -2π k α k (y k ) (19b) R(y) = min diag Q(y) , 1 × 10 -3 I 2 (19c) α k (y) = e b k w k J Var (y k ) w k -1 (19d) 
where Q(y) ij is the i th row and j th column of Q(y), L(y) k is the k th row of the vector L(y), π k is the k th component price of replacement and α k , defined in [START_REF] Benasciutti | Spectral methods for lifetime prediction under wide-band stationary random processes[END_REF], is a measure of the level of vibration. As the trajectory y is taken to be the last time instants of the current closed-loop simulation output trajectory, y is estimated over the interval [t -T last , t], where t is the current instant and T last is the sliding parameter estimation horizon time length, as illustrated in Figure 7. It should be noticed that the longer T last is, the more J Var should be accurate, but the more delayed is the J Var estimation.

In order to limit the influence of the instants close to t -T last for J Var estimation in α k computations, a weighted formulation is considered:

J Var (y k ) = 1 T (ξ, T last ) t t-T last e ξ(τ -t) y k (τ ) -µ(y k , ξ, T last ) 2 dτ (20)
where y k is an instantaneous value of y k ,

T (ξ, T last ) = t t-T last e ξ(τ -t) dτ µ(y k , ξ, T last ) = 1 T (ξ, T last ) t t-T last e ξ(τ -t) y k (τ )dτ
and ξ ≥ 0 is the parameter of a weighting function, such that the time instants closer from t are weighted more importantly. It should be noticed that the greater is ξ, the more importance is given to the lasts time instants of the interval [t -T last , t].

Filtering of p in time

In order to further limit the variations of the weighting matrices Q, L and R due to noise or outliers in y, the weighting matrices are filtered through time, similarly to the filtering step in the fixed-point iteration of Algorithm 1, that helps in converging:

Q(y) = βQ old + (1 -β) Q(y) (21a) 
L(y) = βL old + (1 -β) L(y) (21b) R(y) = βR old + (1 -β) R(y) (21c) 
where Q old , L old and R old are the values of Q, L and R obtained at their last update.

A summary of the weighting matrices update for a given output trajectory y and old weighting matrices Q old , L old and R old is given in Algorithm 2.

Algorithm 2 Gives Q, L and R values for a given output trajectory y and old weighting matrices Q old , L old and R old . J Var (y k ) ←-Estimate the variance of the different process outputs using equation

{ Q(y), L(y), R(y)} ←-Update the weighting matrices parameterizing the stage cost with equation ( 19) {Q(y), L(y), R(y)} ←-Filter the updated weighting matrices through time with equation (21)

Parameters choice

For the implementation of the control strategy described in this subsection, few parameters must be chosen, i.e. T , β, T last and ξ. The choice of these parameters is depicted in the sequel:

T = 2 s:
The prediction horizon is taken to be 2 s in order to match the one taken for MPC ideal and MPC mean . Moreover, ∼ 2 s previews are several times considered in the IPC literature [START_REF] Mirzaei | An MPC approach to individual pitch control of wind turbines using uncertain LiDAR measurements[END_REF][START_REF] Schlipf | Look-ahead cyclic pitch control using LiDAR[END_REF][START_REF] Raach | Nonlinear model predictive control of floating wind turbines with individual pitch control[END_REF]. It can be justified by the fact that current remote wind speed measurement devices do not allow accurate previews of wind evolution on longer horizons. β = 0.95: The time filtering parameter β is inherited from the filtering parameter in the fixed-point Algorithm 1, which was chosen such that the algorithm converges efficiently.

T last = 100 s, ξ = 0.03 s -1 : The parameters T last and ξ were chosen such that the fatigue cost in closed-loop with the filtered MPC is minimized for an highly demanding disturbance.

