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Abstract This paper presents an adapted trust-region method for computa-
tionally expensive black-box optimization problems with mixed binary vari-
ables that involve a cyclic symmetry property. Mixed binary problems occur
in several practical optimal design problems, e.g., aircraft engine turbines,
mooring lines of offshore wind turbines, electric engine stators and rotors. The
motivating application for this study is the optimal design of helicopter bladed
disk turbomachines. The necklace concept is introduced to deal with the cyclic
symmetry property, and to avoid costly black-box objective-function evalua-
tions at equivalent solutions. An adapted distance is proposed for the discrete-
space exploration step of the optimization method. A convergence analysis is
presented for the trust-region derivative-free algorithm, DFOb-dH , extended
to the mixed-binary case and based on the Hamming distance. The conver-
gence proof is extended to the new algorithm, DFOb-dneck, which is based on
the necklace distance. Computational comparison with state-of-the-art black-
box optimization methods is performed on a set of analytical problems and on
a simplified industrial application.
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Table 1 Abbreviations and nomenclature.

DFO : Derivative Free Optimization
MINLP : Mixed-Integer NonLinear Programming
NLP : NonLinear Programming
QP : Quadratic Programming
DFOb : DFO trust-region method with mixed binary variables
DFOb-dH : DFOb with Hamming distance
DFOb-dneck : DFOb with necklace distance
RBF : Radial Basis Function
EGO : Efficient Global Optimization
NOMAD : Nonlinear Optimization by Mesh-Adaptive Direct Search
x : continuous-variable vector
x̄ : upper bound for x
x : lower bound for x
y : binary-variable vector
z : mixed-variable vector z = (x, y)
m : number of continuous variables
n : number of binary variables
f : objective function
Z : interpolation set for mixed variables
p : cardinality of Z
‖.‖F : Fröbenius norm
‖.‖∞ : l∞ norm
‖.‖2 : l2 norm
∆x : trust-region radius relative to the x search subspace
∆y : trust-region radius relative to the y search subspace
∆x,0 : initial value of ∆x

∆y,0 : initial value of ∆y

dH : Hamming distance
dneck : necklace distance
Rotr(y) : rotation of y by r positions

1 Introduction and motivation

This paper addresses the general black-box mixed binary optimization prob-
lem: {

min
x,y

f(x, y)

x ∈ [x, x̄] ⊂ Rm, y ∈ {0, 1}n,
(1)

where x ∈ Rm and y ∈ {0, 1}n are continuous and binary variables, respec-
tively. The objective function f : Rm × {0, 1}n → R is the output of a “black-
box” numerical simulator. We then assume that f is expensive to evaluate and
its derivatives are not available. In the sequel we shall often use the optimiza-
tion vector z to denote a couple (x, y) ∈ Rm × {0, 1}n.

There is a large body of works in the operations research community that
regards Mixed-Integer NonLinear Programming problems (MINLP), see for
instance [8]. Most deterministic algorithms for solving MINLP are based on
branch-and-bound methods. Briefly, the branch-and-bound algorithm is based
on recursively sub-dividing the set of possible solutions during the branching
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step, and estimating bounds on the optimal objective-function value in each
branch (the “cut” or “bound” operation) to find a solution (see e.g., [20]).
In [41], the authors do not create a search tree but relax the integrality con-
straints via a sine function that penalizes the variables for not being integers.
Remark that relaxing the binary variables is not possible in our application
context. While convex MINLP’s can be tackled by several available software,
for instance BONMIN [9] or SKIP [3], nonconvex problems are more diffi-
cult and usually require convexification and reformulation strategies. Such
strategies are either impossible (reformulation) or still need to be developed
when dealing with black-box optimization. This is a real challenge, especially
in our context of objective functions that are computationally expensive to
evaluate (several hours or even days for a single evaluation). Therefore, we
choose in this paper not to focus on (meta) heuristic methods (e.g., evolu-
tionary algorithms, [24] and simulated annealing) due to the large number of
objective-function evaluations such approaches require.

A widely cited Derivative Free Optimization (DFO) algorithm, NOMAD
[2, 29], implements the Mesh Adaptive Direct Search (MADS) algorithm [7]
for black-box optimization under general nonlinear constraints. MADS is an
extension of Torczon’s generalized pattern search algorithms [6, 42]. MADS
principally relies on two main steps. The search step is flexible enough to al-
low local and global explorations with generic strategies such as diverse Latin-
Hypercube Sampling (LHS), or variable neighbourhood search [4]. The poll
step is critical to the local convergence proof. It involves evaluating the objec-
tive function on a discrete grid that is dynamically updated. More recently, [15]
introduced a search strategy that automatically constructs quadratic models
to try and find promising trial points.

Other approaches to black-box optimization rely on building an approxi-
mate model of the objective function (referred to as response surface, surrogate
model, or metamodel) which include the Radial Basis Function (RBF) based
optimization methods and the Efficient Global Optimization (EGO) method.
The surrogate models used in these methods are global models, i.e., they use
a single substitute of the objective function that aims to be sufficiently pre-
dictive in the whole search domain to detect areas of interest with good values
of the objective function (exploration), and that can be refined in these areas
(exploitation). Note that these exploitation and exploration objectives are sim-
ilar to the goals of the poll and search steps of MADS. The RBF method for
global optimization was introduced by Gutmann [25], and several variations
followed [18,27,39,40]. EGO [28] is based on a Gaussian process surrogate and
an adaptive strategy to propose new evaluation points based on the so-called
expected improvement criterion, which balances between exploration and ex-
ploitation. In [36], Gaussian process kernels that are products of continuous
and discrete kernels are integrated into an EGO method framework; the re-
sulting mixed categorical (involving integer variables not related to effective
quantities) optimization problem is then solved by NOMAD. The strengths
and weaknesses of various types of kernels for Gaussian processes are discussed
in [38].
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Opposite to the above global-model methods, are the class of trust-region
methods that build local models. For instance, [16] reviews DFO trust-region
methods involving quadratic-model subproblems for continuous black-box
problems. In [14], an extension to mixed binary variables is considered and
a proof of convergence to locally-optimal solutions is given.

The present study concentrates on the class of trust-region methods, as
described in the two major references of the field [5, 16], and their extensions
to mixed binary variables such as in [14] with the extra difficulty of problems
involving cyclic symmetry.

Several design applications have the form or can be transformed in the
form of the mixed binary nonlinear problem (1). The motivating application
of this work is the optimal design of the compressor blades of a helicopter
engine [35]. There are n blades. The objective is to minimize the vibration
of the compressor by changing the shapes of the compressor blades. Here, a
single objective-function evaluation may require several hours of computation
time. This optimization problem involves a vector, x ∈ Rm, of m continuous
variables, each of which describes one blade shape parameter, such as the
thickness or the length of the blades. There are also integer variables that
locate pre-defined possible blade geometries around the disk, as in [13]. In this
study, we focus on the case involving only two different blade geometries; if we
consider n blades, their relative positions are indicated with a binary vector
y ∈ {0, 1}n, where yi indicates whether the ith blade is of a given type (a) or
of the other type, (b), for i = 1, 2, . . . , n. Figure 1 (left) illustrates the case
with n = 23 blades with the two possible types of blade geometry. Figure 1
(right) displays, for the case of n = 6 blades, all the distinct arrangements and
their equivalent configurations obtained by rotation.

