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Abstract

Horizontal Axis Wind Turbine (HAWT) rotor is a system whose components are partic-
ularly exposed to fatigue damage, due to non-uniform winds and the rotating nature of
the rotor. Individual Pitch Control (IPC) can help alleviating the fatigue loads on the
rotor blades by rotating the blades independently from each other on their longitudinal
axis. However, reducing the blades fatigue damage is often compensated by an increase in
pitch activity, damaging the blade pitch actuators. An IPC regulator must thus optimize
a trade-off between the fatigue damage of the blades and blade pitch actuators. This
paper presents the derivation and implementation of a fatigue-oriented adaptive Model
Predictive Control (MPC) IPC regulator using a data-driven fatigue-oriented cost func-
tion. This MPC allows to efficiently optimize the IPC fatigue trade-off and significantly
reduce the expectancy of an HAWT rotor economic fatigue cost, compared to a finely
tuned non-adaptive MPC. The methodology used for the derivation of the presented
MPC allows to efficiently reduce an economic fatigue cost, while limiting the sensitivity
to controller tuning.

Keywords: Fatigue, Optimal control, Model Predictive Control, Individual Pitch
Control

Nomenclature10

HAWT Horizontal Axis Wind Turbine

IPC Individual Pitch Control

MBC Multi-Blade Coordinates

MPC Model Predictive Control Problem

LTI Linear Time Invariant15

OCP Optimal Control Problem



FO-OCP Fatigue-Oriented Optimal Control Problem

RFC RainFlow Counting

QP Quadratic Programming

NLP NonLinear Programming20

J Economic fatigue cost

a Trajectory of a vector a

ak kth component of a vector a

a? Optimal value of a

x State vector of an HAWT25

u Input vector to an HAWT

v Disturbance vector on an HAWT

y Output vector from an HAWT

Nc Number of components considered in an HAWT

π HAWT components prices of replacement vector30

Dk HAWT kth component fatigue damage

mk HAWT kth component Wöhler coefficient

Lult
k HAWT kth component ultimate fatigue load

Ĵ Data-riven fatigue-oriented cost function

Nd Number of time series generated Ĵ derivation35

D̂ Predicted vector of fatigue damages

F Vector of functions allowing to predict D̂

w, b Linear and bias coefficients parameterizing the functions in F

HAWT rotor azimuth angle

τact Time constant of the blade pitch actuator40

A,B,Bd, C,D,Dd Parameters of an LTI HAWT system

θ, θsp Blade pitch angles and corresponding setpoints vectors

M Blade root bending moment vector

ayaw, atilt Yawing and tilting component of a vector a expressed in MBC

T Prediction horizon (s)45
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Q,R,L Weighting matrices parameterizing a quadratic cost function

p Array of parameters defining a quadratic cost function

vol Disturbance trajectory of a process in an open-loop optimization

vcl Disturbance trajectory of a process in a closed-loop simulation

ν Scalar parameter of a parameterized quadratic cost function50

νideal(vcl) Parameter ν minimizing J for a disturbance vcl

νmean Scalar value of ν minimizing the J expectancy for a set of disturbances

MPCideal Idealistic parameterized quadratic MPC using νideal(vcl) as parameter

MPCmean Finely tuned parameterized quadratic MPC using νmean as parameter

Jvar Variance of a signal55

µ Mean of a signal

JOCP First order Taylor approximation of Ĵ

α First order Taylor approximation of F

iiter ith iteration step in a fixed-point algorithm

β Filtering parameter in a fixed-point algorithm60

Tlast Parameter p estimation horizon

ξ Weighting parameter of a weighted formulation of variance

MPCfilt Filtered adaptive fatigue-oriented quadratic MPC

MPCdirect Non-filtered adaptive fatigue-oriented quadratic MPC

1. Introduction65

Horizontal Axis Wind Turbine (HAWT) rotor is a rotating system, composed of three
blades and blade pitch actuators, allowing to pitch the blades on their longitudinal axis.
An HAWT rotor is continuously disturbed by turbulent winds, whose speed and orien-
tation vary in time and space. The recent largest HAWT installations are able to reach
diameters of 150 and 200 meters in respectively on-shore and off-shore plants. The wind70

speed variations over the rotor plane can thus be significant. Therefore, the aerodynamic
loads applied on a rotating blade with constant pitch angle will vary with wind speed in
the rotor plane during a rotation, inducing oscillatory loads which are a source of fatigue.

The blade pitch actuators allow to pitch the blades on their longitudinal axis, in
order to modify the aerodynamic properties of the rotor. Individual Pitch Control (IPC),
consists in varying the blades pitch angles during its rotation in the rotor plane, in order
to alleviate the oscillatory loads causing fatigue [1]. However, the blades oscillatory loads
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reduction has the drawback of increasing blade pitch activity [1, 2, 3, 4] and eventually
blade pitch actuators fatigue damage. There is thus an inherent trade-off between the
fatigue damage of blades and the one of pitch actuators. A relevant way to evaluate
this trade-off, proposed in [5], consists in defining a cost function, denoted by J , as the
price-weighted sum of fatigue damages:

J (y) =

Nc∑
k=1

πkDk(yk) (1)

where yk, πk and Dk are respectively the output trajectory, price of replacement and75

fatigue damage of the kth component of a multi-output process, y contains the process
stacked output trajectories and Nc is the number of HAWT components considered in
J . The control strategy tailored to minimize a complex cost function such as J is Model
Predictive Control (MPC). MPC can be defined in a nutshell as a control strategy that
consists in solving an open-loop Optimal Control Problem (OCP) over a finite receding80

horizon, parameterized by the initial state of the prediction horizon, objective function
and possibly constraints on the system [6]. The first time instant input trajectory of the
OCP solution is then given as input to the system by the controller. MPC is based on the
fact that solving iteratively an OCP over a finite horizon should allow to approach the
solution of the same open-loop OCP over an infinite horizon. The advantages of MPC are85

that it allows to optimally handle control problems under complex dynamics, constraints
specifications and objective functions. Moreover, MPC allows to optimally anticipate
disturbances which can be estimated, such as wind with Light Detection and Ranging
(LiDAR) devices, in wind turbine control. On the other hand, the main drawback of
MPC is the potential computational cost of solving the open-loop OCP. Moreover, the90

incorporation of the fatigue damages Dk in the objective function J of an OCP is chal-
lenging due to fatigue estimation [7].

