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Abstract This paper presents an adapted trust-region method for solving
computationally expensive black-box optimization problems with mixed bi-
nary variables that involve a cyclic symmetry property. Mixed binary prob-
lems occur in several practical optimal design problems, e.g., aircraft engine
turbines, mooring lines of offshore wind turbines, electric engine stators and
rotors. The motivating application for this study is the optimal design of heli-
copter bladed disk turbomachines. The necklace concept is introduced to deal
with the cyclic symmetry property, and to avoid costly black-box objective-
function evaluations at equivalent solutions. An adapted distance is proposed
for the discrete-space exploration step of the optimization method. A con-
vergence analysis is proposed for the trust-region derivative-free algorithm,
DFODb-dy, extended to the mixed-binary case and based on the Hamming dis-
tance. The convergence proof is extended to the new algorithm, DFOb-d,,cck,
which is based on the necklace distance. Computational comparison with state-
of-the-art black-box optimization methods is performed on a set of analytical
problems and on a simplified industrial application.
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Table 1 Abbreviations and nomenclature.

DFO : Derivative Free Optimization

MINLP : Mixed-Integer NonLinear Programming

NLP : NonLinear Programming

QP : Quadratic Programming

DFOb : DFO trust-region method with mixed binary variables
DFOb-dy : DFOb with Hamming distance

DFOb-dyec  : DFOb with necklace distance

RBF : Radial Basis Function

EGO : Efficient Global Optimization

NOMAD : Nonlinear Optimization by Mesh-Adaptive Direct Search
x : continuous-variable vector

T : upper bound for x

x : lower bound for x

Y : binary-variable vector

z : mixed-variable vector z = (z,y)

m : number of continuous variables

n : number of binary variables

f : objective function

Z : interpolation set for mixed variables

p : cardinality of Z

1HIFa : Frobenius norm

[ ]| oo : loo norm

[I-ll2 : l2 norm

Ay : trust-region radius relative to the = search subspace
Ay : trust-region radius relative to the y search subspace
Az o : initial value of A,

Ayo : initial value of A,

dy : Hamming distance

dpeck : necklace distance

Rot™ (y) : rotation of y by r positions

1 Introduction and motivation

This paper addresses the general black-box mixed binary optimization prob-
lem:
min f(z,y)
T,y

r € [z,7] CR™,y€{0,1}",

(1)

where z € R™ and y € {0,1}" are continuous and binary variables, respec-
tively. The objective function f : R™ x {0,1}" — R is the output of a “black-
box” numerical simulator. We then assume that f is expensive to evaluate and
its derivatives are not available. In the sequel we shall often use the optimiza-
tion vector z to denote a couple (z,y) € R™ x {0,1}".

There is a large body of works in the operations research community that
regards Mixed-Integer NonLinear Programming problems (MINLP), see for
instance [8]. Most deterministic algorithms for solving MINLP are based on
branch-and-bound methods. Briefly, the branch-and-bound algorithm is based
on recursively sub-dividing the set of possible solutions during the branching
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step, and estimating bounds on the optimal objective-function value in each
branch (the “cut” or “bound” operation) to find a solution (see e.g., [21]).
In [40], the authors do not create a search tree but relax the integrality con-
straints via a sine function that penalizes the variables for not being integers.
Remark that relaxing the binary variables is not possible in our application
context. While convex MINLP’s can be tackled by several available software,
for instance BONMIN [9] or SKIP [3], nonconvex problems are more diffi-
cult and usually require convexification and reformulation strategies. Such
strategies are either impossible (reformulation) or still need to be developed
when dealing with black-box optimization. This is a real challenge, especially
in our context of objective functions that are computationally expensive to
evaluate (several hours or even days for a single evaluation). Therefore, we
choose in this paper not to focus on (meta) heuristic methods (e.g., evolu-
tionary algorithms, [24] and simulated annealing) due to the large number of
objective-function evaluations such approaches require.

A widely cited Derivative Free Optimization (DFO) algorithm, NOMAD
[2,[29], implements the Mesh Adaptive Direct Search (MADS) algorithm [7]
for black-box optimization under general nonlinear constraints. MADS is an
extension of Torczon’s generalized pattern search algorithms [6}[41]. MADS
principally relies on two main steps. The search step is flexible enough to al-
low local and global explorations with generic strategies such as diverse Latin-
Hypercube Sampling (LHS), or variable neighbourhood search [4]. The poll
step is critical to the local convergence proof. It involves evaluating the objec-
tive function on a discrete grid that is dynamically updated. More recently, [15]
introduced a search strategy that automatically constructs quadratic models
to try and find promising trial points.

Other approaches to black-box optimization rely on building an approxi-
mate model of the objective function (referred to as response surface, surrogate
model, or metamodel) which include the Radial Basis Function (RBF) based
optimization methods and the Efficient Global Optimization (EGO) method.
The surrogate models used in these methods are global models, i.e., they use
a single substitute of the objective function that aims to be sufficiently pre-
dictive in the whole search domain to detect areas of interest with good values
of the objective function (exploration), and that can be refined in these areas
(exploitation). Note that these exploitation and exploration objectives are sim-
ilar to the goals of the poll and search steps of MADS. The RBF method for
global optimization was introduced by Gutmann [25], and several variations
followed [18[27)/38,(39]. EGO [2§] is based on a Gaussian process surrogate and
an adaptive strategy to propose new evaluation points based on the so-called
expected improvement criterion, which balances between exploration and ex-
ploitation. In [35], Gaussian process kernels that are products of continuous
and discrete kernels are integrated into an EGO method framework; the re-
sulting mixed categorical (involving integer variables not related to effective
quantities) optimization problem is then solved by NOMAD. The strengths
and weaknesses of various types of kernels for Gaussian processes are discussed
in [37].
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Opposite to the above global-model methods, are the class of trust-region
methods that build local models. For instance, reviews DFO trust-region
methods involving quadratic-model subproblems for continuous black-box
problems. In , an extension to mixed binary variables is considered and
a proof of convergence to locally-optimal solutions is given.

The present study concentrates on the class of trust-region methods, as
described in the two major references of the field , and their extensions
to mixed binary variables such as in with the extra difficulty of problems
involving cyclic symmetry.

Several design applications have the form or can be transformed in the
form of the mixed binary nonlinear problem . The motivating application
of this work is the optimal design of the compressor blades of a helicopter
engine . There are n blades. The objective is to minimize the vibration
of the compressor by changing the shapes of the compressor blades. Here, a
single objective-function evaluation may require several hours of computation
time. This optimization problem involves a vector, z € R™, of m continuous
variables, each of which describes one blade shape parameter, such as the
thickness or the length of the blades. There are also integer variables that
locate pre-defined possible blade geometries around the disk, as in . In this
study, we focus on the case involving only two different blade geometries; if we
consider n blades, their relative positions are indicated with a binary vector
y € {0,1}", where y; indicates whether the ith blade is of a given type (a) or
of the other type, (b), for i = 1,2,...,n. Figure [I| (left) illustrates the case
with n = 23 blades with the two possible types of blade geometry. Figure [I]
(right) displays, for the case of n = 6 blades, all the distinct arrangements and
their equivalent configurations obtained by rotation.

I S I T SR I L2
LOLII IS IS
ST AT I
e Loy F 4
Stdted SRty w3 4
ROy OO & @

Fig. 1 Left: A 23-blade configuration (from ) with two different pre-defined shapes (a)
and (b). Right: the first line displays the twelve possible distinct 6-blade configurations (all
equivalent variants, obtained by rotation, are listed column-wise)

(a) (b)

The cyclic-symmetry property of the problem yields a large number of
equivalent arrangements: two blade disks that differ only by a rotation of the
pattern around the disk not only lead to a same value of the objective func-
tion, but also correspond to identical compressors. The number of equivalent
solutions also rapidly increases with n, as illustrated in Table [2| In this pa-
per, we concentrate on avoiding recomputing during the optimization process,
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the costly objective-function value at equivalent configurations. We propose a

Table 2 Number of distinct arrangements and number of total arrangements for n-blade
disks

Number of Number of distinct Total number of

blades on the disk (n) | arrangements («~ 2" /n) | arrangements (2")

2 3 4

3 4 8

5 8 32

10 108 1024

12 352 4 096

20 52 488 1 048 576

new DFO trust-region extended to the mixed binary case that can address the
cyclic symmetry of our problem.