It should be noticed that the validity of T last and ξ might be limited to the considered dataset. A sensitivity study of MPC filt performances to these parameters for further validation should be the subject of future works. It can also be added that MPC filt depends also on the parameters taken for the fatigue cost function J , i.e. the prices of replacement, the Wöhler exponents and the ultimate loads of the components considered. These parameters could be estimated by the HAWT manufacturer. Now that the adaptive fatigue-oriented adaptive MPC formulation is defined, it will be compared on its ability to reduce the fatigue cost J to a more classical non-adaptive MPC.

Results

The ultimate goal of MPC filt is to efficiently reduce the fatigue cost J in closed-loop of a system. In order to assess the reduction of J efficiency, it is proposed in this section to compare the fatigue cost of closed-loop simulations where the HAWT is controlled with MPC filt and benchmark controllers. Quadratic MPCs are the most advanced controllers in the literature of HAWT control for fatigue alleviation [START_REF] Mirzaei | An MPC approach to individual pitch control of wind turbines using uncertain LiDAR measurements[END_REF][START_REF] Raach | Nonlinear model predictive control of floating wind turbines with individual pitch control[END_REF][START_REF] Loew | Direct Online Rainflow-counting and indirect fatigue penalization methods for Model Predictive Control[END_REF], therefore the proposed benchmark controllers are: MPC mean , a finely tuned parameterized quadratic MPC, presented in Subsection 2.1.3, which is similar to the one designed in [START_REF] Mirzaei | An MPC approach to individual pitch control of wind turbines using uncertain LiDAR measurements[END_REF] MPC ideal , an idealistic parameterized MPC presented in Subsection 2.1.3, whose parameter ν would adapt optimally based on the results of long term closed-loop simulations.

Moreover, a glance is given to the performance of MPC direct , in order to justify the choice of not considering it further. First of all, the simulation settings used in this comparison is defined. Then, the MPCs are evaluated on their ability to reduce the fatigue-oriented cost Ĵ , which is the explicit objective function that the FO-OCP must minimize. Eventually, the MPCs are compared on their ability to reduce the fatigue cost J .

Simulation settings

The simulation settings used for the MPCs comparison is the same as the one used for the time series generation described in Subsection 2.1 and summarized in Table 5. Note, that the simulation settings considered is simplified compared to the one conventionally used for controller validation in industry. This choice was made so that there is no model mismatch between the model used in simulation and the one considered in the MPCs internal optimization. This allows to isolate the fatigue reduction given by the adaptive MPC formulation, without mixing other issues in control systems implementation such as parameters uncertainty. The parameters used for the evaluation of the fatigue-oriented and fatigue cost, Ĵ and J , are summarized in Tables 3 and4. Moreover, it should be noticed that the first 100 seconds of the 600 seconds long time series are removed in order to avoid any unexpected transient due to a bad initialization of one MPC. 

Data-driven fatigue-oriented cost function reduction

The cost function that MPC filt and MPC direct are supposed to minimize is the fatigueoriented cost function Ĵ . As Ĵ is an approximation of the fatigue cost J , minimizing Ĵ can allow to indirectly minimize J , which is the ultimate objective. In Figure 8 is plotted the scatter of the fatigue-oriented cost Ĵ obtained from closed-loop simulations with MPC ideal , against Ĵ with MPC filt and MPC direct . The black dashed line represents the bisector of the plane. It can be observed that MPC filt allows to have Ĵ value equivalent to the one of the fictitious MPC ideal .

On the other hand for MPC direct , it can be seen that MPC direct , whose explicit objective in its open-loop OCP is to minimize Ĵ , does not succeed to efficiently reduce Ĵ in closed-loop. It is fundamental to underline that this is a general drawback in MPC implementation that is rarely considered or analyzed in the MPC literature. To this extent, putting under light that this discrepancy between the open-loop and closed-loop performance can exist for this kind of objective function is a rather important contribution, that a broader audience than the one interested in wind turbine control should look at. Hence, MPC direct is not considered further in this study as all hope of efficient J reduction are lost with this controller in closed-loop.