The widely used representation of fatigue consists in counting the number of hystere-
sis cycles contained in a time series, using a RainFlow Counting (RFC) algorithm [8], and95

summing the fatigue damages related to each hysteresis cycle with the Palmgrem-Miner
linear damage rule [9, 10]. The RFC algorithm has an algorithmic nature which makes
its incorporation in an OCP objective challenging. Nevertheless, the methods described
in [11, 12], consisting in parameterizing a MPC objective function with the results of a
RFC algorithm performed over a previous solution time series, and turning the OCP into100

a tracking problem. This allows to efficiently reduce the fatigue damage of one process
output. The shortcomings of this method are the fact that one RFC evaluation is needed
per output, therefore the computational complexity of the method greatly increases with
the number of components considered in J . Another fatigue-oriented MPC is designed
in [13], where parameters of a quadratic cost function used as objective in the MPC are105

identified on-line, in order to match an on-line estimation of fatigue.
Thanks to probabilistic considerations on random processes, it is possible to bypass the
RFC algorithm and express fatigue damage as nonlinear expression of the zero, second
and fourth order spectral moments, which are respectively equivalent to the variance of
the zero, first and second time derivative of the process output. This expression is firstly110

established for narrow-banded processes in [14] and extended to random processes in [15].
Thus, it is possible to relate the fatigue damage to the variance of a signal and its time
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s.t. dynamics

Taylor
approximation
and fixed-point

resolution

Filtered adaptive MPC
formulation
(Section 4)

Quadratic
cost

function
parameters
adaptation

Parameters
estimation
over past

Time-
weighted

formulation
of variance

Tlast, T, ξ

HAWT dynamics, J
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Figure 1: Flow chart summarizing the design of the filtered adaptive MPC and the outline of the paper.

derivatives. Therefore, in [16] a data-driven fatigue-oriented cost function derived from
the relationship between variance and fatigue damage of a process output is obtained.
This fatigue-oriented cost function is then used in an open-loop OCP, named Fatigue-115

Oriented Optimal Control Problem (FO-OCP), as a surrogate to J . The solutions of the
open-loop FO-OCP show a great potential in reduction of the fatigue cost J compared
to the solution of a finely tuned standard quadratic OCP. This may suggest to use such
a fatigue-oriented cost function as objective in a MPC, in order to efficiently reduce the
fatigue cost J . However, it is shown in this article that the direct use of the FO-OCP120

in a MPC dramatically increases the fatigue-oriented cost function when implemented
in closed-loop. Hence, a MPC formulation, whose stage cost is adapted based on the
FO-OCP structure and filtering features, is proposed.

This article is organized as follows. In Section 2, the derivation of the data-driven125

fatigue-oriented cost function is presented. In Section 3, a resolution method of the FO-
OCP featuring a fixed-point problem, whose MPC stage cost adaptation law is based on,
is detailed. In Section 4, the formulation of the MPC with adaptive stage cost, based on
the FO-OCP and fixed-point problem formulation is depicted. In Section 5, it is shown
that the closed-loop implementation of the MPC with adaptive stage cost presents a130

great reduction potential of the fatigue cost J . In Section 6, conclusion and perspectives
on this approach are given. A summary of the MPC with adaptive stage cost design and
the paper outline is given in Figure 1.

2. Data-driven fatigue-oriented cost function derivation

This section presents the derivation of the fatigue-oriented cost function to be used135

as objective in the FO-OCP. The approach considered here is based on the one defined in
[16], where the fatigue-oriented cost function is derived using a data-driven linear regres-
sion between the logarithms of variance and fatigue damage of signals. The derivation
process comes in three steps:
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1. The generation of Nd time series, denoted by

{y(1), . . . ,y(Nd)}

representing a wide variety of possible outputs of a closed-loop process.140

2. The estimation of variance and fatigue damages for the generated time series, de-

noted respectively by {Var(y
(1)
k ), . . . ,Var(y

(Nd)
k )} and {Dk(y

(1)
k ), . . . ,Dk(y

(Nd)
k )}

for the kth output of a process.
3. The fit of a regressor for each component k, denoted by Fk, allows to predict a

fatigue damage estimation, denoted by D̂k, from the variance estimates, such that145

D̂k(yk) = Fk (Var(yk)) ' Dk(yk)

2.1. Time series generation

The first step consists in generating a set of time series, representative of the variety
of outputs which a closed-loop process can yield. However, it is difficult to guess in
advance what the dynamics of the closed-loop system will be, as the fatigue-oriented150

cost function and the OCP solutions depend on the data for which the regressors Fk
have been fitted on. Therefore, it is proposed for the time series generation to simulate
a system representative of the HAWT dynamics in closed-loop with an efficient MPC
under different wind conditions, as described in this section.

2.1.1. Dynamic system definition155

The National Renewable Energy Laboratory (NREL) provides a nonlinear HAWT
simulator named Fatigue Aerodynamics Structures and Turbulence (FAST) [17] where
a linearization module is integrated. The FAST linearization module allows to obtain a
first order linear dynamic model of the HAWT, for a variety of blades azimuth angles,
denoted by ψ:

˙̃x = Ã(ψ)x̃+ B̃(ψ)ũ+ B̃d(ψ)v (2a)

ỹ = C̃(ψ)x̃+ D̃(ψ)ũ+ D̃d(ψ)v (2b)

where x̃, ũ, ỹ and v represent respectively the state, input, output and disturbance of the
system, while Ã, B̃, B̃d, C̃, D̃ and D̃d are matrices of appropriate dimensions. For IPC,
it is often preferred to linearize the rotating blades dynamics in a non-rotating frame of
coordinates, named Multi-Blade Coordinates (MBC), more adapted for control design
purposes [18, 1]. To pass from the blades rotating coordinates to MBC, the orthogonal
MBC transform matrix, denoted by T (ψ), is created:

T (ψ) =
2

3

 1
2

1
2

1
2

cos(ψ) cos(ψ + 2π
3 ) cos(ψ + 4π

3 )
sin(ψ) sin(ψ + 2π

3 ) sin(ψ + 4π
3 )

 (3)

The blade pitch angles, denoted by θ1, θ2 and θ3 can be thus turned into collective,
yawing and tilting blade pitch angles, denoted respectively by θcol, θyaw and θtilt with
the following matrix multiplication: θcol

θyaw

θtilt

 = T (ψ)

θ1

θ2

θ3

 (4)
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Table 1: Technical characteristics summary of the Senvion MM82.