We wish to restrict the search to distinct arrangements, thereby avoid-
ing costly black-box objective-function evaluations at equivalent solutions. To
that aim, we introduce the necklace distance, noted dyecx, inspired from the
concept of necklace in combinatorics [22}/23], and we define a trust-region sub-
problem based on this new distance. Our main contribution is a new method,
named DFOb-d, ., which includes the necklace distance for derivative-free
mixed binary optimization with cyclic-symmetry problems. We also provide a
(local) convergence proof and propose a set of 25 analytical problems extended
from well-known continuous optimization modified to our cyclic-symmetry and
mixed-binary application context. Computational comparisons with NOMAD
and RBFOpt are performed on the analytical problems and on a simplified
industrial simulator for the optimal design of the compressor blades.

This paper is structured as follows. Section [2] first describes a DFO algo-
rithm, denoted DFOb-d in the sequel, extended to the mixed-binary case with
a mixed trust region based on the Hamming distance dg for binary variables.
Section 3 introduces the necklace distance, dpeck, and the adapted algorithm,
DFODb-djeck, to take into account the cyclic symmetry. In this section, some
preliminary results of convergence are given. Section 4 presents the numerical
results obtained with DFOb-d,,c.r, compared with the solvers: NOMAD, RB-
FOpt and DFOb-dg. Then, conclusion and perspectives are given in Section
5.

2 DFOb-dg: Trust-region derivative-free optimization method for
mixed binary variables based on the Hamming distance

This section discusses the main ingredients of the DFOb-dy algorithm, an
extension of DFO trust-region methods to mixed continuous and binary vari-
ables proposed by [14]. It will serve as the key building block when proposing
our new algorithm in Section [3] After summarizing the algorithm, we focus on
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the theoretical proof of its local convergence, that was not explicitly provided
in the original work [14].

Algorithm DFOb-dy aims at improving iteratively a starting feasible so-
lution by solving quadratic optimization subproblems based on quadratic ap-
proximation models of the objective function. It starts with a set, Z, of inter-
polation points at each of which the objective function value is known. Each
main iteration involves two main phases: exploitation and exploration. In the
exploitation phase, a quadratic model, m, of the objective function is built with
fixed y, then some numerical condition (poisedness) for the interpolation set,
Z, is verified, and otherwise the interpolation set is updated. A better current
solution is sought by solving trust-region quadratic optimization subproblems
yielding updates of Z, and of the radii of the trust regions. The distance upon
which is based the definition of the trust region for the discrete part, {0,1}",
of the search space is the Hamming distance:

dH(g’g): Z yj + Z (l_gj)v (2)

F5=0  jig=1

for 7,7 € {0,1}"™. Roughly speaking, this distance simply computes the mini-
mal number of flips (from 0 to 1, or from 1 to 0) required to transform ¢ into
9. Then, an exploration phase is added to help the optimization explore wider
the binary domain. The convergence result we are about to present in this
section is in fact driven totally by the exploitation phase, which solves a con-
tinuous quadratic optimization subproblem by temporarily fixing the value of
the discrete variables y, and by building fully-linear models of the (continuous)
objective function f(-,y).

2.1 The quadratic model

This subsection details how the trust-region quadratic subproblem model at
iteration k, my, is built.

Suppose that one is given a set of points 2! = (a%,y"),2° € R™,y" €
{0,1}",4=0,1,...,p, at which the objective function is evaluated with values
fii= f(2',y%),i=0,1,...,p, where p > m + n. This set of points is denoted
Z and is referred to as the interpolation set.

The derivative-free trust-region algorithm for mixed binary variables is
based on the local quadratic model

~ 1
Mg m(2) = a+g" 2+ §ZTH2’7
with z = (z,y), z € R™, y € {0,1}", and where the coefficients a@ € R,
g € R™* and H, a (n+m) X (n + m) real symmetric matrix, are solutions
of the regularized fitting problem
1
min | H|%
a,g,H:HT_2 ]
ﬁla,g,H(zz) = fl7i = 07 17 Ry 2

3)
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where ||.||p is the Frobenius norm. From a computational perspective, sub-
problem can be addressed by NLP solvers such as IPOPT (see details
in [48]). For the sake of notational simplicity, in the sequel, the model mq 4 i
will simply be denoted m.

The interpolation set needs to satisfy some conditions to ensure the unique-
ness of the solution of the fitting problem . Let d =1 or 2, and let {¢;}"=}
be the natural basis of the space of polynomials of degree < d in R™*™ (h is
then simply the dimension of this space). In our context where y € {0,1}",
and when d = 2, the ¢; elements of this basis are the components of the vector:

L 5 L

o(z) = (1,$1,-~-,$m7y1,---7yn,§$17--~,§1‘m,---7$i$j,---7$iyj7~--,

TonWns Y1Y2s - - Yilljs -+ s Yn—1Yn),

(4)

since the purely quadratic terms in the y;’s are discarded (since y? = ;). As
a consequence, one has h = (m+n+1)(m+n+2)/2 —n.

In order to define the poisedness of the interpolation set Z, we need first
to define the corresponding (p 4+ 1) x h interpolation matriz:

$0(2°) ¢1(2°) ... dn(2°)
po(z') ¢1(2") ... on(zh)

L : (5)
D0(2P) $1(2P) ... dp(2P)

Let us consider the three possible cases for the dimensions of M (related to
the number, p+1, of interpolation points and to the cardinality, h, of the basis
—recall that m+n+1 <p):

e h =p+1 (determined case): Following [16], the interpolation set Z is said
to be poised if the determinant of M is non-zero.

e p+1 < h (underdetermined case): Again, as in 16|, Z is poised if M is full
column rank (rank(M) = min(p, h) = p).

e h < p+ 1 (overdetermined case): In this case we propose to remove p — h
points from the interpolation set (we shall define precisely in the algorithm
which points are to be eliminated), so that one falls into one of the two
previous cases.

A so-called ill-geometry situation leading to a non-poised interpolation set
occurs when for instance at some iteration, two or more interpolation points
collapse or are affinely dependent. This results in non-uniqueness of solutions
of the fitting problem . There is also an ill-geometry problem in the case
of a near-singular interpolation matrix (when two interpolation points are too
close to each other for example). To prevent this scenario, an improvement
step based on LU factorization is set up in the mixed space R™ x {0,1}",
inspired from the continuous version in [16], and detailed in Algorithm [1] It
involves solving a MIQP (to be defined below).

Algorithm [1| provides a poised interpolation set such that when Gaussian
elimination is applied to the interpolation matrix M, the absolute value of
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all pivots are not smaller than the chosen threshold £. From a computational
perspective, subproblem @ can be addressed by an MIQP solver such as
CPLEX or BONMIN.

Algorithm 1: Improving poisedness of Z in the trust region B |16]

0. Initialization
Choose an initial pivot polynomial basis with some basis
ui(2),i=0,1,...,h, e.g., the monomial basis ¢(z) given by .
Select a pivot threshold £ > 0.
Fori=0,1,...,h
1. Point selection:
e If there exists an index j € {i,i+ 1,...,|Z|} such that |u;(27)| > &,
swap 2’ and 2’ in set Z,
e Otherwise, recompute z* as

2" € argmax |u;(2)],
z€B
where B is the trust region we are considering.
Stop if |u;(2%)] < €.
2. Gaussian elimination: For j =i+ 1,i+2,...,p

~u(2") ().

w5(2) ¢ (2) — 2

Lemma 6.7 of [16] is extended below (Lemmall]) to mixed binary variables.
It guarantees the existence of the positive lower-bound value, &, involved in
Algorithm (1| (pivot threshold).

Lemma 1 Let vT'¢(z) be a quadratic polynomial where ¢(2) is defined in
and ||v]|eo = 1. Then, there exists a constant o > 0 independent of v such
that

T > 00 7
pen o oy v ¢(2)] = 00, (7)

where B(0,1) = {z € R™, ||z]|c < 1}.
For quadratic models, 05, > 1
The proof is a straightforward extension of the proof of Lemma 6.7 in [16].
The complete proof can be found in Lemma 4.7, [45].

The introduction of binary variables requires an adapted trust-region defi-
nition. In [14], the authors introduce a lo.-norm trust region for the continuous
variables, and a Hamming-distance trust region for the binary variables.