Fig. 1 Left: A 23-blade configuration (from [35]) with two different pre-defined shapes (a)
and (b). Right: the first line displays the twelve possible distinct 6-blade configurations (all
equivalent variants, obtained by rotation, are listed column-wise)

The cyclic-symmetry property of the problem yields a large number of
equivalent arrangements: two blade disks that differ only by a rotation of the
pattern around the disk not only lead to a same value of the objective func-
tion, but also correspond to identical compressors. The number of equivalent
solutions also rapidly increases with n, as illustrated in Table 2. In this pa-
per, we concentrate on avoiding recomputing during the optimization process,
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the costly objective-function value at equivalent configurations. We propose a

Table 2 Number of distinct arrangements and number of total arrangements for n-blade
disks

Number of Number of distinct Total number of
blades on the disk (n) arrangements (v 2n/n) arrangements (2n)

2 3 4
3 4 8
5 8 32
10 108 1 024
12 352 4 096
20 52 488 1 048 576

new DFO trust-region extended to the mixed binary case that can address the
cyclic symmetry of our problem.

We wish to restrict the search to distinct arrangements, thereby avoid-
ing costly black-box objective-function evaluations at equivalent solutions. To
that aim, we introduce the necklace distance, noted dneck, inspired from the
concept of necklace in combinatorics [22,23], and we define a trust-region sub-
problem based on this new distance. Our main contribution is a new method,
named DFOb-dneck, which includes the necklace distance for derivative-free
mixed binary optimization with cyclic-symmetry problems. We also provide a
(local) convergence proof and propose a set of 25 analytical problems extended
from well-known continuous optimization modified to our cyclic-symmetry and
mixed-binary application context. Computational comparisons with NOMAD,
RBFOpt and DFLBOX are performed on the analytical problems and on a
simplified industrial simulator for the optimal design of the compressor blades.

This paper is structured as follows. Section 2 first describes a DFO al-
gorithm, denoted by DFOb-dH in the sequel, extended to the mixed-binary
case with a mixed trust region based on the Hamming distance dH for binary
variables. Section 3 introduces the necklace distance, dneck, and the adapted
algorithm, DFOb-dneck, to take into account the cyclic symmetry. In this sec-
tion, some preliminary results of convergence are given. Section 4 introduces
the numerical results obtained with DFOb-dneck, compared with the solvers:
NOMAD, RBFOpt, DFLBOX and DFOb-dH . Then, conclusion and perspec-
tives are given in Section 5.

2 DFOb-dH : Trust-region derivative-free optimization method for
mixed binary variables based on the Hamming distance

This section discusses the main ingredients of the DFOb-dH algorithm, an
extension of DFO trust-region methods to mixed continuous and binary vari-
ables proposed by [14]. It will serve as the key building block when proposing
our new algorithm in Section 3. After summarizing the algorithm, we focus on
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the theoretical proof of its local convergence due to the authors of [14] (but
that was not explicitly provided in the original work [14]).

Algorithm DFOb-dH aims at improving iteratively a starting feasible so-
lution by solving quadratic optimization subproblems based on quadratic ap-
proximation models of the objective function. It starts with a set, Z, of inter-
polation points at each of which the objective function value is known. Each
main iteration involves two main phases: exploitation and exploration. In the
exploitation phase, a quadratic model, m̃, of the objective function is built with
fixed y, then some numerical condition (poisedness) for the interpolation set,
Z, is verified, and otherwise the interpolation set is updated. A better current
solution is sought by solving trust-region quadratic optimization subproblems
yielding updates of Z, and of the radii of the trust regions. The distance upon
which is based the definition of the trust region for the discrete part, {0, 1}n,
of the search space is the Hamming distance:

dH(ȳ, ỹ) =
∑
j:ỹj=0

ȳj +
∑
j:ỹj=1

(1− ȳj), (2)

for ȳ, ỹ ∈ {0, 1}n. Roughly speaking, this distance simply computes the min-
imal number of flips (from 0 to 1, or from 1 to 0) required to transform ȳ
into ỹ. Then, an exploration phase is added to help the optimization explore
wider the binary domain. The convergence result we are about to present in
this section is in fact driven totally by the exploitation phase, which solves a
continuous quadratic optimization subproblem by temporarily fixing the value
of the discrete variables y, and by building fully-linear models (which will be
defined in the next section) of the (continuous) objective function f(·, y).

2.1 The quadratic model

This subsection details how the trust-region quadratic subproblem model at
iteration k, m̃k, is built.

Suppose that one is given a set of points zi = (xi, yi), xi ∈ Rm, yi ∈
{0, 1}n, i = 0, 1, . . . , p, at which the objective function is evaluated with values
f i := f(xi, yi), i = 0, 1, . . . , p, where p > m + n. This set of points is denoted
by Z and is referred to as the interpolation set.

The derivative-free trust-region algorithm for mixed binary variables is
based on the local quadratic model

m̃α,g,H(z) = α+ gT z +
1

2
zTHz,

with z = (x, y), x ∈ Rm, y ∈ {0, 1}n, and where the coefficients α ∈ R,
g ∈ Rm+n, and H, a (n+m)× (n+m) real symmetric matrix, are solutions
of the regularized fitting problem min

α,g,H=HT

1

2
‖H‖2F

m̃α,g,H(zi) = f i, i = 0, 1, . . . , p,
(3)
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where ‖.‖F is the Frobenius norm. From a computational perspective, sub-
problem (3) can be addressed by NLP solvers such as IPOPT (see details
in [48]). For the sake of notational simplicity, in the sequel, the model m̃α,g,H

will simply be denoted m̃.
The interpolation set needs to satisfy some conditions to ensure the unique-

ness of the solution of the fitting problem (3). Let d = 1 or 2, and let {φi}h−1
i=0

be the natural basis of the space of polynomials of degree ≤ d in Rm+n (h is
then simply the dimension of this space). In our context where y ∈ {0, 1}n,
and when d = 2, the φi elements of this basis are the components of the vector:

φ(z) = (1, x1, . . . , xm, y1, . . . , yn,
1

2
x2

1, . . . ,
1

2
x2
m, . . . , xixj , . . . , xiyj , . . . ,

xmyn, y1y2, . . . , yiyj , . . . , yn−1yn),
(4)

since the purely quadratic terms in the yi’s are discarded (since y2
i = yi). As

a consequence, one has h = (m+ n+ 1)(m+ n+ 2)/2− n.
In order to define the poisedness of the interpolation set Z, we need first

to define the corresponding (p+ 1)× h interpolation matrix :

M :=


φ0(z0) φ1(z0) . . . φh(z0)
φ0(z1) φ1(z1) . . . φh(z1)

...
...