Characteristic Value

Rated power (kW) 2050
Rotor diameter (m) 82
Rotor speed (rpm) 8.5 – 17.1

Table 2: Summary of the parameters considered in the FAST linearization.

Parameter Value

Operating wind speed (m/s) 12
Actuator time constant τact (s) 0.1

Disturbances considered in v Hub-height wind speed

A similar transformation can be performed with the states and outputs of the system
relative to the blades. The interest of having the system expressed in MBC for IPC
regulation is that the linear system (2) is approximated as a Linear Time Invariant (LTI)
system. Moreover, the system is extended in order to take into account the blade pitch
actuators dynamics, which are modeled with a first order differential equation:

θ̇i = − 1

τact
θi +

1

τact
θsp
i (5)

where θsp
i is the ith blade pitch angle setpoint and τact is the time constant of the blade

pitch actuator. These transformations eventually yield the following dynamic model:

ẋ = Ax+Bu+Bdv (6a)

y = Cx+Du+Ddv (6b)

where x ∈ Rnx , u ∈ Rnu and y ∈ RNc represent respectively the state, input and output
of the system, while A, B, Bd, C, D and Dd are matrices of appropriate dimensions.
It should be noticed that u = [θsp

yaw, θ
sp
tilt]

T and y = [Myaw,Mtilt, θyaw, θtilt]
T , where θsp

yaw

and θsp
tilt are respectively the yawing and tilting blade pitch angles setpoints, Myaw and

Mtilt are respectively the yawing and tilting blade root bending moments. Moreover,160

θyaw and θtilt are integrated in x.

For the time series generation considered in the article, the LTI system is linearized
from FAST with only the first flapwise degree of freedom activated and used as simu-
lator. The turbine simulated is a Senvion MM82 whose characteristics are specified in165

Table 1. The parameters used for the linearization of the LTI system are summarized
in Table 2. For the closed-loop control of this system, parameterized IPC MPCs with
different parameters are designed.

2.1.2. Parameterized quadratic MPC definition

In order to obtain time series of the closed-loop process and define a benchmark
controller for comparison, a parameterized quadratic MPC regulator is proposed, because
its design is standard and has proven to be efficient in this task [3]. The proposed MPC
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should solve between each update of the control the following open-loop OCP:

min
u

J =

∫ t+T

t

(
y(τ)TQy(τ) + u(τ)TRu(τ)

)
dτ (7a)

s.t. ẋ = Ax+Bu+Bdv (7b)

y = Cx+Du+Ddv (7c)

where the weighting matrices Q ∈ RNc×Nc and R ∈ Rnu×nu are respectively semi definite
and definite positive matrices, t is the current time instant, T is the prediction horizon
time length. Let u and vol be temporal vectors, such that u(τ) and v(τ) are respectively
the values of u and vol at time instant τ over the prediction horizon [t, t+ T ]. In order
to efficiently reduce the fatigue cost of the turbine, the MPC weighting parameters must
be tuned accordingly. However, it should be noticed that the weighting matrices Q and

R contain respectively Nc(Nc+1)
2 and nu(nu+1)

2 parameters, which leads to 13 parameters
to be tuned, as Nc = 4 and nu = 2. In order to reduce the computational complexity
of the weighting matrices Q and R tuning, a relevant parameterization defined in [16] is
proposed:

Q(ν) = diag
(
[1, 1, ν, ν]

)
R(ν) = Inu

min(ν, 1)× 10−10 (8)

where ν is the tuning parameter, which penalizes the actuation of the system. It should170

be noticed that this parameterization relies on the fact that the blades in rotating co-
ordinates have all the same independent dynamics. Hence, the trade-off between pitch
activity and blade fatigue loads alleviation must be weighted equally. Then, considering
this trade-off in MBC yields the matrix Q(ν). The role of the matrix R(ν) is to prevent
singularities in the OCP, as the penalization of the system pitch activity is already taken175

care of by the parameter ν. Therefore, the impact of R on the J value must be negligi-
ble. It is thus possible to generate realistic time series of a closed-loop HAWT provided
relevant values of ν, T and disturbance trajectory for the closed-loop simulation, denoted
by vcl.

2.1.3. Realistic trajectories selection180

In order that the fatigue-oriented cost function be relevant, it is necessary to con-
sider realistic closed-loop controllers and exogenous disturbance trajectory vcl in the
time series generation. For the exogenous disturbance trajectories, a set of Nd wind

disturbances, denoted by {v(1)
cl , . . . ,v

(Nd)
cl }, is generated using the NREL wind generator

TurbSim [19], which allows to generate realistic random hub-height winds from given185

average wind speed and turbulence intensity. For the wind generation, the average wind
speed is fixed to 12 m/s, as the LTI system is linearized around this wind speed, and
10000 turbulence intensities are randomly drawn in a realistic distribution of turbulence
intensity, obtained from a 10 years long NREL measurement campaign [20]. An his-
togram of the turbulence intensity distribution is plotted in Figure 2.190

In order to have a realistic and performing closed-loop controller, the MPC defined by
(7) is implemented with a prediction horizon T = 2 s, as longer prediction horizons did not
seem to improve further the control quality. The stage cost of this MPC is parmeterized
by equation (8), and 50 parameters of ν are tested, spanning in a logarithmic space
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Figure 2: Histogram of the 10000 turbulence intensities used for the set of winds generation.