Assuming in the sequel that the current iterate under consideration is
(z0,¥o0), the mixed trust region is defined as

B(zo, Az) x B(yo, 4y), (8)
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where

B(anAx) = {x eR™: ”1j - JUOHoo < Am}a (9)

and
B(yOvAy) = {y € {07 1}n : dH(yayO) é Ay}a (10)

for some given trust-region radii A, and A,.

In order to avoid ill-conditioning and ensure the local convergence of the
algorithm, we rely on a class of so-called fully-linear models |16] within the cho-
sen trust region. As shown in |16] for continuous problems, if an interpolation
set is poised, then the model obtained by solving the minimal Frobenius fitting

problem is fully linear in the trust region of size A, = max (Jlz" = zo||o0)
i=12,...p

defined by the interpolation points, which ensures a control of the model error
by controlling the size of the trust region and the interpolation set poisedness
with the model improvement step.

In our case, we ensure the local convergence of our algorithm by considering
the subproblem with fixed binary variables, and by checking that the model
for fixed y = yo is fully linear in the trust region:

Byo(x()’AﬂC) = {($7y0) tx € R™ and Hl‘ - xO”oo < Am}

Note that, in our implementation, the model improvement step (Algorithm
[1)) is performed in B(zg, Ay) x {0,1}", where B(zg, A;) is defined by (9). This
allows a larger exploration with respect to binary variables than an improve-
ment step in the mixed trust region B(xo, A;) X B(yo, 4,) while still fulfilling
the required assumptions for Lemma [2] below. In the following, we give the
proof of fully-linear models for fixed y = yq.

Assumption 1

o f is a continuously differentiable function with respect to the x variables
that has a Lipschitz-continuous gradient in a closed subset, {2, of the opti-
mization domain, R™ x {0,1}";

e The interpolation set of p + 1 points, Z, is poised in B(xg, A;) x {0,1}™
where p >m+n and Ay = ,_nax p(||xi — Zol|oo)-

Assumption 2
At every iteration k of the algorithm, the Frobenius norm of the model
Hessian evaluated at iterate (vg,yx), Hg, is bounded.

Lemma 2 Let (xg,y0) be the initial iterate. Under Assumption |1 and As-
sumption @ the model m(-,yo) which is constructed from m(xz,y) by firing
y = yo is fully linear in By, (xo, Ayz). In other words, for all x € By, (xo, Az),
there exist H}, Ky > 0 such that:

|f (2, 90) — m(z, y0)| < KFAZ, (11)

and
Ve f(x,90) — Vam(z,yo)ll2 < ryds. (12)
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The proof is given in Appendix [A]
We can now state the local convergence of the algorithm.

Theorem 1 Let Assumptions[1] and[3 hold. Then,
lim v f(z) =0, (13)
k—oc0

or all the limit points of the sequence of iterates are first-order critical points.

The proof is obtained by following the same process as in [16] (Theorem
10.13): from the results of Lemma we can prove the local convergence (con-
vergence for fixed y) of the algorithm with the additional assumption that f
is bounded from below for all (z,y) € {2, a closed subset of R™ x {0,1}".

Remark 1 As explained in [17], an interpolation point outside By, (zo, A;) has
to be replaced in order to ensure a fully linear model. However, in practice, in
order to save expensive objective-function evaluations, we allow to go on with
a model that is not certified to be fully linear when it yields effective progress
in the minimization of the function.

In what follows, we detail the major stages of the DFOb-dy algorithm.

2.2 Initial interpolation set

This subsection details the choice of the initial interpolation set (also often
referred to as the initial design) in DFOb-djy.

In order to construct a first quadratic model, one requires an interpolation
set that contains a sufficient number of points together with the corresponding
objective function values. As indicated in [16], for DFOb-dp this number is
often taken equal to m +n + 1. Further, these points need to satisfy strict ge-
ometry conditions for the interpolation problem to be well posed. As remarked
in |46], a “good” design of experiments (DOE) not only needs to be affinely
independent, but should additionally satisty space-filling, non-collapsing prop-
erties.

There are several methods to choose a given number of sample points in a
continuous space, such as factorial designs, Latin Hypercube Sample (LHS),
and Optimal LHS designs (see e.g. [46]). However, here we deal with mixed
continuous and binary variables problems: we need to provide a DOE in the
mixed space R™ x {0,1}". When the dimension is small, one way to proceed
is to sample among 2" corner points of the boundary box: for example [25]
proposes a strategy that chooses m+n+1 corner points plus the central point
of the box. For larger dimensions, a popular strategy is the Latin Hypercube
Sample (LHS) [31,47], originally used for generating samples for continuous
variables in a bounded subset. However, points sampled by this strategy will
surely not satisfy our binary constraints.

In our implementation, we therefore proceed as in [18] for the RBFOpt
algorithm: we first construct a Latin Hypercube Design with maximin distance
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criterion of m + n + 1 points in the considered bounded subset of R™*",
then we round the n components associated with binary variables to zero or
one. Remark that rounding recovers the binary domain but may destroy the
desirable properties of LHS or, even worse, it may generate identical points. A
future track of our research will therefore be dedicated to improve the method
for initial design of experiments.

Two main phases of DFOb-d g remain to be specified: the exploitation and
the exploration phases. The exploitation phase attempts at finding locally-
optimal solutions of the optimization problem with fixed binary variables.
The exploration phase focuses on escaping from local minima when we cannot
improve the current local solution, by exploring the binary domain.

2.3 Exploitation phase

The next step - that will be denoted Step la - involves solving a continuous
quadratic-programming (QP) subproblem temporary fixing the binary vari-
ables y to the associated current values of the trust region center, y;:

min v (2, y) (14)
st |z — 2o < Azk,
where my, is the current model at the k' iteration, (x,yx) is the current
iterate, and A, is the trust-region radius with respect to the continuous
variables x at iteration k. Note that the infinity norm [, is used to define the
trust region with respect to continuous variables for the sake of subproblem
simplification (leading to bound constraints).
The following step, Step 1b, tests whether the solution, x*, of should
be accepted based on the ratio, p, of the true improvement in f brought by
x*, over the improvement predicted by the model:

o flrrye) — f(2,ur)
r= My (T, yr) — e (™, yr)’ (15)

where one remarks that the denominator is always negative since x* is solution
of .

We note that 1ok, Mtor and ngooq are some pre-defined acceptance threshold
values. In our implementation, we choose 1o, = 0.01, 71t = 1072 and 74004 =
0.9. If p > o1, the new iterate is accepted (successful iteration). If p < ntor,
the solution is rejected (unsuccessful iteration).

2.4 Exploration phase

After a successful Step 1 with fixed yy, the following step (Step 1.5) attempts
to improve the current-iterate solution, (xk,yx), in the mixed-variable search
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space by solving the mixed binary quadratic subproblem:
minmyg(z,y)
T,y
st |2 = Zplloo < Apk, (16)
dH(?J, yk) < Ay,k~

In practice, this subproblem is addressed by MIQP solvers such as CPLEX or
BONMIN.

In case of an unsuccessful Step 1.5 (i.e., no improvement in the minimiza-
tion of f or failure in solving ), we continue with the same yg, with a
trust-region management with respect to the z component, and a new Step 1
to improve the current solution with y fixed to the value yy:

o If p > 74004, then the solution (z*,y) is accepted and the model is con-
sidered as a “good” predictor of f, the trust-region size is then increased;

o If p € [1ok, Ngood], then the solution is accepted and the model is considered
as sufficiently predictive, the trust-region size remains unchanged;

o If p < Mok, then (x*,yx) is rejected and the model is not considered suffi-
ciently predictive. The trust-region radius is then reduced.

This trust-region management can be summarized as:

2A$,k lka > Tlgood
Aw)k+1 = Aw,k Zf Nok < pr < Ngood,

§Am,k if pr. < Mok

If the solution of does not yield improvement with respect to the
current center (z*,y*), and the minimal value of the trust-region size, A, is
reached, then (z*,y*) is considered to be a locally-optimal solution. In this
case, the algorithm explores the binary search space using no-good cuts, intro-
duced in [20] for general mixed optimization problems. This leads in our case

to relax the trust-region constraint:
du(y,y") < K,

for some K > 0, and to force the algorithm to move away from the current
locally-optimal solution by adding the extra (no-good cut) constraint:

Yoyt Y (-y) > K", (17)

Jy;=0 Jy;=

where K* € N* is some user-defined value strictly greater than 1. Note that
for a given xj, several such no-good cut constraints are likely to cumulate, as
there will be one constraint of the form corresponding to the different y*
values obtained.