...
φ0(zp) φ1(zp) . . . φh(zp)

 . (5)

Let us consider the three possible cases for the dimensions of M (related to
the number, p+1, of interpolation points and to the cardinality, h, of the basis
– recall that m+ n+ 1 ≤ p):

� h = p+ 1 (determined case): Following [16], the interpolation set Z is said
to be poised if the determinant of M is non-zero.

� p+ 1 < h (underdetermined case): Again, as in [16], Z is poised if M is full
column rank (rank(M) = min(p, h) = p).

� h < p+ 1 (overdetermined case): In this case we propose to remove p− h
points from the interpolation set (we shall define precisely in the algorithm
which points are to be eliminated), so that one falls into one of the two
previous cases.

A so-called ill-geometry situation leading to a non-poised interpolation set
occurs when for instance at some iteration, two or more interpolation points
collapse or are affinely dependent. This results in non-uniqueness of solutions
of the fitting problem (3). There is also an ill-geometry problem in the case
of a near-singular interpolation matrix (when two interpolation points are too
close to each other for example). To prevent this scenario, an improvement
step based on LU factorization is set up in the mixed space Rm × {0, 1}n,
inspired from the continuous version in [16], and detailed in Algorithm 1. It
involves solving a MIQP (to be defined below).

Algorithm 1 provides a poised interpolation set such that when Gaussian
elimination is applied to the interpolation matrix M , the absolute value of
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all pivots are not smaller than the chosen threshold ξ. From a computational
perspective, subproblem (6) can be addressed by an MIQP solver such as
CPLEX or BONMIN.

Algorithm 1: Improving poisedness of Z in the trust region B [16]

0. Initialization
Choose an initial pivot polynomial basis with some basis
ui(z), i = 0, 1, . . . , h, e.g., the monomial basis φ(z) given by (4).

Select a pivot threshold ξ > 0.
For i = 0, 1, . . . , h
1. Point selection:

� If there exists an index j ∈ {i, i+ 1, . . . , |Z|} such that |ui(zj)| ≥ ξ,
swap zj and zi in set Z,

� Otherwise, recompute zi as

zi ∈ argmax
z∈B

|ui(z)|, (6)

where B is the trust region we are considering.
Stop if |ui(zi)| < ξ.

2. Gaussian elimination: For j = i+ 1, i+ 2, . . . , p

uj(z)← uj(z)−
uj(z

i)

ui(zi)
ui(z).

Lemma 6.7 of [16] is extended below (Lemma 1) to mixed binary variables.
It guarantees the existence of the positive lower-bound value, ξ, involved in
Algorithm 1 (pivot threshold).

Lemma 1 Let vTφ(z) be a quadratic polynomial where φ(z) is defined in (4)
and ‖v‖∞ = 1. Then, there exists a constant σ∞ > 0 independent of v such
that

max
x∈B(0,1),y∈{0,1}n

|vTφ(z)| ≥ σ∞, (7)

where B(0, 1) = {x ∈ Rm, ‖x‖∞ ≤ 1}.
For quadratic models, σ∞ ≥

1

4
.

The proof is a straightforward extension of the proof of Lemma 6.7 in [16].
The complete proof can be found in Lemma 4.7, [46].

The introduction of binary variables requires an adapted trust-region defi-
nition. In [14], the authors introduce a l∞-norm trust region for the continuous
variables, and a Hamming-distance trust region for the binary variables.

Assuming in the sequel that the current iterate under consideration is
(x0, y0), the mixed trust region is defined as

B(x0, ∆x)× B(y0, ∆y), (8)
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where
B(x0, ∆x) = {x ∈ Rm : ‖x− x0‖∞ ≤ ∆x}, (9)

and
B(y0, ∆y) = {y ∈ {0, 1}n : dH(y, y0) ≤ ∆y}, (10)

for some given trust-region radii ∆x and ∆y.
In order to avoid ill-conditioning and ensure the local convergence of the

algorithm, we rely on a class of so-called fully-linear models within the chosen
trust region, that are defined as follows.

Definition 1 (Class of fully linear models, from [5]) Given a function
f : Rm → R, ∈ C1 and real value ∆̄ > 0, a set of model functions m̃(x),
parameterized by ∆ ∈ (0, ∆̄] is called a fully linear class of models of f if
there exist positive constants κef , κeg such that, given any ∆ ∈ (0, ∆̄]:

– the error between the gradient of the model and the gradient of the function
satisfies, ∀s ∈ B(0, ∆),

‖Of(x+ s)− Om̃(x+ s)‖ ≤ κeg∆, (11)

– the error between the model and the function satisfies

|f(x+ s)− m̃(x+ s)| ≤ κef∆2. (12)

As shown in [16] for continuous problems, if an interpolation set is poised,
then the model obtained by solving the minimal Frobenius fitting problem is
fully linear in the trust region of size ∆x = max

i=1,2,...,p
(‖xi−x0‖∞) defined by the

interpolation points, which ensures a control of the model error by controlling
the size of the trust region and the interpolation set poisedness with the model
improvement step.

In our case, we ensure the local convergence of our algorithm by considering
the subproblem with fixed binary variables, and by checking that the model
for fixed y = y0 is fully linear in the trust region:

By0(x0, ∆x) = {(x, y0) : x ∈ Rm and ‖x− x0‖∞ ≤ ∆x}.

Note that, in our implementation, the model improvement step (Algorithm
1) is performed in B(x0, ∆x)×{0, 1}n, where B(x0, ∆x) is defined by (9). This
allows a larger exploration with respect to binary variables than an improve-
ment step in the mixed trust region B(x0, ∆x)×B(y0, ∆y) while still fulfilling
the required assumptions for Lemma 2 below. In the following, we give the
proof of fully-linear models for fixed y = y0.

Assumption 1

� f is a continuously differentiable function with respect to the x variables
that has a Lipschitz-continuous gradient in a closed subset, Ω, of the opti-
mization domain, Rm × {0, 1}n;
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� The interpolation set of p + 1 points, Z, is poised in B(x0, ∆x) × {0, 1}n
where p > m+ n and ∆x = max

i=1,2,...,p
(‖xi − x0‖∞).

Assumption 2
At every iteration k of the algorithm, the Frobenius norm of the model

Hessian evaluated at iterate (xk, yk), Hk, is bounded.

Lemma 2 Let (x0, y0) be the initial iterate. Under Assumption 1 and As-
sumption 2, the model m̃(·, y0) which is constructed from m̃(x, y) by fixing
y = y0 is fully linear in By0(x0, ∆x). In other words, for all x ∈ By0(x0, ∆x),
there exist κ∗f , κ

∗
g > 0 such that:

|f(x, y0)− m̃(x, y0)| ≤ κ∗f∆2
x, (13)

and
‖Oxf(x, y0)− Oxm̃(x, y0)‖2 ≤ κ∗g∆x. (14)

The proof is given in Appendix A.
We can now state the local convergence of the algorithm.