ranging from 101 to 104. In Figure 3 is plotted the evolution of the fatigue cost J with
the ν parameter for several winds, normalized by the minimal fatigue cost J obtained
for the corresponding wind. It can be observed that for a given wind, the fatigue cost J
varies with the value of ν and it is not always the same value of ν which minimizes J .
Let Jmpc(vcl, ν) be the fatigue cost obtained in closed-loop with the MPC parameterized
by ν, under a given wind disturbance vcl. Let us define νideal and νmean, the values of ν
that respectively minimizes the fatigue cost for a wind disturbance vcl and for the set of

wind disturbances

{
v

(1)
cl , . . . ,v

(Nd)
cl

}
:

νideal(vcl) = arg min
ν
Jmpc(vcl, ν) (9a)

νmean = arg min
ν

Nd∑
i=1

Jmpc(v
(i)
cl , ν) (9b)

From Figure 3, it can be claimed that

Jmpc(vcl, νmean) ≥ Jmpc(vcl, νideal(vcl))

There is thus an interest in adapting the value of ν depending on vcl, in order to minimize
the fatigue cost in all circumstances. Let MPCmean and MPCideal be controllers whose
behaviors correspond to the MPC having respectively νmean (fixed) and νideal (varying)
for parameter. It is thus desirable to have a controller approximating the behavior of195

MPCideal for every wind in the set, as the fatigue cost of MPCideal is always lower or
equal than the one of MPCmean. Therefore, in order to approximate the fatigue-oriented
cost function corresponding to MPCideal, only the time series generated with MPCideal

in closed-loop are kept for the fatigue-oriented cost function derivation. It should be
noticed that MPCideal, as opposed to MPCmean, is not an implementable controller,200

because the value of the parameter νideal is given by an off-line estimation and not an
on-line adaptation law.

2.2. Variance and fatigue damage estimations

The fatigue-oriented cost function defined in [16] is based on a data-driven relationship
between variance and fatigue damage. The variance, denoted by JVar, is defined as
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Figure 3: Plot of the fatigue cost J and the stage cost parameter ν for six different winds, normalized

by the minimum fatigue cost J obtained for each wind, where v
(i)
cl is the ith wind realization.

Table 3: Summary of the parameters used for the estimation of the fatigue damages Dk.

Component k Lult
k mk

Myaw 1 1000 10
Mtilt 2 1000 10
θyaw 3 5 8π

180
× 103 4

θtilt 4 5 8π
180
× 103 4

follows:

JVar(yk) =
1

tf − t0

∫ tf

t0

yk(τ)2dτ − µ (yk)
2

(10a)

=
1

tf − t0

∫ tf

t0

(yk(τ)− µ (yk))
2
dτ (10b)

where

µ (yk) =
1

tf − t0

∫ tf

t0

yk(τ)dτ (11)

where yk(τ) is the value of the trajectory yk at time instant τ , t0 and tf are respectively205

the initial and final time instants of the evaluated time series. The damage Dk is es-
timated from the time series yk with the RFC algorithm [8] and Palmgrem-Miner rule
[9, 10]. For the Palmgrem-Miner rule, an ultimate fatigue load and Wöhler exponent,
denoted respectively by Lult

k and mk, must be defined for every components k. These
values are selected in order to yield realistic fatigue damages and are summarized in210

Table 3. .

2.3. Fit of the regressor

For the regression of the fatigue damages Dk(yk) from JVar(yk), it can be observed in
Figure 4 that the relationship between the logarithms of the fatigue damage and JVar is
approximately linear. Therefore, a logarithmic transformation is performed on both JVar

and fatigue damage. Hence, a linear regression is fitted between the logarithms of JVar
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Figure 4: Scatter plot of the variance JVar(yk) and fatigue damage Dk(yk) of each system outputs,
obtained from the above described data generation process.

Table 4: Summary of the wk and bk values obtained from the regression in the cost function derivation.

Component k wk bk πk

Myaw 1 4.92 -58.05 1000
Mtilt 2 4.90 -57.13 1000
θyaw 3 1.98 -21.11 1
θtilt 4 1.96 -20.07 1

and the fatigue damage. Eventually, the predicted logarithm of fatigue damage, denoted
by D̂k for the kth component, can be expressed as follows:

log
(
D̂k
)

= wk log JVar(yk) + bk (12)

where wk is the linear regression coefficient and bk is the bias term. Therefore, from (1)
and (12), J can be approximated by the fatigue-oriented cost function, denoted by Ĵ ,
which is expressed as follows:

Ĵ (y) =

Nc∑
k=1

πk e
bkJVar(yk)wk︸ ︷︷ ︸
D̂k(yk)

(13)

where the values of πk, wk and bk are summarized in Table 4. Moreover, it can be
noticed that, as the wk values are all above 1, the function Ĵ is convex, as a sum of
compositions of convex functions. In the remainder of this article, the FO-OCP which215

uses the fatigue-oriented cost function Ĵ as objective is presented and a solution allowing
to efficiently optimize the FO-OCP in a MPC is detailed.

3. Fixed-point formulation: Quadratic stage cost adaptation

The derivation of the fatigue-oriented cost function Ĵ allows to approximate an orig-
inal OCP using the fatigue cost J as objective, by using Ĵ as cost function. However,
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the resulting FO-OCP is not a standard Quadratic Programming (QP) because wk 6= 1
for several components:

min
u

Ĵ (y) =

Nc∑
k=1

πke
bkJVar(yk)wk (14a)

s.t. ẋ = Ax+Bu+Bdv (14b)

y = Cx+Du+Ddv (14c)

where JVar(yk), defined by (10), can be expressed as the integral of a quadratic form
over time. In this section, a first order Taylor expansion of Ĵ is first presented, showing220

that Ĵ can be approximated with a quadratic form whose weighting matrices depend
on an output trajectory y(iiter). Then, a fixed-point problem aiming at finding the right
y(iiter) is derived.