The algorithm finally ends when the maximal budget of objective-function
evaluations or the maximal number of no-good cuts is reached. The maximal
number of possible no-good cuts is theoretically equal to 2™ — 1 (for n binary
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variables). We shall see later that in the context of cyclic symmetry, it is
approximately 2" /n. But more importantly, with this type of property we will
see that the definition of no-good cuts in is not sufficient to discriminate
equivalent configurations.
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The successive steps are summarized in Algorithm

Algorithm 2: DFOb-dy

Initialization

e Given initial TR radii 0 < Ay < A0 <A, 0< Ay <Ay <Ay, and
tolerances Ngood > Mok > Mot > 0, K* >0, maximal budget of evaluations
Tsimu > P, maximal number of no-good cut constraints nygc > 0

e Initial interpolation set Z = {(2%, ') }ico.1,...p, 2° = (2%, 4%), f1 = f(z9)

e Define initial iterate (xo,%0) = argmin f(z, y")

i=0,1,...,p

e Set k=0, 20V¢¢ ={0,1}", is.new_ NGC = 0

Iteration k:

Step 0 (Model update and improvement)
e Build quadratic model my(z,y) (cf. Subsection
e Improve poisedness of Zj, by solving a TR MIQP in
B(xg, Ag i) X B(yr, Ayx) (Algorithm [T}
o If nyimu = Ngima — STOP
if is.new_NGC =1 go to Step 1.5a
Step 1a (TR QP)
e Solve for fixed y = yi in By, (2, Ag k) to get z*
e Evaluate f(z*,yx) ; if Nsimu = Tosimu — STOP
o Add ((x*,yk), f(@*,yx)) to Zx; p+—p+1
Step 1b (Validation)
e Compute the acceptance ratio p via
o If p < ny (unsuccessful Step 1): go to Step 2
Else (successful Step 1) zj + z*
Step 1.5a (MIQP subproblem)
e isnew NGC =0
e Solve MIQP in B(zr, Asx) X (B(yk, Ay x) N 2NGE) to get (z*,y*)
e Evaluate f(z*,y*) if Nimu = Tsima — STOP
e Add ((z*,y%), f(z*,y")) to Zy; pp+1
Step 1.5b (Validation)

o If y* £ and f(z*,y*) < min T, successful ste
Y Yk f( Y ) (24l Zx (™ x }cvcc)f( y)( P
1.5)

Ap = Aso, (T, yr) < (2*,y%), k < k+ 1 and go to Step 0
Else (unsuccessful step 1.5)
If y* 75 Ykt Ay,k — Ay7k —1
Step 2 (TR update and local convergence check)
o If P < Nok: A%k «— Axyk/Q
o If P Z Ngood- Ar,k — 2Aa:,k
o If Ay > A, k< k+1 and go to Step 0
Step 3 (Exploration after local convergence)
e Adding a new no-good cut :
QYO0 = YN {y € {0,1}" : di(y, ) > K*},
nyNgc < nynaee + 1; s new_ NGC =1
e Reinitialize TR radii: Ay, = Az, Ayx = Ty
o If nyge <ningc: k+ k+1 and go to Step 0
Else: — STOP

% Algorithm |1 adds possibly in Zy new points to be simulated.
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3 An adapted distance for cyclic-symmetry problems

To avoid useless costly evaluations of the numerous equivalent solutions for
cyclic-symmetry problems (as illustrated in Table [2)), engineers typically re-
sort to simplifications or adapted strategies (such as the reduced-order model
methodology [12}/13]) to reduce the optimization problem dimension. However,
such simplifications are likely to discard interesting or optimal configurations.

This section first defines a new distance to be used in DFODb so as to
avoid to evaluate the costly black-box objective function at configurations that
were previously evaluated (equivalent solutions), without arbitrary removal of
(potentially good) candidate configurations. The new distance should lead to
constraints easily manageable in efficient optimization methods, just like the
Hamming distance which leads to linear constraints (of and ) Then,
in Subsection we propose a reformulation of the algorithm optimization
subproblems with this new distance for both the exploitation and the ex-
ploration phases. Subsection summarizes the adapted algorithm, named
DFODb-d;,eck, and provides the local convergence statement.

3.1 The necklace distance

In order to avoid re-evaluating costly objective-function evaluations at equiv-
alent blade arrangements, we propose to use the concept of necklace [22}23].
In combinatorics, a k-ary necklace of length n is an equivalence class of n-
character strings over an alphabet Zk ={ay,az,...,a} of size k, considering
all rotations as equivalent strings. It represents a structure with n circularly-
connected characters, or beads, that have k available colors (elements of the
alphabet).

Our blade design application can therefore be seen as a 2-color (or bi-
nary) necklace optimization problem involving a fixed number, n, of beads
(the number of reference blade shapes). The number of distinct arrangements
in our applicative context is therefore given by the number of n-bead necklaces:

1
- 2din #(d)2™/4, where ¢ is Euler’s totient functio and the summation is

taken over all divisors d of n.

Several applications are based on the necklace concept, with the use of
various related distances: for example in music with the geometry distance
and the swap distance [42-44], or in combinatorics with the Hamming distance
with shifts |32], and the necklace alignment distance (NAD) based on various
norms [10]. The new distance we shall use is inspired from the particular I,
necklace alignment distance (I, NAD) with p = 1. Given two vectors of n real

numbers, v = (v1, V2, ..., 0,), v = (V], V5, ...,0)),v;, v, € [0,1), the [, NAD is
defined as: .
chsn Z(do((vi + C) mod 1’ UEH-S) mod n))pa (18)
=1

1 the number of positive integers between 1 and n that are relatively prime to n
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where ¢ € [0,1) is a clockwise rotation angle of the first necklace relative to
the second necklace, s € {0,1,...,n—1} is the perfect matching (best possible
shift) between beads, and d° is the distance:

do(vi,v;) = min{|v; — vj|, (1 — |v; — vj|)}

(see [10] for more detail).

Taking into account the fact that our applications involve uniformly-
distributed discrete locations, we set the rotation angle to the constant value
¢ =0, and we replace d° with the simple univariate Euler distance (|v; — v}|).
This yields the discrete necklace distance:

Definition 1 Given two k-ary necklaces of length n: u = (uy,us,...,uy,)
and v’ = (uj,u,...,u,), where u;,u) € {a1,a2,...,ar}, i = 1,2,...,n, the
discrete necklace distance between u and u' is:

n

d’tLeCk(u7 ul) = min Z ‘ui - u;+s|‘ (19)

s=1,2,...,n P
For the purpose of the present study which considers only two possible
types of blade design, we focus on the case where k = 2 and the alphabet
{a1,...,a;} reduces to {0,1}. This leads to the binary necklace distance, de-
noted djpeck, on which our algorithm DFOb-d,, e will be based:

Definition 2 Given y,y" € {0,1}", the binary necklace distance between y
and 3/ is: .

dneek(y:y') = _min dp(y, Rot'(y)), (20)
where dy denotes the Hamming distance, and Rot®(y) is the rotation of y by
¢ positions.

It is clear that dyccx is a distance since, for any y,y’,y” € {0,1}", it satisfies
the following properties:

non-negativity: dpeck(y,y’) > 0,

reflexivity: dpeck(y,y) =0,

commutativity: dpeck (¥, ¥') = dneck (YY),

triangle inequality: dpeck (Y, ¥") < dneck (Y, V') + dneck (¥, y").

Besides, d..; satisfies the key invariance property:
dneck(y,y') = 0 <=y € Rot(y'), (21)
where we define:
Rot(y) = {y' € {0,1}" : 3i € {1,2,...,n} such that Rot'(y') = y}.

This invariance property will ensure that equivalent solutions are considered
as identical solutions.

Unfortunately, contrary to the Hamming distance (see equations or
for instance), a constraint involving the binary necklace distance cannot
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be straightforwardly expressed as linear constraints (due to the “min” op-
erator involved in the definition of dj,e.x). The next section proposes a way
to address this critical issue for adapting Algorithm [2] to the new distance
dpecr. (which will replace the Hamming distance) so as to obtain an algorithm,
named DFODb-d,,cck, that deals only with linear constraints.