Theorem 1 Let Assumptions 1 and 2 hold. Then,

lim
k→∞

Oxf(xk, y0) = 0, (15)

or all the limit points of the sequence of iterates are first-order critical points.

The proof is obtained by following the same process as in [16] (Theorem
10.13): from the results of Lemma 2, we can prove the local convergence (con-
vergence for fixed y) of the algorithm with the additional assumption that f
is bounded from below for all (x, y) ∈ Ω, a closed subset of Rm × {0, 1}n.

Remark 1 As explained in [17], an interpolation point outside By0(x0, ∆x) has
to be replaced in order to ensure a fully linear model. However, in practice, in
order to save expensive objective-function evaluations, we allow to go on with
a model that is not certified to be fully linear when it yields effective progress
in the minimization of the function.

In what follows, we detail the major stages of the DFOb-dH algorithm.

2.2 Initial interpolation set

This subsection details the choice of the initial interpolation set (also often
referred to as the initial design) in DFOb-dH .

In order to construct a first quadratic model, one requires an interpolation
set that contains a sufficient number of points together with the corresponding
objective function values. As indicated in [16], for DFOb-dH this number is
often taken equal to m+ n+ 1. Further, these points need to satisfy strict ge-
ometry conditions for the interpolation problem to be well posed. As remarked
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in [47], a “good” design of experiments (DOE) not only needs to be affinely
independent, but should additionally satisfy space-filling, non-collapsing prop-
erties.

There are several methods to choose a given number of sample points in a
continuous space, such as factorial designs, Latin Hypercube Sample (LHS),
and Optimal LHS designs (see e.g. [47]). However, here we deal with mixed
continuous and binary variables problems: we need to provide a DOE in the
mixed space Rm × {0, 1}n. When the dimension is small, one way to proceed
is to sample among 2n+m corner points of the boundary box: for example [25]
proposes a strategy that chooses m+n+1 corner points plus the central point
of the box. For larger dimensions, a popular strategy is the Latin Hypercube
Sample (LHS) [32, 49], originally used for generating samples for continuous
variables in a bounded subset. However, points sampled by this strategy will
surely not satisfy our binary constraints.

In our implementation, we therefore proceed as in [18] for the RBFOpt
algorithm: we first construct a Latin Hypercube Design with maximin distance
criterion of m + n + 1 points in the considered bounded subset of Rm+n,
then we round the n components associated with binary variables to zero or
one. Remark that rounding recovers the binary domain but may destroy the
desirable properties of LHS or, even worse, it may generate identical points.
A future track of our research will therefore be dedicated to improving the
method for initial design of experiments.

Two main phases of DFOb-dH remain to be specified: the exploitation and
the exploration phases. The exploitation phase attempts at finding locally-
optimal solutions of the optimization problem with fixed binary variables.
The exploration phase focuses on escaping from local minima when we cannot
improve the current local solution, by exploring the binary domain.

2.3 Exploitation phase

The next step - that will be denoted Step 1a - involves solving a continuous
quadratic-programming (QP) subproblem temporary fixing the binary vari-
ables y to the associated current values of the trust region center, yk:{

min
x
m̃k(x, yk)

s.t. ‖x− xk‖∞ ≤ ∆x,k,
(16)

where m̃k is the current model at the kth iteration, (xk, yk) is the current
iterate, and ∆x,k is the trust-region radius with respect to the continuous
variables x at iteration k. Note that the infinity norm l∞ is used to define the
trust region with respect to continuous variables for the sake of subproblem
simplification (leading to bound constraints).

The following step, Step 1b, tests whether the solution, x∗, of (16) should
be accepted based on the ratio, ρ, of the true improvement in f brought by



12 Thi Thoi TRAN et al.

x∗, over the improvement predicted by the model:

ρ =
f(xk, yk)− f(x∗, yk)

m̃k(xk, yk)− m̃k(x∗, yk)
, (17)

where one remarks that the denominator is always negative since x∗ is solu-
tion of (16). We introduce ηgood, ηok, and ηtol, some pre-defined acceptance
threshold values such that ηgood > ηok > ηtol > 0.

If ρ > ηtol, the new iterate is accepted (successful iteration). If ρ < ηtol,
the solution is rejected (unsuccessful iteration).
This exploitation phase (referred to as Step 1 in the sequel) is summarized in
Algorithm 2.

Algorithm 2: Exploitation phase of DFOb-dH (Step 1)
at iteration k

Step 1a (TR QP)
� Solve (16) for fixed y = yk in Byk(xk, ∆x,k) to get x∗

� Evaluate f(x∗, yk) ; if nsimu = nsimu → STOP
� Add ((x∗, yk), f(x∗, yk)) to Zk; p← p+ 1

Step 1b (Validation)
Compute the acceptance ratio ρ via (17)
� If ρ ≥ ηtol (successful Step 1): xk ← x∗

else (unsuccessful Step 1): xk is rejected.

2.4 Exploration phase

After a successful Step 1 with fixed yk, the following step (which will be referred
to as Step 1.5a) attempts to improve the current-iterate solution, (xk, yk), in
the mixed-variable search space by solving the mixed binary quadratic sub-
problem: 

min
x,y

m̃k(x, y)

s.t. ‖x− xk‖∞ ≤ ∆x,k,
dH(y, yk) ≤ ∆y,k.

(18)

In practice, this subproblem is addressed by MIQP solvers such as CPLEX or
BONMIN.

Then, a validation step (referred to as Step 1.5b) checks if the solution
of Step 1.5a provides a solution y∗ 6= yk, and whether the corresponding
objective-function value, f(x∗, y∗), associated to this solution is smaller than
the current best objective-function value.

In case of an unsuccessful Step 1.5a (i.e., no improvement in the minimiza-
tion of f or failure in solving (18)), we continue with the same yk, with a
trust-region management with respect to the x component, and a new Step 1
to improve the current solution with y fixed to the value yk:

� If ρ > ηgood, then the solution (x∗, yk) is accepted and the model is con-
sidered as a “good” predictor of f , the trust-region size is then increased;



Mixed binary cyclic-symmetry optimization problems 13

� If ρ ∈ [ηok, ηgood], then the solution is accepted and the model is considered
as sufficiently predictive, the trust-region size remains unchanged;

� If ρ < ηok, then (x∗, yk) is rejected and the model is not considered suffi-
ciently predictive. The trust-region radius is then reduced.

This trust-region management (which will constitute Step 2) can be sum-
marized as:

∆x,k+1 =


2∆x,k if ρk ≥ ηgood,
∆x,k if ηok ≤ ρk < ηgood,
1

2
∆x,k if ρk < ηok.