3.1. Successive approximations of the FO-OCP

It is possible to solve the FO-OCP using an NLP solver, after its discretization in
time. However, this black-box optimization might not take advantage from the quadratic
nature of JVar in the cost functional Ĵ . Indeed, quadratic forms are known to behave very
well in OCP, allowing to have a convex and smooth cost function, with a constant Hessian
in gradient descent algorithms. Let us approximate Ĵ with a first order Taylor expansion
around the trajectory y(iiter), where iiter is the iteration number in the resolution of a
fixed-point problem:

Ĵ (iiter) (y)) = Ĵ (y
(iiter)
k )︸ ︷︷ ︸

constant

+

Nc∑
k=1

πk

ebkwkJVar(yk)wk−1︸ ︷︷ ︸
αk

(
y
(iiter)

k

)
JVar(yk)− JVar(y

(iiter)
k )︸ ︷︷ ︸

constant




+ ε
(
y(iiter)

)
︸ ︷︷ ︸

negligible

(15)

Hence, assuming that y(iiter) is known, this leaves us with a linear combination of
quadratic forms JVar(yk), for k ∈ {1, . . . , Nc}. The original FO-OCP using J as a
cost function can thus be approximated by a quadratic form whose weighting matrices
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values depend on y(iiter):

min
u

Ĵ (iiter) (y) =

∫ tf

t0

(
y(τ)TQ

(
y(iiter)

)
y(τ)+

L
(
y(iiter)

)T
y(τ)+

u(τ)TR
(
y(iiter)

)
u(τ)

)
dτ

:= JOCP

(
p
(
y(iiter)

)
,y
)

(16a)

s.t. ẋ = Ax+Bu+Bdv (16b)

y = Cx+Du+Ddv (16c)

where Q, R and L matrices are respectively definite semi-positive, definite positive
matrices and column vector parameterized by y(iiter), and:

p
(
y(iiter)

)
=
{
Q
(
y(iiter)

)
, R
(
y(iiter)

)
, L
(
y(iiter)

)}
is an array of parameters defining the OCP. The matrices Q and R, along with the vector
L, are derived from the αk, defined in (15), and JVar expressions:

Q
(
y(iiter)

)
=


π1α1

(
y

(iiter)
1

)
. . . 0

...
. . .

...

0 . . . πNcαNc

(
y

(iiter)
Nc

)
 (17a)

R
(
y(iiter)

)
= min

(
π1α1

(
y

(iiter)
1

)
,

. . . , πNcαNc

(
y

(iiter)
Nc

))
× εInu

(17b)

L
(
y(iiter)

)
=− 2


π1α1

(
y

(iiter)
1

)
µ(y

(iiter)
1 )

...

πNcαNc

(
y

(iiter)
Nc

)
µ(y

(iiter)
Nc

)

 (17c)

where ε > 0 must be small enough in order to avoid introducing bias in the approximation225

of Ĵ with R. It should be noticed that R is introduced in (16) only in order to avoid
singularities in its resolution. Therefore, the contribution of R in the value of Ĵ (iiter)

must be negligible compared to the other terms. Hence, p depends on a given output
trajectory y(iiter), while the resulting output trajectory, denoted by y(iiter+1), depends on
the value of p(y(iiter)) used in the OCP. The approximation of Ĵ by JOCP in the OCP230

defined by (16) is only accurate around y(iiter). Hence, y(iiter) must be chosen close to the
solution of the FO-OCP. A schematization of the interdependence between y(iiter) and p
is given in Figure 5. This kind of problem is a fixed-point problem whose formulation is
detailed in the next subsection.

3.2. Fixed-point problem derivation235

For a given y(iiter), we have an array of parameters p which parameterizes the quadratic
cost function JOCP. On the other hand, the solution output trajectory of the QP of (16)
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Standard OCP Open-loop simulation

y(iiter+1)

'
y(iiter)

p Computation

vol x0

Approximation Fatigue-oriented

JOCP(p(y
(iiter)),y(iiter)) Ĵ (y(iiter))

u(iiter+1)

p(y(iiter))

Figure 5: Schematization of the fatigue-oriented open-loop optimization using the fatigue-oriented cost
function Ĵ , where u(iiter+1) and x0 are respectively the solution and initial condition of the OCP.

depends on the value of p. There is thus an algebraic loop that consists in finding the
right y(iiter) and p(y(iiter)) for the FO-OCP approximation. This kind of algebraic loop
can be solved with a fixed point algorithm defined by Algorithm 1, for given initial state240

x0 and disturbance trajectory vol.

3.3. Discussion on the fixed-point convergence

It is not proven that this fixed-point problem will converge. However, it can be
assumed that if it does converge, it should converge to a local minimum or saddle point
of the FO-OCP. From experience, it was observed that the fixed-point problem can have245

convergence issues and that filtering the fixed-point using an appropriate parameter
β ∈]0, 1[ allows to help the fixed-point in converging, as suggested in [21]. However,
the parameter β can slow the convergence down but does not introduce any bias in the
fixed-point solution. Hence, finding the global optimum with this method should mainly
rely on the convexity of Ĵ in the FO-OCP.250

Algorithm 1 Fixed-point algorithm allowing to solve y(iiter) = y(iiter+1) for given initial
state x0, disturbance trajectory vol and filtering parameter β.

iiter ←− 0
y(iiter) ←− Initialize the output trajectory
y(iiter+1) ←− Initialize another output trajectory
while y(iiter+1) 6= y(iiter) do

iiter ←− iiter + 1
p
(
y(iiter)

)
←− Solve (17)

u(iiter+1) ←− Solve (16)
ŷ(iiter+1) ←− Integrate the system dynamics
y(iiter+1) ←− (1− β)ŷ(iiter+1) + βy(iiter)

end while

The advantage of this method compared to the one solving directly the FO-OCP NLP
is that it allows to:
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� Express the OCP under a standard quadratic formulation

� Understand the role of the weighting matrices and how they should be adapted to
reduce the fatigue cost255

It was shown in [16] and [22] that this kind of data-driven quadratic cost function and
open-loop optimization featuring a fixed-point resolution, allow to significantly reduce the
fatigue cost J compared to OCP using quadratic forms as objective. It is thus interesting
to use the FO-OCP in the internal control problem of a MPC, in order to have a controller
able to efficiently reduce J in closed-loop. However, the computational cost of the fixed-260

point algorithm in the FO-OCP resolution makes its use in a MPC prohibitive. Therefore,
an efficient quadratic MPC stage cost adaptation, based on the JOCP weighting matrices
adaptation in the fixed-point algorithm iteration (see equation (17) and Algorithm 1), is
derived in the next section.