3.2 Reformulation of the QP subproblems involving the necklace distance

The incorporation of the new distance d,.; in the QP subproblems involves
specific modifications in the formulation of the no-good cuts and of the trust-
region constraints.

3.2.1 Necklace-distance based no-good cuts

In order to replace the Hamming distance by the necklace distance in the
formulation of no-good cuts, first note that for any real numbers a1, as, ..., ay,
and any positive integer K*, one has

4 12in {a;} > K" <—=a; > K",i=1,2,...,n. (22)
i=1,2,...,n

Now, letting y,y0 € {0,1}" and using the above equivalence with a; =
dr(y, Rot'(yo)), i=1,2,...,n, one straightforwardly obtains:

min  {dg(y, Rot'(yo))} > K* <= dg(y, Rot'(yo)) > K*,i=1,2,...,n,

i=1,2,...,
(23)
or
neck (Y, y0) > K* <= dH(y7Roti(yo)) >K"i=1,2,...,n. (24)

To summarize, one can formulate a no-good cut that avoids useless costly
evaluations by using n linear constraints since involves n Hamming-
distance inequalities, each of which can be written under the form of a linear
inequality following .

3.2.2 Necklace-distance based trust regions

The way we replace Hamming distances by binary necklace distances in the
exploration phase (more precisely, in the trust-region mixed binary quadratic
subproblem of Step 1.5 of Algorithm [2)) is less straightforward.

We consider the mixed binary optimization problem:

minmg(z,y)
T,y

s.t. ||33 — ack||oo S Aw,lﬁ (25)
dneck(yvyk) S Ay,ka
y €{0,1}",
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where my : R™ x {0,1}" — R is a quadratic function, and z € R™, y; €
{0,1}", Ay iy Ay i € R are given.

We propose to replace by the following perturbed problem which in-
volves an auxiliary variable ¢:

min my (2, y) + pt
x,y,t
s.t. ||z — 2k]|oo < Az,

t=_min dg(y, Rot'(yx)), (26)

1=1,2,...

t S Ay,kv
y € {0,1}",

where > 0 is a weighting parameter. We shall see in Subsection [3.3] that
setting p to a small-enough value conserves the fully-linear property of the
perturbed model, thus ensuring the local convergence (Lemma [3[in next sec-
tion) of the algorithm DFOb-d,,cck to be presented.

Consider now the related mixed binary quadratic problem:

min my(z,y) + pt
,Y,Y,t
st |z — zkllee < Az,

tZdH(waOtz(yk))_Mg’u i:1727"'an7
t < Ayg, (27)

Zgl:n—l,

i=1
y,5 €{0,1}",

where M is some large-enough positive constant (one can easily verify that
in fact it suffices to set M to the value n + 1) and § is a vector of n auxiliary
binary variables.

In the sequel we shall write that two optimization problems are equivalent
if an optimal solution of one problem straightforwardly provides an optimal so-
lution of the other problem, and vice versa. Proposition [1| below is introduced
in order to show that the new problem (involving only linear constraints)
is equivalent to problem . Since the essential difficulty resides in the “min”
constraint of and in the Hamming-distance constraints of , the propo-
sition statement disregards the trust-region constraint on x and the constraint
t < A, i (both of which are straightforwardly modeled in an MIQP). Corollary
below will establish the equivalence of problems and (27), as a special
case of Proposition [I]

Proposition 1 (Mini-min reformulation) Let i > 0 be a given constant, N,n
be positive integers, and let f : 2 C RY — R be a quadratic function, g; :
N = Ri=1,2,...,n, be real-valued functions satisfying 0 < g;(z) < M, for
all z € 2, for some M > 0. Then, the two following optimization problems are
equivalent:
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mitnf z) + pt
= _ . _ (P1)
st t= _min {g:(2)}.

min f(z) + ut

2,9,

st t>gi(z) — My, i=1,2,...,n (Py)

Z?:lgi:n_la
gie{0,1},i=1,2,...,n.

The proof is given in Appendix
Corollary 1 The two problems (@) and are equivalent.

Proof Consider the special case of Proposition |1| where 2 = R™ x {0, 1}",
z = (x,y), and N = m+ n, and restrict both feasible sets of (P;) and (P») by
adding the two constraints: ||x — 2g||ec < Az and t < Ay 1.

3.3 Algorithm DFOb-dcck

The algorithm we are introducing in this paper to deal with derivative-free
mixed binary optimization problems is a modified version of DFOb-dy in
which we replace the Hamming distance, dg, with the necklace distance, dyeck -
To do so we use the above formulation of the no-good cut constraints as linear
constraints, and the reformulated MIQP subproblem. This subsection presents
the new algorithm DFOb-d,,..; and establishes its local convergence.

The new algorithm is named Derivative-Free trust-region method for mized
binary necklace optimization, and is noted DFOb-d,cck- It follows exactly the
steps of DFOb-dy (Algorithm [2 given at the end of Section , except for the
following specific changes:

e In Step 1.5a:
Solve MIQP subproblem , instead of MIQP subproblem .
e In Step 3:
Replace, in the new no-good cut, the Hamming-distance inequality:

dr(y,yr) > K7,
by the n inequalities:
dp(y, Rot'(y)) > K*,i=1,2,...,n,
which are linear constraints equivalent to dpeck (Y, yx) > K* by .

Let us now derive a result of local convergence for the new algorithm DFOb-
dneck, analogous to that established in Lemma[2]and Theorem [I] for DFOb-d .
First, let us consider the perturbed model:

m(x,yo) = m(x,y0) + ¢, (28)

' A2
with € = T < ¢ A2, where € > 0 is some small pre-defined value (in our
n

x’

computational results, we choose ¢ = 107%).
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Lemma 3 Under Assumption and Assumption [3, the perturbed model
me(-,y0) (defined with fived y = y°) is fully linear in By, (xo, Ay). In other
words, for all x € By, (xo, Ay), there exist positive constants K%, Ky such that:

‘f(xayO) - m6($7y0)| < H;Aiv (29)
and
Ve f(x,90) — Ve (z,y0)ll2 < K5z, (30)
with Ky = K;}i + €, and Kg = Ky, and where KJ; and Ky are the constants of
Lemmal2

The proof is a straightforward adaptation of the proof of Lemma [2}

As for the convergence proof (detailed in Appendix for the DFOb-
dy algorithm, from Lemma [3| and with the additional assumption that f is
bounded from below, we can prove that the algorithm DFOb-d,,cqk is locally
convergent, following the lines of the proof of convergence of the (continuous)
DFO algorithm in [16] (Theorem 10.13).

4 Numerical results

This section presents comparative numerical results. After briefly presenting
the comparison methodology, we propose in Subsection a set of benchmark
mixed binary optimization problems that features cyclic symmetry. It consists
of a set of 25 instances constructed by transforming existing analytical test
problems from the literature, plus one completely original problem related to
the design of compressor blades in a helicopter turbomachine. Subsection 4.2
reports numerical results on the 25-instance set, while Subsection presents
comparative results on the helicopter application problem.

We compare the two versions of our DFOb method (denoted DFOb-dy for
the version involving the Hamming distance, and DFOb-d,, ¢ for the one with
the necklace distance) with two state-of-the-art mixed integer derivative-free
methods:

e The mesh adaptive direct search algorithm implemented in NOMAD soft-
ware [2}29],

e The surrogate-based optimization method implemented in RBFOpt [18]
(based on radial basis functions).

Following the methodology proposed in [33], we compare the solvers’ perfor-
mances in terms of number of evaluations of the objective function. This is a
classical indicator for applications involving expensive objective-function eval-
uations where a solver is evaluated through its capacity to achieve a given
function reduction within a limited budget of simulations (evaluations of the
objective function).

In our comparisons we consider that a method solves a problem if it pro-
vides a solution Z satisfying the following criterion on the objective-function
value:

fwo) = f(7) = (1 =7)(f(x0) = [7), (31)
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where, in the sequel, f* denote the best function value found by any solver (or
the global-minimum value, if known), z¢ is the starting point for each solver
(or the best point of the initial interpolation points), and 7 is the desired
accuracy, a user-defined tolerance value (in our tests, 7 = 1072 or 1075). If a
solver does not provide a solution that satisfies , we consider that it fails.