If the solution of (18) does not yield improvement with respect to the
current center (x∗, y∗), and the minimal value of the trust-region size, ∆x, is
reached, then (x∗, y∗) is considered to be a locally-optimal solution. In this
case, the algorithm explores in a Step 3 the binary search space using no-good
cuts, analogous to those introduced in [19] for general mixed optimization
problems. This leads in our case to relaxing the trust-region constraint:

dH(y, y∗) ≤ K,

for some K > 0, and to force the algorithm to move away from the current
locally-optimal solution by adding the extra (no-good cut) constraint:∑

j:y∗j =0

yj +
∑
j:y∗j =1

(1− yj) ≥ K∗, (19)

where K∗ ∈ N∗ is some user-defined discrepancy value strictly greater than
1. Note that for a given xk, several such no-good cut constraints are likely to
cumulate, as there will be one constraint of the form (19) corresponding to
each of the different y∗ values obtained. The set of no-good cut constraints at
iteration k is denoted by ΩNGCk .
The exploration step (Step 1.5) is outlined in Algorithm 3.

Algorithm 3: Exploration phase of DFOb-dH (Step 1.5)
at iteration k

Step 1.5a (MIQP subproblem)
� is new NGC = 0
� Solve MIQP (18) in B(xk, ∆x,k)× (B(yk, ∆y,k)∩ΩNGCk ) to get (x∗, y∗)
� Evaluate f(x∗, y∗) if nsimu = nsimu → STOP
� Add ((x∗, y∗), f(x∗, y∗)) to Zk; p← p+ 1

Step 1.5b (Validation)
� If y∗ 6= yk and f(x∗, y∗) < min

(x,y)∈|Zk|∩(Rm×ΩNGC
k )

f(x, y)

(successful step 1.5): ∆x,k = ∆x,0, (xk, yk)
else (unsuccessful step 1.5)

If y∗ 6= yk: ∆y,k ← ∆y,k − 1

The algorithm finally ends when the maximal budget of objective-function
evaluations or the maximal number of no-good cuts is reached. The maximal
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number of possible no-good cuts is theoretically equal to 2n − 1 (for n binary
variables). We shall see later that in the context of cyclic symmetry, it is
approximately 2n/n. But more importantly, with this type of property we will
see that the definition of no-good cuts in (19) is not sufficient to discriminate
equivalent configurations.

The DFOb-dH algorithm is summarized in Algorithm 4.

Algorithm 4: DFOb-dH algorithm

Initialization
� Given initial TR radii 0 < ∆x < ∆x,0 < ∆x, 0 < ∆y < ∆y,0 < ∆y, and

tolerances ηgood > ηok > ηtol > 0, a maximal budget of evaluations
nsimu > p, maximal number of no-good cut constraints nNGC > 0, and a
corresponding discrepancy value K∗ > 0.

� Initial interpolation set Z = {(zi, f i)}i=0,1,...,p, z
i = (xi, yi), f i = f(zi)

� Define initial iterate (x0, y0) = argmin
i=0,1,...,p

f(xi, yi)

� Set k = 0, ΩNGC0 = {0, 1}n, is new NGC = 0

Iteration k:

Step 0 (Model update and improvement)
� Build quadratic model m̃k(x, y) (cf. Subsection 2.1)
� Improve poisedness of Zk by solving a TR MIQP in
B(xk, ∆x,k)× B(yk, ∆y,k) (Algorithm 1)a

� If nsimu = nsimu → STOP
if is new NGC = 1 go to Step 1.5
Step 1 (Exploitation phase): Algorithm 2 (cf. Subsection 2.3)
� If unsuccessful Step 1: go to Step 2

Step 1.5 (Exploration phase): Algorithm 3 (cf. Subsection 2.4)

� If successful Step 1.5: k← k + 1 and go to Step 0

Step 2 (TR update and local convergence check)
� If ρ ≤ ηok: ∆x,k ← ∆x,k/2
� If ρ ≥ ηgood: ∆x,k ← 2∆x,k

� If ∆x,k > ∆x: k← k + 1 and go to Step 0
Step 3 (Exploration after local convergence)
� Adding a new no-good cut :
ΩNGCk ← ΩNGCk ∩ {y ∈ {0, 1}n : dH(y, yk) ≥ K∗},
nNGC ← nNGC + 1; is new NGC = 1

� Reinitialize TR radii: ∆x,k = ∆x,0, ∆y,k = ∆y

� If nNGC ≤ nNGC : k← k + 1 and go to Step 0
else: → STOP

a Algorithm 1 adds possibly in Zk new points to be simulated.
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3 An adapted distance for cyclic-symmetry problems

To avoid useless costly evaluations of the numerous equivalent solutions for
cyclic-symmetry problems (as illustrated in Table 2), engineers typically re-
sort to simplifications or adapted strategies (such as the reduced-order model
methodology [12,13]) to reduce the optimization problem dimension. However,
such simplifications are likely to discard interesting or optimal configurations.

This section first defines a new distance to be used in DFOb so as to
avoid to evaluate the costly black-box objective function at configurations that
were previously evaluated (equivalent solutions), without arbitrary removal of
(potentially good) candidate configurations. The new distance should lead to
constraints easily manageable in efficient optimization methods, just like the
Hamming distance which leads to linear constraints (of (2) and (19)). Then,
in Subsection 3.2 we propose a reformulation of the algorithm optimization
subproblems with this new distance for both the exploitation and the ex-
ploration phases. Subsection 3.3 summarizes the adapted algorithm, named
DFOb-dneck, and provides the local convergence statement.

3.1 The necklace distance

In order to avoid re-evaluating costly objective-function evaluations at equiv-
alent blade arrangements, we propose to use the concept of necklace [22, 23].
In combinatorics, a k-ary necklace of length n is an equivalence class of n-
character strings over an alphabet

∑k
= {a1, a2, . . . , ak} of size k, considering

all rotations as equivalent strings. It represents a structure with n circularly-
connected characters, or beads, that have k available colors (elements of the
alphabet).

Our blade design application can therefore be seen as a 2-color (or bi-
nary) necklace optimization problem involving a fixed number, n, of beads
(the number of reference blade shapes). The number of distinct arrangements
in our applicative context is therefore given by the number of n-bead necklaces:
1

n

∑
d|n φ(d)2n/d, where φ is Euler’s totient function1 and the summation is

taken over all divisors d of n.
Several applications are based on the necklace concept, with the use of

various related distances: for example in music with the geometry distance
and the swap distance [43–45], or in combinatorics with the Hamming distance
with shifts [33], and the necklace alignment distance (NAD) based on various
norms [10]. The new distance we shall use is inspired from the particular lp
necklace alignment distance (lp NAD) with p = 1. Given two vectors of n real
numbers, v = (v1, v2, . . . , vn), v′ = (v′1, v

′
2, . . . , v

′
n), vi, v

′
i ∈ [0, 1), the lp NAD is

defined as:

min
c,s

n∑
i=1

(d0((vi + c) mod 1, v′(i+s) modn))p, (20)