4. Filtered adaptive MPC formulation265

This section presents an adaptive MPC formulation based on the FO-OCP resolution
using the fixed-point algorithm 1. The proposed adaptive formulation, featuring several
filtering mechanisms, allows an efficient reduction of Ĵ when implemented in closed-loop.

It is clear that the natural and naive implementation of a MPC aiming at minimizing
Ĵ would be to directly use the FO-OCP as open-loop OCP. In the remainder of this arti-
cle, this implementation is named MPCdirect and will be used for comparison. However,
the fixed-point formulation described in Section 3 highlights the fact that the FO-OCP
consists in adapting the stage cost of a quadratic MPC, based on the variance of the
optimal output trajectory, or more physically the level of vibration of the system:

min
u

J =

∫ t+T

t

(
y(τ)TQ (y) y(τ) + L (y)

T
y(τ)

+u(τ)TR (y)u(τ)
)
dτ

(18a)

s.t. ẋ =Ax+Bu+Bdv (18b)

y =Cx+Du+Ddv (18c)

where the weighting matrices Q, L and R are functions of the output trajectory y, which270

is the solution of the fixed point problem. This kind of open-loop optimization can be
efficiently solved by NLP or QP solvers, depending on the nature of the constraints and
dynamical system involved. Moreover, this kind of quadratic OCP is well known and
widely used in the MPC literature. Therefore, MPCdirect can result in an adaptive MPC
which brutally changes its parameters value. This brutal changes are likely to prevent275

efficient reduction of Ĵ when MPCdirect is implemented in closed-loop. This is the
reason why, along with the prohibitive computational cost, another formulation denoted
by MPCfilt, limiting and smoothing the variations of a quadratic MPC parameters, and
computationally efficient, is proposed. In order to limit the quadratic MPC stage cost
variations, the proposed solutions are:280

1. Increase the time length of the trajectory y for the evaluation of the weighting
matrices Q, L and R.

15



System

Quadratic MPC(p)

p̂ Estimation

v Wind predictions

Time filter

y Estimation

y

vol

x

u

p̂() =
{
Q̂(y), L̂(y), R̂(y)

}

p(y) =
{
Q(y), L(y), R(y)

}

y

MPCfilt

Figure 6: Schematization of the MPCfilt architecture, where the vector of parameters p which param-
eterizes a standard MPC, is a filtered function of the system output trajectory over the previous time
instants.

2. Filter through time the variations of the updated matrices in order to limit the
effects of noise or outliers on the weighting matrices estimation.

The fixed-point formulation shows implicitly that the stage cost of (18) depends on285

the variance, or current level of vibration of the closed-loop turbine, and increasing the
time length of y aims at better approximating this level of vibration. However, increasing
significantly the prediction horizon would result in increasing the computational burden
and trust unreasonably the predictions of the internal model. As a solution for estimat-
ing the level of vibration, it is proposed to consider y on previous time instants of the290

simulation. Therefore, y is measured instead of predicted, but the variance estimation is
slightly delayed. Moreover, p(y) does not depend on the OCP solution anymore, which
breaks the fixed-point problem. Therefore, the computational burden is reduced as the
MPC optimization problem becomes the one defined by (18).

295

A schematization of MPCfilt is proposed in Figure 6. The standard MPC array of
parameters p is obtained from the filtration of the array of parameters, denoted by p̂,
given by the approximation of the FO-OCP defined by (15). The derivation of p̂ depends
on the system output trajectory over the previous time instants, denoted by y. The
various operations necessary for the derivation of the matrices Q, L and R, contained in300

p, are depicted in the remainder of this subsection.
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t − Tlast t t + T

yk

FuturePast

Time

yk

Figure 7: Illustration of the interval considered for evaluating JVar(yk) in MPCfilt (thick line), against
the one considered in MPCdirect (dashed line).

4.1. Derivation of the non-filtered array of parameter p̂

From the fixed-point formulation detailed in Section 3, the non-filtered updated values
of the weighting matrices Q, L and R, denoted by Q̂, L̂ and R̂, are expressed as follows:

Q̂(y)ij =

{
πkαk(yk) if i = j = k

0 otherwise
(19a)

L̂(y)k = −2πkαk(yk) (19b)

R̂(y) = min
(

diag
(
Q̂(y)

)
, 1
)
× 10−3I2 (19c)

αk (y) = ebkwkJVar(yk)wk−1 (19d)

where Q̂(y)ij is the ith row and jth column of Q̂(y), L̂(y)k is the kth row of the vector

L̂(y), πk is the kth component price of replacement and αk, defined in (15), is a mea-
sure of the level of vibration. As the trajectory y is taken to be the last time instants305

of the current closed-loop simulation output trajectory, y is estimated over the interval
[t − Tlast, t], where t is the current instant and Tlast is the sliding parameter estimation
horizon time length, as illustrated in Figure 7. It should be noticed that the longer Tlast

is, the more JVar should be accurate, but the more delayed is the JVar estimation.
310

In order to limit the influence of the instants close to t− Tlast for JVar estimation in
αk computations, a weighted formulation is considered:

JVar(yk) =
1

T (ξ, Tlast)

∫ t

t−Tlast

eξ(τ−t)
(
yk(τ) − µ(yk, ξ, Tlast)

)2

dτ (20)

where yk is an instantaneous value of yk,

T (ξ, Tlast) =

∫ t

t−Tlast

eξ(τ−t)dτ

µ(yk, ξ, Tlast) =
1

T (ξ, Tlast)

∫ t

t−Tlast

eξ(τ−t)yk(τ)dτ
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and ξ ≥ 0 is the parameter of a weighting function, such that the time instants closer
from t are weighted more importantly. It should be noticed that the greater is ξ, the
more importance is given to the lasts time instants of the interval [t− Tlast, t].