Performance and data profiles (see [33]) are complementary tools to com-
pare solvers on a collection of problems.

For a given a collection of test problems, the performance profile of a solver
displays the fraction of the problems that are solved by the solver with respect
to some performance ratio. In our comparisons, we use the ratio between:

— the number of objective-function evaluations required to reach the chosen
accuracy 7T in for a given solver, with:

— the number of objective-function evaluations required by the most efficient
of the compared solvers (to reach the same accuracy).

The performance profile of a solver depends therefore on the other solvers
tested. For instance, the value of the performance profile of a given solver
for a performance ratio of 2 is the number of problems solved by this solver
within less than twice the number of evaluations required by the most efficient
solver for each problem. However, this does not give an accurate information
on the number of evaluations required by a solver to solve a whole collection of
problems. This is the reason why data profiles are widely used to compare DFO
methods. Data profiles give the fraction of problems that can be solved within
a given number of objective-function evaluations (this number of evaluations
is often scaled by n, + 1, where n, is the number of variables of each problem).
Data profiles therefore provide the performance of the solvers for any given
simulation budget.

Table [3] summarizes the options and the main parameter values used in
our comparison for the four solvers under study: DFOb-dg, DFOb-d,,ccr, NO-
MAD and RBFOpt. Remark that for the number of simulations, we only count
one single objective-function evaluation for the starting point of NOMAD, al-
though it is chosen as the best point among the m+mn+1 initial-design points.

4.1 New mixed binary optimization test problems featuring cyclic symmetry

This subsection details how we build 25 mixed binary cyclic-symmetry analyt-
ical benchmark problems from instances of the literature, and it also presents a
simplified real-life application from Safran for designing the compressor blades
of a helicopter turbomachine.

The 25 analytical benchmark problems.

To our knowledge, no instance of cyclic-symmetry mixed binary optimiza-
tion problems are proposed in the literature. The last two columns of Table
[4 lists the name and the source of 25 optimization problems that we selected
to build our 25-instance benchmark problem set. Originally these benchmark
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Table 3 Solver parameters and options used for the benchmark.

Maximal number of 300
objective-function evaluations

All Initial design description LHS design with rounding of discrete
solvers variables (default option of RBFOpt)

For NOMAD: the initial point is the
best point of the initial design

Initial design size m +n + 1 points
Trust-region radii for continuous Azo=1A4; = 1073, A, =102
variables

DFOb Trust-region radius for binary vari- | Ay o0 =2

ables

Maximal number of no-good cuts min(14,2™" — 1), if n <6
20, otherwise

No-good-cut parameter K*=1

problems involve continuous optimization variables only. Some of these opti-
mization problems also include constraints. The present study considers mixed
binary optimization problems featuring cyclic symmetry and involving only
bound constraints. Thus, we describe now how we transform these instances
from the literature into new mixed binary bound-constrained optimization
problems featuring cyclic symmetry. A first step in this transformation pro-
cess is to propose intermediate mixed categorical (involving integer variables
not related to effective quantities) optimization problems.

The 10 instances from [30] are associated with continuous-optimization
minimazx problems of the form:

in F = w ’
i T Xy Pl
where | > 2, and fy, f2, ..., fi are given functions. We transform these in-
stances into mixed categorical problems of the form:
fi(z), fw=1,
- f2 (l’), ifw= 2,
min F(z,w) = . (32)
z€lz,z],we{l,2,...,1} :
filz), ifw=1,

for which the integer w is the category variable.

For each of the 15 remaining benchmark problems, those from [19}/26,[36]
and the problems from MINLPLib [1], the transformation into a mixed cate-
gorical problem goes as follows. We first restrict the last continuous variable,
say 2™, to take only a finite number of values in the discretized-interval set:

‘,Eend _ xend

tw=1,2

Xend:: Qend+(’u}*1)ﬁ- 32, ..,
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where z¢"% and 7"

Table 4 Analytical necklace-optimization benchmark problems

Test problem m | n source instance reference
Branin-nl 1|3 Branin (19]
Camel-nl 1|3 Camel (19]
Goldstein-Price-nl 1|3 Goldstein-Price (19]
Hartman3-nl 2 |3 Hartman3 (19
Hartman6-nl 5 |3 Hartman6 (19
Shekel7-nl 3 (3 Shekel7 [19]
Shekel10-nl 313 Shekel10 (19
HS2-nl 13 HS2 26|
HS29log-nl 1|3 HS29log |26]
HS3-nl 1|3 HS3 26|
CBl-nl 2 | 2 CB1 30|
CB2-nl 2 | 2 CB2 30|
MAD1-nl 2 | 2 MADI1 30]
MAD2-nl 2 | 2 MAD2 130)

QL-nl 2 |2 QL (30|
Pentagon-nl 6 3 Pentagon (30
RosenSuzuki-nl 4 |3 RosenSuzuki (30
WF-nl 2 | 2 WF 30}
Wong2-nl 10 | 4 Wong2 (30
Wong3-nl 20 | 6 Wong3 (30
Perm6-nl 5 |3 Perm6 [36)
Perm8-nl 713 Perm8 |36]
Ex8-1-1-nl 1|3 Ex8-1-1 MINLPLib [1] |
Ex8-1-4-nl 1|3 Ex8-1-4 MINLPLib [1] |
Sporttournament06-nl | 14 | 3 | SporttournamentO6 | MINLPLib [1r

d

end

are respectively the lower and upper bounds of the vari-
in the original problem, and where the number, [, of categories is

to be set by the user. One thereby obtains a mixed categorical optimization
problem involving an objective function of the form F(z,w), where w is a cat-
egory variable (w € {1,2,...,{}). In our numerical tests, we set the number
of categories to [ = 4 for these 15 benchmark problems (i.e., other than those
that originate from minimax problems, for which [ is given by the original
instance).

After transforming the 25 problems into mixed categorical problems as
above, we then introduce a cyclic symmetry by associating to each value of
the categorical variable, w, a necklace (with all the solutions corresponding
to its rotations). For instance, if a categorical variable w takes three values
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in {1,2,3} (case where [ = 3), the mixed categorical problem of minimizing
F(z,w) is transformed into a mixed binary problem with cyclic symmetry by
considering the following new objective function:

(LC, 1)7 ify = (070)7
(x,2), ify = (0,1),(1,0), (33)
(z,3), ify=(1,1).

The resulting new mixed binary necklace-optimization instances are listed
in Table 4| together with the number of continuous variables (m), the number
of binary variables (n), the name of the original instance from which it was
constructed together with the literature reference. The particular choice of
problems is motivated by the sake of comparing methods on a diverse range
of problem dimensions and difficulties, including the presence of multiple local
minima.

f(@y) =

M e

min
z€lz,z],y€{0,1}2

Safran’s helicopter application.

As mentioned in Section[] the present study is motivated by an application
provided by Safran: proposing a design of the turbine blades of a helicopter en-
gine that minimizes the vibrations of the compressor. This application involves
one continuous optimization variable controlling the frequency amplitude, and
a vector of 12 binary decision variables describing the layout of two reference
types of blades on the turbine disk. Safran’s engineers provide us a surrogate
model built from costly real simulations (several hours of computer time are
required for one real single simulation) to allow the computational comparison
of the four optimization solvers under study.

4.2 Results obtained on the 25 analytical problems

The results obtained with DFOb-dyg, DFOb-d, ek, NOMAD and RBFOpt
over the 25 analytical problems are presented under the form of performance
profiles (Figure [2) and data profiles (Figure [3). The required accuracy is set
to 7 = 1073. The number of objective-function evaluations necessary to reach
the best known solution for each problem is also displayed in Figure [ If the
solution is not reached by a solver, no point is displayed but the percentages of
success are indicated for each solver. For all the numerical results, DFOb-dg
results are displayed in blue, DFOb-d,c.; results in red, NOMAD results in
black and RBFOpt in magenta.

These three figures show that for this benchmark of 25 analytical problems,
DFOb-d,,ecr, outperforms the three other optimization methods.