1 the number of positive integers between 1 and n that are relatively prime to n
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where c ∈ [0, 1) is a clockwise rotation angle of the first necklace relative to
the second necklace, s ∈ {0, 1, . . . , n−1} is the perfect matching (best possible
shift) between beads, and d0 is the distance:

d0(vi, v
′
j) = min{|vi − v′j |, (1− |vi − v′j |)}

(see [10] for more detail).
Taking into account the fact that our applications involve uniformly-

distributed discrete locations, we set the rotation angle to the constant value
c = 0, and we replace d0 with the simple univariate Euler distance (|vi − v′j |).
This yields the discrete necklace distance:

Definition 2 Given two k-ary necklaces of length n: u = (u1, u2, . . . , un)
and u′ = (u′1, u

′
2, . . . , u

′
n), where ui, u

′
i ∈ {a1, a2, . . . , ak}, i = 1, 2, . . . , n, the

discrete necklace distance between u and u′ is:

d∗neck(u, u′) = min
s=1,2,...,n

n∑
i=1

|ui − u′i+s|. (21)

For the purpose of the present study which considers only two possible
types of blade design, we focus on the case where k = 2 and the alphabet
{a1, . . . , ak} reduces to {0, 1}. This leads to the binary necklace distance, de-
noted dneck, on which our algorithm DFOb-dneck will be based:

Definition 3 Given y, y′ ∈ {0, 1}n, the binary necklace distance between
y and y′ is:

dneck(y, y′) = min
i=1,2,...,n

dH(y,Roti(y′)), (22)

where dH denotes the Hamming distance, and Roti(y) is the rotation of y by
i positions.

It is clear that dneck is a distance since, for any y, y′, y′′ ∈ {0, 1}n, it satisfies
the following properties:

� non-negativity: dneck(y, y′) ≥ 0,
� reflexivity: dneck(y, y) = 0,
� commutativity: dneck(y, y′) = dneck(y′, y),
� triangle inequality: dneck(y, y′′) ≤ dneck(y, y′) + dneck(y′, y′′).

Besides, dneck satisfies the key invariance property:

dneck(y, y′) = 0⇐⇒ y ∈ Rot(y′), (23)

where we define:

Rot(y) = {y′ ∈ {0, 1}n : ∃i ∈ {1, 2, . . . , n} such that Roti(y′) = y}.

This invariance property will ensure that equivalent solutions are considered
as identical solutions.

Unfortunately, contrary to the Hamming distance (see equations (2) or
(19) for instance), a constraint involving the binary necklace distance cannot
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be straightforwardly expressed as linear constraints (due to the “min” op-
erator involved in the definition of dneck). The next section proposes a way
to address this critical issue for adapting Algorithm 4 to the new distance
dneck (which will replace the Hamming distance) so as to obtain an algorithm,
named DFOb-dneck, that deals only with linear constraints.

3.2 Reformulation of the QP subproblems involving the necklace distance

The incorporation of the new distance dneck in the QP subproblems involves
specific modifications in the formulation of the no-good cuts and of the trust-
region constraints.

3.2.1 Necklace-distance based no-good cuts

In order to replace the Hamming distance by the necklace distance in the
formulation of no-good cuts, first note that for any real numbers a1, a2, . . . , an
and any positive integer K∗, one has

min
i=1,2,...,n

{ai} ≥ K∗ ⇐⇒ ai ≥ K∗, i = 1, 2, . . . , n. (24)

Now, letting y, y0 ∈ {0, 1}n and using the above equivalence with ai =
dH(y,Roti(y0)), i = 1, 2, . . . , n, one straightforwardly obtains:

min
i=1,2,...,n

{dH(y,Roti(y0))} ≥ K∗ ⇐⇒ dH(y,Roti(y0)) ≥ K∗, i = 1, 2, . . . , n,

(25)
or

dneck(y, y0) ≥ K∗ ⇐⇒ dH(y,Roti(y0)) ≥ K∗, i = 1, 2, . . . , n. (26)

To summarize, one can formulate a no-good cut that avoids useless costly
evaluations by using n linear constraints since (26) involves n Hamming-
distance inequalities, each of which can be written under the form of a linear
inequality following (2).

3.2.2 Necklace-distance based trust regions

The way we replace Hamming distances by binary necklace distances in the
exploration phase (more precisely, in the trust-region mixed binary quadratic
subproblem (18) of Step 1.5 of Algorithm 4) is less straightforward.

We consider the mixed binary optimization problem:
min
x,y

m̃k(x, y)

s.t. ‖x− xk‖∞ ≤ ∆x,k,
dneck(y, yk) ≤ ∆y,k,
y ∈ {0, 1}n,

(27)
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where m̃k : Rm × {0, 1}n → R is a quadratic function, and xk ∈ Rm, yk ∈
{0, 1}n, ∆x,k, ∆y,k ∈ R are given.

We propose to replace (27) by the following perturbed problem which in-
volves an auxiliary variable t:

min
x,y,t

m̃k(x, y) + µt

s.t. ‖x− xk‖∞ ≤ ∆x,k,
t = min

i=1,2,...,n
dH(y,Roti(yk)),

t ≤ ∆y,k,
y ∈ {0, 1}n,

(28)

where µ > 0 is a weighting parameter. We shall see in Subsection 3.3 that
setting µ to a small-enough value conserves the fully-linear property of the
perturbed model, thus ensuring the local convergence (Lemma 3 in next sec-
tion) of the algorithm DFOb-dneck to be presented.

Consider now the related mixed binary quadratic problem:

min
x,y,ỹ,t

m̃k(x, y) + µt

s.t. ‖x− xk‖∞ ≤ ∆x,k,
t ≥ dH(y,Roti(yk))−Mỹi, i = 1, 2, . . . , n,
t ≤ ∆y,k,
n∑
i=1

ỹi = n− 1,

y, ỹ ∈ {0, 1}n,

(29)

where M is some large-enough positive constant (one can easily verify that
in fact it suffices to set M to the value n+ 1) and ỹ is a vector of n auxiliary
binary variables.

In the sequel we shall write that two optimization problems are equiv-
alent if an optimal solution of one problem straightforwardly provides an
optimal solution of the other problem, and vice versa. Proposition 1 below is
introduced in order to show that the new problem (29) (involving only linear
constraints) is equivalent to problem (28). Since the essential difficulty resides
in the “min” constraint of (28) and in the Hamming-distance constraints of
(29), the proposition statement disregards the trust-region constraint on x and
the constraint t ≤ ∆y,k (both of which are straightforwardly modeled in an
MIQP). Corollary 1 below will establish the equivalence of problems (28) and
(29), as a special case of Proposition 1.

Proposition 1 (Mini-min reformulation) Let µ > 0 be a given constant, N,n
be positive integers, and let f : Ω ⊆ RN → R be a quadratic function, gi :
Ω → R, i = 1, 2, . . . , n, be real-valued functions satisfying 0 ≤ gi(z) ≤ M , for
all z ∈ Ω, for some M > 0. Then, the two following optimization problems are
equivalent:
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z,t

f(z) + µt

s.t. t = min
i=1,2,...,n

{gi(z)}.
(P1)


min
z,ỹ,t

f(z) + µt

s.t. t ≥ gi(z)−Mỹi, i = 1, 2, . . . , n∑n
i=1 ỹi = n− 1,

ỹi ∈ {0, 1}, i = 1, 2, . . . , n.