The controller that would usually be implemented is MPC mean rather than MPC ideal , which has a fixed parameter ν mean , allowing to minimize the fatigue cost J expectancy for a given wind distribution. In Figure 9 is plotted the scatter plot of the Ĵ value obtained with MPC mean , against the one obtained with MPC filt . It can be noticed that MPC filt allows to yield a lower Ĵ than MPC mean in more than 99% of cases, allowing to reduce the expectancy of Ĵ of 26%. In summary, these observations let us expect that MPC filt can efficiently reduce the fatigue cost J as it efficiently reduces Ĵ .

True RFC fatigue cost function reduction

The ultimate objective of a fatigue-oriented controller being to efficiently reduce the fatigue cost J expectancy, MPC filt is compared in this subsection to MPC ideal and MPC mean on its ability to reduce the fatigue cost J . In Figure 10 is plotted the scatter of the fatigue cost J value obtained from closed-loop simulations with MPC filt against the one obtained with MPC ideal , under the 10000 wind disturbances generated. It can be observed that MPC filt and MPC ideal have globally similar performances. However, there is an advantage to MPC ideal , as MPC filt increases the J expectancy of 46% compared to MPC ideal . However, as MPC ideal is a fictitious ideal controller, the performances of 20 MPC filt can be considered as satisfactory.

In Figure 11 is plotted the scatter of the J value obtained from closed-loop simulations with MPC filt against the one obtained with MPC mean . It can be observed that MPC filt yields generally lower values of J than MPC mean and that MPC mean only matches the performances of MPC filt for the highest fatigue cost cases. More precisely, MPC filt allows to reduce J compared to MPC mean in more than 99% of the cases and reduce the fatigue cost expectancy of 27%, which is highly satisfactory. A summary of the fatigue-oriented and fatigue cost reductions obtained with MPC filt and MPC direct compared to MPC mean and MPC ideal is given in Table 6.

The goal of MPC filt was to approach the fatigue reduction performances of MPC ideal , while being implementable in real life, which is not the case of MPC ideal . It is important to stress out that MPC filt can yield a lower fatigue cost expectancy than a state-of-theart HAWT IPC controller such as MPC mean . This is possible thanks to the efficient adaptation of its cost function parameters based on a measure of the current vibrational level of the HAWT, i.e. the variance J var of its various components. 

Conclusion & Perspectives

This paper proposes a fatigue-oriented adaptive MPC whose adaptation law is based on a fixed-point formulation derived from an OCP using a data-driven fatigue-oriented cost function Ĵ as objective. It was shown that the proposed controller allows a 27% reduction of the fatigue cost J , compared to a non-adaptive MPC, finely tuned in order to efficiently reduce J expectancy. Besides, the proposed MPC formulation allows to better reduce Ĵ in closed-loop simulations than a MPC using directly the FO-OCP as its internal open-loop OCP. This observation highlights that it is possible that a MPC do not allow to efficiently reduce the objective given in the open-loop OCP once implemented in closed-loop, even in absence of model mismatch.

The results generated in this paper featured important assumptions, such as the HAWT is modeled as an LTI system without model mismatch, or the wind is only summarized by its hub-height wind speed and perfectly known in advance. In order to fully estimate the potential of this approach in realistic conditions, the following changes must be realized in future studies. The MPCs must be simulated in closed-loop with an HAWT simulator and under a more realistic wind disturbance. It should be noticed that the above changes could affect the performances of the proposed adaptive MPC, as well as the one of the baseline controller used for comparison. Concerning the formulation of the fatigue cost J , the fatigue related to the yawing and tilting blade root bending moments and blade pitch angles has very few physical meaning. Nevertheless, it does not undermine the genericity of this approach and the method should be able to adapt itself efficiently to different fatigue cost functions.