4.2. Filtering of p̂ in time

In order to further limit the variations of the weighting matrices Q, L and R due to
noise or outliers in y, the weighting matrices are filtered through time, similarly to the
filtering step in the fixed-point iteration of Algorithm 1, that helps in converging:

Q(y) = βQold + (1− β)Q̂(y) (21a)

L(y) = βLold + (1− β)L̂(y) (21b)

R(y) = βRold + (1− β)R̂(y) (21c)

where Qold, Lold and Rold are the values of Q, L and R obtained at their last update.315

A summary of the weighting matrices update for a given output trajectory y and old
weighting matrices Qold, Lold and Rold is given in Algorithm 2.

Algorithm 2 Gives Q, L and R values for a given output trajectory y and old weighting
matrices Qold, Lold and Rold.

JVar(yk) ←− Estimate the variance of the different process outputs using equation
(20)
{Q̂(y), L̂(y), R̂(y)} ←− Update the weighting matrices parameterizing the stage cost
with equation (19)
{Q(y), L(y), R(y)} ←− Filter the updated weighting matrices through time with equa-
tion (21)

4.3. Parameters choice

For the implementation of the control strategy described in this subsection, few pa-320

rameters must be chosen, i.e. T , β, Tlast and ξ. The choice of these parameters is depicted
in the sequel:

T = 2 s: The prediction horizon is taken to be 2 s in order to match the one taken for
MPCideal and MPCmean. Moreover, ∼ 2 s previews are several times considered
in the IPC literature [3, 2, 23]. It can be justified by the fact that current remote325

wind speed measurement devices do not allow accurate previews of wind evolution
on longer horizons.

β = 0.95: The time filtering parameter β is inherited from the filtering parameter in
the fixed-point Algorithm 1, which was chosen such that the algorithm converges
efficiently.330

Tlast = 100 s, ξ = 0.03 s−1: The parameters Tlast and ξ were chosen such that the fatigue
cost in closed-loop with the filtered MPC is minimized for an highly demanding
disturbance.
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It should be noticed that the validity of Tlast and ξ might be limited to the considered
dataset. A sensitivity study of MPCfilt performances to these parameters for further335

validation should be the subject of future works. It can also be added that MPCfilt

depends also on the parameters taken for the fatigue cost function J , i.e. the prices of
replacement, the Wöhler exponents and the ultimate loads of the components consid-
ered. These parameters could be estimated by the HAWT manufacturer. Now that the
adaptive fatigue-oriented adaptive MPC formulation is defined, it will be compared on340

its ability to reduce the fatigue cost J to a more classical non-adaptive MPC.

5. Results

The ultimate goal of MPCfilt is to efficiently reduce the fatigue cost J in closed-loop
of a system. In order to assess the reduction of J efficiency, it is proposed in this section
to compare the fatigue cost of closed-loop simulations where the HAWT is controlled with345

MPCfilt and benchmark controllers. Quadratic MPCs are the most advanced controllers
in the literature of HAWT control for fatigue alleviation [3, 23, 11], therefore the proposed
benchmark controllers are:

� MPCmean, a finely tuned parameterized quadratic MPC, presented in Subsec-
tion 2.1.3, which is similar to the one designed in [3]350

� MPCideal, an idealistic parameterized MPC presented in Subsection 2.1.3, whose
parameter ν would adapt optimally based on the results of long term closed-loop
simulations.

Moreover, a glance is given to the performance of MPCdirect, in order to justify the
choice of not considering it further. First of all, the simulation settings used in this355

comparison is defined. Then, the MPCs are evaluated on their ability to reduce the
fatigue-oriented cost Ĵ , which is the explicit objective function that the FO-OCP must
minimize. Eventually, the MPCs are compared on their ability to reduce the fatigue cost
J .

5.1. Simulation settings360

The simulation settings used for the MPCs comparison is the same as the one used for
the time series generation described in Subsection 2.1 and summarized in Table 5. Note,
that the simulation settings considered is simplified compared to the one conventionally
used for controller validation in industry. This choice was made so that there is no model
mismatch between the model used in simulation and the one considered in the MPCs365

internal optimization. This allows to isolate the fatigue reduction given by the adaptive
MPC formulation, without mixing other issues in control systems implementation such as
parameters uncertainty. The parameters used for the evaluation of the fatigue-oriented
and fatigue cost, Ĵ and J , are summarized in Tables 3 and 4. Moreover, it should be
noticed that the first 100 seconds of the 600 seconds long time series are removed in order370

to avoid any unexpected transient due to a bad initialization of one MPC.
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Table 5: Summary of the simulation settings used for the MPCs comparison.

Feature Description

HAWT simulator MM82 Rotor LTI system in MBC linearized from FAST around 12 m/s
Wind disturbances 10000 TurbSim generated winds of random turbulence intensity and mean wind speed 12 m/s
Initial conditions LTI system operating conditions

Constraints/Saturations None
Model mismatch None
Simulation length 600 s

Sampling time 0.1 s

5.2. Data-driven fatigue-oriented cost function reduction

The cost function that MPCfilt and MPCdirect are supposed to minimize is the fatigue-
oriented cost function Ĵ . As Ĵ is an approximation of the fatigue cost J , minimizing Ĵ
can allow to indirectly minimize J , which is the ultimate objective. In Figure 8 is plot-375

ted the scatter of the fatigue-oriented cost Ĵ obtained from closed-loop simulations with
MPCideal, against Ĵ with MPCfilt and MPCdirect. The black dashed line represents the
bisector of the plane. It can be observed that MPCfilt allows to have Ĵ value equivalent
to the one of the fictitious MPCideal.