(P2)

The proof is given in Appendix B.

Corollary 1 The two problems (28) and (29) are equivalent.

Proof Consider the special case of Proposition 1 where Ω = Rm × {0, 1}n,
z = (x, y), and N = m+ n, and restrict both feasible sets of (P1) and (P2) by
adding the two constraints: ‖x− xk‖∞ ≤ ∆x,k and t ≤ ∆y,k.

3.3 Algorithm DFOb-dneck

The algorithm we are introducing in this paper to deal with derivative-free
mixed binary optimization problems is a modified version of DFOb-dH in
which we replace the Hamming distance, dH , with the necklace distance, dneck.
To do so we use the above formulation of the no-good cut constraints as linear
constraints, and the reformulated MIQP subproblem. This subsection presents
the new algorithm DFOb-dneck and establishes its local convergence.

The new algorithm is named Derivative-Free trust-region method for
mixed binary necklace optimization, and is noted DFOb-dneck. It fol-
lows exactly the steps of DFOb-dH (Algorithm 4, given at the end of Section 2),
except for the following specific changes:

� In Step 1.5a:
Solve MIQP subproblem (29), instead of MIQP subproblem (18).

� In Step 3:
Replace, in the new no-good cut, the Hamming-distance inequality:

dH(y, yk) ≥ K∗,

by the n inequalities:

dH(y,Roti(yk)) ≥ K∗, i = 1, 2, . . . , n,

which are linear constraints equivalent to dneck(y, yk) ≥ K∗ by (26).

Let us now derive a result of local convergence for the new algorithm DFOb-
dneck, analogous to that established in Lemma 2 and Theorem 1 for DFOb-dH .
First, let us consider the perturbed model:

m̃ε(x, y0) = m̃(x, y0) + ε, (30)

with ε =
ε′∆2

x

n
≤ ε′∆2

x, where ε′ > 0 is some small pre-defined value (in our

computational results, we choose ε′ = 10−8).
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Lemma 3 Under Assumption 1 and Assumption 2, the perturbed model
m̃ε(·, y0) (defined with fixed y = y0) is fully linear in By0(x0, ∆x). In other
words, for all x ∈ By0(x0, ∆x), there exist positive constants κεf , κ

ε
g such that:

|f(x, y0)− m̃ε(x, y0)| ≤ κεf∆2
x, (31)

and

‖Oxf(x, y0)− Oxm̃ε(x, y0)‖2 ≤ κεg∆x, (32)

with κεf = κ∗f + ε′, and κεg = κ∗g, and where κ∗f and κ∗g are the constants of
Lemma 2.

The proof is a straightforward adaptation of the proof of Lemma 2.
As for the convergence proof (detailed in Appendix A) for the DFOb-

dH algorithm, from Lemma 3 and with the additional assumption that f is
bounded from below, we can prove that the algorithm DFOb-dneck is locally
convergent, following the lines of the proof of convergence of the (continuous)
DFO algorithm in [16] (Theorem 10.13).

4 Numerical results

This section presents comparative numerical results. After briefly presenting
the comparison methodology, we propose in Subsection 4.1 a set of benchmark
mixed binary optimization problems that features cyclic symmetry. It consists
of a set of 25 instances constructed by transforming existing analytical test
problems from the literature, plus one completely original problem related to
the design of compressor blades in a helicopter turbomachine. Subsection 4.2
reports numerical results on the 25-instance set, while Subsection 4.3 presents
comparative results on the helicopter application problem.

We compare the two versions of our DFOb method (denoted DFOb-dH for
the version involving the Hamming distance, and DFOb-dneck for the one with
the necklace distance) with two state-of-the-art mixed integer derivative-free
methods:

� The mesh adaptive direct search algorithm implemented in NOMAD soft-
ware [2, 29],

� The surrogate-based optimization method implemented in RBFOpt [18]
(based on radial basis functions) ,

� The derivative-free line-search bound constrained method, DFLBOX [30].

Following the methodology proposed in [34], we compare the solvers’ perfor-
mances in terms of number of evaluations of the objective function. This is a
classical indicator for applications involving expensive objective-function eval-
uations where a solver is evaluated through its capacity to achieve a given
function reduction within a limited budget of simulations (evaluations of the
objective function).
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In our comparisons we consider that a method solves a problem if it pro-
vides a solution x̄ satisfying the following criterion on the objective-function
value:

f(x0)− f(x̄) ≥ (1− τ)(f(x0)− f∗), (33)

where, in the sequel, f∗ denote the best function value found by any solver (or
the global-minimum value, if known), x0 is the starting point for each solver
(or the best point of the initial interpolation points), and τ is the desired
accuracy, a user-defined tolerance value (in our tests, τ = 10−3 or 10−5). If a
solver does not provide a solution that satisfies (33), we consider that it fails.

Performance and data profiles (see [34]) are complementary tools to com-
pare solvers on a collection of problems.

For a given a collection of test problems, the performance profile of a solver
displays the fraction of the problems that are solved by the solver with respect
to some performance ratio. In our comparisons, we use the ratio between:

– the number of objective-function evaluations required to reach the chosen
accuracy τ in (33) for a given solver, with:

– the number of objective-function evaluations required by the most efficient
of the compared solvers (to reach the same accuracy).

The performance profile of a solver depends therefore on the other solvers
tested. For instance, the value of the performance profile of a given solver
for a performance ratio of 2 is the number of problems solved by this solver
within less than twice the number of evaluations required by the most efficient
solver for each problem. However, this does not give an accurate information
on the number of evaluations required by a solver to solve a whole collection of
problems. This is the reason why data profiles are widely used to compare DFO
methods. Data profiles give the fraction of problems that can be solved within
a given number of objective-function evaluations (this number of evaluations
is often scaled by nv+1, where nv is the number of variables of each problem).
Data profiles therefore provide the performance of the solvers for any given
simulation budget.

Table 3 summarizes the options and the main parameter values used in our
comparison for the four solvers under study: DFOb-dH , DFOb-dneck, NOMAD
, RBFOpt and DFLBOX.

4.1 New mixed binary optimization test problems featuring cyclic symmetry

This subsection details how we build 25 mixed binary cyclic-symmetry analyt-
ical benchmark problems from instances of the literature, and it also presents a
simplified real-life application from Safran for designing the compressor blades
of a helicopter turbomachine.

The 25 analytical benchmark problems. To our knowledge, no instance of
cyclic-symmetry mixed binary optimization problems are proposed in the lit-
erature. The last two columns of Table 4 lists the name and the source of
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Table 3 Solver parameters and options used for the benchmark.