The interest of the presented method, which is more generally the one of fatigueoriented approaches is to directly consider fatigue damages in the objective, which allows an efficient optimization of the fatigue cost J , more meaningful and explicit than quadratic cost functions. It was shown in this article that the proposed MPC has very good performances compared to a finely tuned non-adaptive MPC, with minimal tuning effort.
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Figure 1 :

 1 Figure 1: Flow chart summarizing the design of the filtered adaptive MPC and the outline of the paper.

  6b) where x ∈ R nx , u ∈ R nu and y ∈ R Nc represent respectively the state, input and output of the system, while A, B, B d , C, D and D d are matrices of appropriate dimensions. It should be noticed that u = [θ sp yaw , θ sp tilt ] T and y = [M yaw , M tilt , θ yaw , θ tilt ] T , where θ sp yaw and θ sp tilt are respectively the yawing and tilting blade pitch angles setpoints, M yaw and M tilt are respectively the yawing and tilting blade root bending moments. Moreover, 160 θ yaw and θ tilt are integrated in x.

Figure 2 :

 2 Figure 2: Histogram of the 10000 turbulence intensities used for the set of winds generation.

Figure 3 :

 3 Figure 3: Plot of the fatigue cost J and the stage cost parameter ν for six different winds, normalized by the minimum fatigue cost J obtained for each wind, where v (i) cl is the i th wind realization.

Figure 4 :

 4 Figure 4: Scatter plot of the variance J Var (y k ) and fatigue damage D k (y k ) of each system outputs, obtained from the above described data generation process.

1 .Figure 6 :

 16 Figure6: Schematization of the MPC filt architecture, where the vector of parameters p which parameterizes a standard MPC, is a filtered function of the system output trajectory over the previous time instants.

Figure 7 :

 7 Figure 7: Illustration of the interval considered for evaluating J Var (y k ) in MPC filt (thick line), against the one considered in MPC direct (dashed line).
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 891011 Figure 8: Scatter plot of the fatigue-oriented cost Ĵ of the closed-loop MPC direct and MPC filt simulation against the one of MPC ideal , under the 10000 winds generated.

Table 1 :

 1 Technical characteristics summary of the Senvion MM82.

	Characteristic	Value
	Rated power (kW)	2050
	Rotor diameter (m)	82
	Rotor speed (rpm)	8.5 -17.1

Table 2 :

 2 Summary of the parameters considered in the FAST linearization.

	Parameter	Value
	Operating wind speed (m/s)	12
	Actuator time constant τact (s)	0.1
	Disturbances considered in v	Hub-height wind speed

Table 3 :

 3 Summary of the parameters used for the estimation of the fatigue damages D k .

	Component k	L ult k	m k
	Myaw	1	1000	10
	M tilt θyaw θ tilt	2 3 4	1000 5 8π 180 × 10 3 5 8π 180 × 10 3	10 4 4

Table 4 :

 4 Summary of the w k and b k values obtained from the regression in the cost function derivation.

	Component k	w k	b k	π k
	Myaw	1	4.92 -58.05 1000
	M tilt	2	4.90 -57.13 1000
	θyaw	3	1.98 -21.11	1
	θ tilt	4	1.96 -20.07	1

Table 5 :

 5 Summary of the simulation settings used for the MPCs comparison.

	Feature	Description
	HAWT simulator	MM82 Rotor LTI system in MBC linearized from FAST around 12 m/s
	Wind disturbances	10000 TurbSim generated winds of random turbulence intensity and mean wind speed 12 m/s
	Initial conditions	LTI system operating conditions
	Constraints/Saturations	None
	Model mismatch	None
	Simulation length	600 s
	Sampling time	0.1 s

Table 6 :

 6 Summary of the reductions obtained for the data-driven fatigue-oriented cost function Ĵ and the fatigue cost function J , compared to the baseline controllers MPCmean and MPC ideal .

	Cost function	Controller	MPCmean	MPC ideal
	Ĵ	MPC filt MPC direct	26% -117%	-23% -148%
	J	MPC filt	27%	-46%