The new method DFOb-d, ... succeeds to solve 88% of the problems,
whereas DFOb-dy, NOMAD and RBFOpt only succeed to solve 80%, 76% and
80% of the 25 problems, respectively. The three problems for which DFOb-
dpecr fails to find the globally-optimal value f* (up to the 7 accuracy) are:
Sporttournament-nl, Wong3-nl and Hartman6-nl. Remark that DFOb-dy and
NOMAD also fail; only RBFOpt succeeds to solve these three problems. This
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is not completely surprising as DFOb-d,,eck, DFOb-dy and NOMAD are lo-
cal optimization methods (with respect to the continuous search space, R™),
while RBFOpt is designed to address global optimization problems. Current
research work is dedicated to this global-optimization issue via the proposition
of a diversification search strategy for DFOb-d,ecr in the continuous search
space, R™.

The performance profiles of Figure reveal that for a (number-of-
simulation) performance ratio equal to 1 (to indicate the percentage of prob-
lems for which the solver does as well as the best solver), both DFOb-d,,eck
and RBFOpt reach the best value: 38%.

Figure [2] also shows that the new necklace distance improves the efficiency
of the DFOb method when addressing cyclic-symmetry optimization problems,
as DFOb-dy solves only 25% of the problems with the minimal number of
objective-function evaluations.

In addition, the data profiles of Figure [3|illustrate that DOFb-d,,ccr solves
most problems with a relatively small number of objective-function evalua-
tions. For instance, 50% of the problems are solved within a number of simu-
lations less than 5 times the number of variables.

Finally, Figure [4 shows that the two DFOb methods need less than 200
function evaluations for all successful problems but one (only one successful
problem requires 270 function evaluations for each solver), whereas RBFOpt
and NOMAD require more than 200 objective-function evaluations for 33%
and 75% of their successful problems, respectively.

To summarize, the results obtained on this benchmark of 25 analytical
functions demonstrate the efficiency of the DFOb methods within a limited
budget of function evaluations. Moreover, 22 out of the 25 problems are solved
by DOFb-d,ec with, generally, a smaller number of function evaluations com-
pared wih the two state-of-the-art solvers NOMAD and RBFOpt.

4.3 Design of compressor blades in a helicopter turbomachine

In this subsection, we present results for a simplified optimal design application
provided by Safran. Contrary to the benchmark of the previous subsection, this
is a real-life cyclic-symmetry application.

For the sake of fair comparison, we repeat 50 runs of each of the four
solvers. Each run starts with a different design of experiments (of cardinality
n+m+1 = 14), following the construction process described in Subsection
Again, we report performance (Figure [5) and data (Figure @ profiles, as well
as the number of iterations (Figure to reach, this time, a reduced accuracy of
7= 107" (due to the scale of the objective function) on the function reduction
(31) associated with these 50 runs.

The results show the very good performance of DFOb-d,,ccr in comparison

with the three other solvers, as it reaches the value f* (up to 7 accuracy) for
88% of the runs, compared with 84%,56% and 78% for DFOb-dy, NOMAD
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Fig. 3 Data profiles of the four solvers for the 25 analytical problems

and RBFOpt, respectively. One therefore observes that, depending on the ini-
tial design of experiments, some runs do not achieve to reach the required
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reduction of the objective function. However, the two versions of DFOb are
the methods that are the most robust with regards to the initial design, with
more than 80% of success.

Data profiles in Figure [f] illustrate that for 18% of runs, NOMAD is the
most efficient solver in terms of simulations. Remark that the very good be-
haviour of NOMAD for the lowest numbers of simulations may also be artifi-
cially helped by our particular choice for its starting point: recall that NOMAD
is started from the best point among the 14 points of the initial design used
for the other three methods, but this, at the expense of only one single simula-
tion count for NOMAD (against 14 evaluations for the other methods). More
generally, the data profiles how the robustness of the DFOb methods and their
good performances in terms of number of simulations.

Figure [7|emphasizes the efficiency of DFOb-dy,c.r, with only one successful
run that requires more than 150 simulations.

Finally, Figure [§| displays the distribution of the 50 solutions found by
DFOb-d,,eck for each of the 50 runs. For 88% of the runs, DFOb-d,, .., con-
verged to a point, denoted (x*,y1*), corresponding to the minimal objective-
function value f* (probably a global minimum); the remaining runs terminated
with three other (locally-optimal) solutions, denoted (z*,y2*), (z*,y3*) and
(x*,y4*). All the runs converged to the same value of the continuous-variable
component: 2* = 0.03 (corresponding to some geometry feature of the blades).
The discrete-variable components of these four different solutions found by
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DFOb-decr, are displayed in Figure 9] where the 0 and 1 values correspond to
different pre-defined types of blades.

) Performance profiles for Safran's simplified simulation,r = 107
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Fig. 5 Performance profiles of the four solvers for the blade design application with 50
repetitions

5 Conclusion and perspectives

In this paper we addressed derivative-free mixed binary optimization prob-
lems involving a cyclic symmetric property, by proposing an adapted distance,
dneck, for the binary search space. We presented theoretical results related to
the linear formulation of constraints involving this necklace distance that al-
lowed us to integrate d,cqk in the trust-region derivative-free method DFOb-d g
proposed by for mixed binary problems, in place of the Hamming distance.
The convergence of both DFOb-dy and that of the adapted algorithm, named
DFODb-dj,eck, to a locally-optimal solution was proved.

We proposed 25 analytical mixed binary cyclic-symmetry test problems
built from a collection of continuous-optimization instances from the litera-
ture. The DFOb-d,,ccr method was evaluated on these analytical instances
as well as on a surrogate approximation of a real optimal design application.
Two state-of-the-art derivative-free mixed binary optimization solvers, NO-
MAD and RBFOpt, were also applied for comparison. These preliminary re-
sults are very encouraging as our proposed method generally outperforms the
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other methods in terms of both robustness and of number of objective-function
evaluations.

There remains several opportunities of improvement as future work. First,
since the computational results revealed the sensitivity of the results to the
initial points for some of the analytical benchmark problems, we are currently
working on a method to provide a design of experiments that is adapted to
mixed discrete variables. Another important challenge is to improve the capac-
ity of DFODb-d,,eck to find solutions that are globally optimal, especially with
respect to the continuous variables. A classical approach to overcome local
minima is a multi-start technique [11,/47]. The high simulation costs and the
presence of binary variables may however make this type of method inefficient.
A coupling approach of our trust-region method with surrogate models may
be a promising approach.
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Lemma 2 Let (xg,yo) be the initial iterate. Under Assumption (1| and As-
sumption [2} the model m(-,yo) which is constructed from m(z,y) by fixing
y = Yo is fully linear in By, (zo, Az). In other words, for all € By, (zo, Az),
there exist K kg >0 such that:

[f (2, y0) — m(,50)] < KFAZ, (34)
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and
Ve f(x,90) — Vam(z,y0)ll2 < Kyds. (35)

Proof The model constructed in mixed space is given as:

~ 1
m(z) =c+ gl 2z + izTHz,
sz Hmy

, Hyy = Hyy, and where
Hy, Hy,

where z = (x,y), g¢g= (nggy)’ H =

H,., Hy, are symmetric matrices.
Thus, the model with y fixed to yg is defined as follows:

~ 1 +=
m(z,40) = G + Gor + 52" Hy, (36)
S A T L r - T 7
with ¢, = (c + 9y Y0+ §y0 Hyyyo), JoT = (gx + nyy0> and H, = H,,.

The gradient of m(z,yo) with respect to x is therefore:
Vxﬁ%(x, Yo) = Gz + Hacx

To be convenient, let us introduce the following notations: fo(z) = f(z,yo),
mo(z) = m(z,y0), Vo) = Vauf(2,90) , Vimo(z) = Vum(x,y0) and
BO(AI) = Byo(xovAw)'

We define
errf (z) = fol(x) — fio(@),
err§(z) = V fo(x) — Vmg(z).