380

On the other hand for MPCdirect, it can be seen that MPCdirect, whose explicit ob-
jective in its open-loop OCP is to minimize Ĵ , does not succeed to efficiently reduce Ĵ
in closed-loop. It is fundamental to underline that this is a general drawback in MPC
implementation that is rarely considered or analyzed in the MPC literature. To this
extent, putting under light that this discrepancy between the open-loop and closed-loop385

performance can exist for this kind of objective function is a rather important contri-
bution, that a broader audience than the one interested in wind turbine control should
look at. Hence, MPCdirect is not considered further in this study as all hope of efficient
J reduction are lost with this controller in closed-loop.

390

The controller that would usually be implemented is MPCmean rather than MPCideal,
which has a fixed parameter νmean, allowing to minimize the fatigue cost J expectancy
for a given wind distribution. In Figure 9 is plotted the scatter plot of the Ĵ value
obtained with MPCmean, against the one obtained with MPCfilt. It can be noticed that
MPCfilt allows to yield a lower Ĵ than MPCmean in more than 99% of cases, allowing to395

reduce the expectancy of Ĵ of 26%. In summary, these observations let us expect that
MPCfilt can efficiently reduce the fatigue cost J as it efficiently reduces Ĵ .

5.3. True RFC fatigue cost function reduction

The ultimate objective of a fatigue-oriented controller being to efficiently reduce the
fatigue cost J expectancy, MPCfilt is compared in this subsection to MPCideal and400

MPCmean on its ability to reduce the fatigue cost J . In Figure 10 is plotted the scatter
of the fatigue cost J value obtained from closed-loop simulations with MPCfilt against
the one obtained with MPCideal, under the 10000 wind disturbances generated. It can be
observed that MPCfilt and MPCideal have globally similar performances. However, there
is an advantage to MPCideal, as MPCfilt increases the J expectancy of 46% compared405

to MPCideal. However, as MPCideal is a fictitious ideal controller, the performances of
20
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Figure 8: Scatter plot of the fatigue-oriented cost Ĵ of the closed-loop MPCdirect and MPCfilt simulation
against the one of MPCideal, under the 10000 winds generated.
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Figure 9: Scatter plot of the fatigue-oriented cost Ĵ of the closed-loop MPCfilt simulation against the
one of MPCmean, under the 10000 winds generated.
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Figure 10: Scatter plot of the closed-loop fatigue costs J of MPCfilt against the one of MPCideal, for
the 10000 winds generated.
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Figure 11: Scatter plot of the closed-loop fatigue costs J of MPCfilt against the one of MPCmean, for
the 10000 winds generated.

MPCfilt can be considered as satisfactory.

In Figure 11 is plotted the scatter of the J value obtained from closed-loop simulations
with MPCfilt against the one obtained with MPCmean. It can be observed that MPCfilt410

yields generally lower values of J than MPCmean and that MPCmean only matches the
performances of MPCfilt for the highest fatigue cost cases. More precisely, MPCfilt allows
to reduce J compared to MPCmean in more than 99% of the cases and reduce the fatigue
cost expectancy of 27%, which is highly satisfactory. A summary of the fatigue-oriented
and fatigue cost reductions obtained with MPCfilt and MPCdirect compared to MPCmean415

and MPCideal is given in Table 6.

The goal of MPCfilt was to approach the fatigue reduction performances of MPCideal,
while being implementable in real life, which is not the case of MPCideal. It is important
to stress out that MPCfilt can yield a lower fatigue cost expectancy than a state-of-the-420

art HAWT IPC controller such as MPCmean. This is possible thanks to the efficient
adaptation of its cost function parameters based on a measure of the current vibrational
level of the HAWT, i.e. the variance Jvar of its various components.
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Table 6: Summary of the reductions obtained for the data-driven fatigue-oriented cost function Ĵ and
the fatigue cost function J , compared to the baseline controllers MPCmean and MPCideal.

Cost function Controller MPCmean MPCideal

Ĵ MPCfilt 26% -23%
MPCdirect -117% -148%

J MPCfilt 27% -46%

6. Conclusion & Perspectives

This paper proposes a fatigue-oriented adaptive MPC whose adaptation law is based425

on a fixed-point formulation derived from an OCP using a data-driven fatigue-oriented
cost function Ĵ as objective. It was shown that the proposed controller allows a 27%
reduction of the fatigue cost J , compared to a non-adaptive MPC, finely tuned in order
to efficiently reduce J expectancy. Besides, the proposed MPC formulation allows to
better reduce Ĵ in closed-loop simulations than a MPC using directly the FO-OCP as430

its internal open-loop OCP. This observation highlights that it is possible that a MPC
do not allow to efficiently reduce the objective given in the open-loop OCP once imple-
mented in closed-loop, even in absence of model mismatch.

The results generated in this paper featured important assumptions, such as the435

HAWT is modeled as an LTI system without model mismatch, or the wind is only sum-
marized by its hub-height wind speed and perfectly known in advance. In order to fully
estimate the potential of this approach in realistic conditions, the following changes must
be realized in future studies. The MPCs must be simulated in closed-loop with an HAWT
simulator and under a more realistic wind disturbance. It should be noticed that the440

above changes could affect the performances of the proposed adaptive MPC, as well as
the one of the baseline controller used for comparison. Concerning the formulation of
the fatigue cost J , the fatigue related to the yawing and tilting blade root bending mo-
ments and blade pitch angles has very few physical meaning. Nevertheless, it does not
undermine the genericity of this approach and the method should be able to adapt itself445

efficiently to different fatigue cost functions.

The interest of the presented method, which is more generally the one of fatigue-
oriented approaches is to directly consider fatigue damages in the objective, which al-
lows an efficient optimization of the fatigue cost J , more meaningful and explicit than450

quadratic cost functions. It was shown in this article that the proposed MPC has very
good performances compared to a finely tuned non-adaptive MPC, with minimal tuning
effort.
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