For all ¢ € By(A4,), we develop

(@' —z)Terrf(x) = (2’ — 2)" (Hpx + go — V fo())
= (¢' =) Hpw + (2" — 2)" g0 — fo(z") + fo()
+ [fola") = fo(z) — (2" — 2)"V fo(a)]
= mo(e) ~ mo(w) — 3 (&' —2)" (o' — )  fola') + fo(x)

+ [fo(z") = folx) = (&' = 2)TV fo(x)]
= errg(xi) — err(];(x) - %(x’ — )T H, (2" — )

+ [fo(z') = fo(z) — (2" — 2)" 9 fo()].
(37)
Since fj is continuously differentiable, we have:

o)~ fole) — (@ —2)7V fol)] = / (2 —2) (9 folat(z — )~ fo(x))dt,
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which implies that

1
(' —z)errf(z) = / (' — )T (Vfo(z + t(x' — x)) — V fo(x))dt
0 (38)

_ 1 . o
+ errg(xz) — errg(x) - 5(:132 —2)TH, (2" — z).
Using with x = xg, we obtain:

T

(z° — xO)Terrg(x) = (2" —2)Terrf(z) — (zo — x)Terrg(x)

_ /0 (@ — 2)7(V fole + (' — 2)) — ¥ fola))dt + errd ()
1

- i(wl — )T H, (2" — z)

1
- /O (zo — 2)T(V folz + t(zo — x)) — Vf(2))dt — err] (o)

+ ~(z0 — 2)T Hy(xo — ).

N |

(39)
First, note that errg(aco) = 0. Then, for each terms of , we obtain the
following upper bounds:

e From the Lipschitz property of fo(z) (Assumption , one has:

| [ @ =0T (05 e’ =) = 9 @)it] < Gola’ =

< %V(MI)2 40)
< QVA?C.
e In the same way, we have:
! 1 1
| / (20— )T (V1 (& + (w0 — 7)) = TS (@))dt] < Sl — o < JvA2.
(41)

e In the following two inequalities, note that ||H,|r is bounded from As-
sumption [2}

1, ., o 1, : 1, _
|§($Z—w)THw($l—$)| < §HH$||F||:E’—:E||2 < §||Hm||p(2Az)2 < 2||Hz | A3
(42)

1 T 13 L. A 2 1.5 2
|5 (z0 — @) Ha(zo — 2)| < Sl HallFllzo — 2l < Sl Ha] p A5 (43)
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e There exists € > 0 such that
lerry (a")| < € AZ, (44)
which can be shown by contradiction. Indeed, suppose that we have
lerr{ (z1)| > € A2 Ve > 0. (45)

By definition of err{; and from the continuity assumption on fy and m on
By(A,), there exist €1, €3 > 0 such that:

|€TTg($i)| = [fo(z") — mo(yo)|
= [fo(z") = fol
<[ fo(z") = fo(zo)| + [mo(w0) — mo(a")]|

< (€1 +€2)A,. (46)

Thus, setting ¢ = 2 > ate in 1} contradicts 1)
Ax,min Aa:

Thus, we find from and the inequalities (40H44]):

%

z0) + Mo (o) — mo(z")]

) 5 _
(@ = a0) ern§(@)] < S A2 (v + | Hallr + ), (47)

2
with e = —¢.

Using now Cauchy-Schwarz inequality, we obtain:

5 _
lerrf@lls < 5 A (v+ |1 Hallr +e)- (48)
. . 1 1 2
Consider now the matrix X = A [x — x9,x° — xg,...,2P — xo].

We recall that the interpolation set Z is defined as

Zo Yo
2! y!

7 = R (49)
zP yP

Since Z is poised, Z is full rank, i.e., rank(S) = min(p, m +n) = m + n based
on the fact that p > m + n (see Subsection , and the m column vectors

xo, 2, ..., xP are linearly independent. Therefore, X7 is a non-singular matrix.
We have
(x! —x9)T
XTerrd(z) = L err§(x). (50)
ACI)
(2P — x9)T
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Then, we obtain from inequality :
1

X errf(z)]co = 7= max [(a' — o) errf(z)]
A$ i=1,...,p
15 5 =
< I iAg“ (l/ + | HzllF + 6) (51)
5 _
= A, |S(v+ e +e)|.
Moreover, we have:
errd(x =X TXTerrd(z
l[errg(z)l[2 = | o(@)l2 (52)

<IXT 2 1 X errf (@)

Thus, we obtain:

_ _ 5 _
lerrf(@)lle < VmIX T2 X errf (@)l < VAIX T2 Ap | 3 (vl He e

(53)
Recovering errg (z) by equation , we have:
lerrf ()] < llerr§(2)[| Ae + 20 A% + 2| Hy | A + |errf ()]
oy B . _ e 64
< VX lag (v+ Il +€) + 200 + [ Holle) + € | A2,
We complete the proof by the definition of the two required constants:
* 5 -T r7
ry = SVmIX T (v + [ Helle +e). (55)
and
* r7 5 =T b =T
Ky = (u + ||Hz||F)) (§m||x 2 + 2) + §e(ﬁ||X 2+ 1). (56)
(Il

Appendix B Proof of Proposition

Proposition 1 Let p > 0 be a given constant, N, n be positive integers, and
let f: 2 C RN — R be a quadratic function, ¢; : 2 = R, i =1,2,...,n, be
real-valued functions satisfying 0 < g;(z) < M, for all z € {2, for some M > 0.
Then, the two following optimization problems are equivalent:
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miga f(z)+pt

(P1)
st. t= in {g:(2)}.
i=1,2,....n
min f(z) + ut
z,9,t
st. t>gi(z) — My;, i=12,....n (Py)
2
Z?:l g’i =n-—- 1u

g €{0,1},i=1,2,...,n.
Proof We prove the proposition in two steps:

e firstly, we show that, (P) is a relaxation of (P;) in the sense that if (z,?)
is a feasible solution of (Py), then (z,#,%) is a feasible solution of P»;

e secondly we prove that any optimal solution (z*,y*,t*) of (P) is feasible
for(Py).

Let us consider the first assertion: (P,) is a relaxation of (Py).
Let (z,%) be a feasible solution of (P;).
Consider now the point (z,%,¢) where, for i =1,2,... n:
0, if 4 is the smallest index such thatt = min {g;(2)},
g = i=1,2,...n (57)
1, otherwise.

Let I be the unique index ¢ such that g; = 0.
From the definition of 7 , we note that:

e y,=1foralli+#1.
Then, for ¢ # I, the constraint ¢ > g;(z) — M holds since

t=g:1(2) = min {gi(2)} >0>gi(z) - M.

And for i =1, t > g;(2) — M holds also since

t=g1(2) > g1(z) — Myr = g1(%).

Then, (2,7,t) is feasible for (P%)).

For the second step, let us now show that: if (2*,y*,¢*) is an optimal
solution of (P then (z*,t*) is feasible for (Py)), i.e., we want to prove that

t* = min {g;(z")}.
i=1,2,....n

By contradiction, we shall suppose that this optimal solution of (P) is such
that t* # min {g;(2*)}.

i=1,2,...,n
Let us consider two cases:
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e cither t* < min {g;(2%)},
i=1,2,....n

e ort* > min {g;(2%)}.
i=1,2,...,n

Let I« denote the unique index ¢ such that y; = 0.
Then, y; . =0 and y; =1, for all i # I,
Using the fact that (z*,y*,¢*) is a feasible solution for (Pz), we have

> g1, (%), (58)

In the first case, with t* < {nQin {gi(2*)}, we have
1=1,4,...,m

91,-(2) > _min {g;(z")} > 1%,
i=1,2,...,n

)

which contradicts .

Therefore, the second case necessarily holds, i.e., t* > 1r112in {gi(z*)}. Con-
1= n

LD EIERE]

sider now a solution (z,#,%) defined as follows:
(59)

and
{0, if ¢ is the smallest index satisfying g;(z*) = {nzin {g9:(z%)},
Ui = i=12,..,n

1, otherwise,
(60)
where I* = {i : g;(2*) = i_{nzin n{gz(z*)}} We have:
e This new solution (Z,,1) is feasible for (P). Indeed, for i # I*, the i
constraint, t > g;(z) — My;, is satisfied for (z,7,t), since M is an upper
bound for the function g;(z) and g; = 1.

If 4 = I*, then on the one hand {nzin {gi(z*)} = t, and on the second
i=1,2,...,n

hand g7«(2) = g1« (2*) = izlm2in n{gz(z*)} by definition of I*. Therefore,

the I*th constraint of (P) is satisfied for (z,, ).
e In terms of objective-function values, it is clear that

f) +ut™ > f(2) + pt,

since by hypothesis t* > min i(2*)}, whilet =  min {g;(2*)}. This
1=1,2,....n g =1,2,...,n

contradicts the optimality of (z*,y*,t*).
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