Maximal number of
objective-function evaluations

300

All
solvers

Initial design description LHS design with rounding of discrete
variables (default option of RBFOpt)

For NOMAD and DFLBOX: the initial
point is the best point of the initial de-
sign

Initial design size m+ n+ 1 points

Trust-region radii for continuous
variables

∆x,0 = 1 ∆x = 10−3, ∆x = 102

DFOb Trust-region radius for binary vari-
ables

∆y,0 = 2

Trust-region update parameters ηok = 0.01, ηtol = 10−12, ηgood = 0.9

Maximal number of no-good cuts min(14, 2n − 1), if n ≤ 6

20, otherwise

No-good-cut parameter K∗ = 1

25 optimization problems that we selected to build our 25-instance bench-
mark problem set. Originally these benchmark problems involve continuous
optimization variables only. Some of these optimization problems also include
constraints. The present study considers mixed binary optimization problems
featuring cyclic symmetry and involving only bound constraints. Thus, we
describe now how we transform these instances from the literature into new
mixed binary bound-constrained optimization problems featuring cyclic sym-
metry. A first step in this transformation process is to propose intermediate
mixed categorical (involving integer variables not related to effective quanti-
ties) optimization problems.

The 10 instances from [31] are associated with continuous-optimization
minimax problems of the form:

min
x∈[x,x̄]

F (x) := max
w∈{1,2,...,l}

fw(x),

where l ≥ 2, and f1, f2, . . ., fl are given functions. We transform these in-
stances into mixed categorical problems of the form:

min
x∈[x,x̄],w∈{1,2,...,l}

F̃ (x,w) :=


f1(x), ifw = 1,

f2(x), ifw = 2,
...

fl(x), ifw = l,

(34)

for which the integer w is the category variable.
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Table 4 Analytical necklace-optimization benchmark problems

Test problem m n source instance reference

Branin-nl 1 3 Branin [21]

Camel-nl 1 3 Camel [21]

Goldstein-Price-nl 1 3 Goldstein-Price [21]

Hartman3-nl 2 3 Hartman3 [21]

Hartman6-nl 5 3 Hartman6 [21]

Shekel7-nl 3 3 Shekel7 [21]

Shekel10-nl 3 3 Shekel10 [21]

HS2-nl 1 3 HS2 [26]

HS29log-nl 1 3 HS29log [26]

HS3-nl 1 3 HS3 [26]

CB1-nl 2 2 CB1 [31]

CB2-nl 2 2 CB2 [31]

MAD1-nl 2 2 MAD1 [31]

MAD2-nl 2 2 MAD2 [31]

QL-nl 2 2 QL [31]

Pentagon-nl 6 3 Pentagon [31]

RosenSuzuki-nl 4 3 RosenSuzuki [31]

WF-nl 2 2 WF [31]

Wong2-nl 10 4 Wong2 [31]

Wong3-nl 20 6 Wong3 [31]

Perm6-nl 5 3 Perm6 [37]

Perm8-nl 7 3 Perm8 [37]

Ex8-1-1-nl 1 3 Ex8-1-1 MINLPLib [1]

Ex8-1-4-nl 1 3 Ex8-1-4 MINLPLib [1]

Sporttournament06-nl 14 3 Sporttournament06 MINLPLib [1]

For each of the 15 remaining benchmark problems, those from [21, 26, 37]
and the problems from MINLPLib [1], the transformation into a mixed cate-
gorical problem goes as follows. We first restrict the last continuous variable,
say xend, to take only a finite number of values in the discretized-interval set:

Xend :=

{
xend + (w − 1)

x̄end − xend

l − 1
: w = 1, 2, . . . , l

}
,

where xend and x̄end are respectively the lower and upper bounds of the vari-
able xend in the original problem, and where the number, l, of categories is
to be set by the user. One thereby obtains a mixed categorical optimization
problem involving an objective function of the form F̃ (x,w), where w is a cat-
egory variable (w ∈ {1, 2, . . . , l}). In our numerical tests, we set the number
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of categories to l = 4 for these 15 benchmark problems (i.e., other than those
that originate from minimax problems, for which l is given by the original
instance).

After transforming the 25 problems into mixed categorical problems as
above, we then introduce a cyclic symmetry by associating to each value of
the categorical variable, w, a necklace (with all the solutions corresponding
to its rotations). For instance, if a categorical variable w takes three values
in {1, 2, 3} (case where l = 3), the mixed categorical problem of minimizing
F̃ (x,w) is transformed into a mixed binary problem with cyclic symmetry by
considering the following new objective function:

min
x∈[x,x̄],y∈{0,1}2

f(x, y) :=


F̃ (x, 1), if y = (0, 0),

F̃ (x, 2), if y = (0, 1), (1, 0),

F̃ (x, 3), if y = (1, 1).

(35)

The resulting new mixed binary necklace-optimization instances are listed
in Table 4 together with the number of continuous variables (m), the number
of binary variables (n), the name of the original instance from which it was
constructed together with the literature reference. The particular choice of
problems is motivated by the sake of comparing methods on a diverse range
of problem dimensions and difficulties, including the presence of multiple local
minima.

Safran’s helicopter application. As mentioned in Section 1, the present
study is motivated by an application provided by Safran: proposing a design of
the turbine blades of a helicopter engine that minimizes the vibrations of the
compressor. This application involves m = 1 continuous optimization variable
controlling the frequency amplitude, and a vector of n = 12 binary decision
variables describing the layout of two reference types of blades on the turbine
disk. Safran’s engineers provide us a surrogate model built from costly real
simulations (several hours of computer time are required for one real single
simulation) to allow the computational comparison of the four optimization
solvers under study.

4.2 Results obtained on the 25 analytical problems

The results obtained with DFOb-dH , DFOb-dneck, NOMAD , RBFOpt and
DFLBOX over the 25 analytical problems are presented under the form of
performance profiles (Figure 2) and data profiles (Figure 3). The required
accuracy is set to τ = 10−3. The number of objective-function evaluations
necessary to reach the best known solution for each problem is also displayed
in Figure 4. If the solution is not reached by a solver, no point is displayed but
the percentages of success are indicated for each solver. For all the numerical
results, DFOb-dH results are displayed in blue, DFOb-dneck results in red,
NOMAD results in black , RBFOpt in magenta, and DFLBOX in cyan.
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These three figures show that for this benchmark of 25 analytical problems,
DFOb-dneck outperforms the four other optimization methods.

The new method DFOb-dneck succeeds to solve 72% of the 25 prob-
lems, whereas RBFOpt succeeds to solve 68%, DFOb-dH 64%, NOMAD and
DFLBOX 60%.

The performance profiles of Figure 2 reveal that for a (number-of-
simulation) performance ratio equal to 1 (to indicate the percentage of prob-
lems for which the solver does as well as the best solver), DFLBOX reaches
the best value: 36%, while both DFOb-dneck and RBFOpt reach the value:
32%.

Figure 2 also shows that the new necklace distance improves the efficiency
of the DFOb method when addressing cyclic-symmetry optimization problems,
as DFOb-dH solves only 24% of the problems with the minimal number of
objective-function evaluations.

In addition, the data profiles of Figure 3 illustrate that DFOb-dneck solves
most problems with a relatively small number of objective-function evalua-
tions. For instance, 62% of the problems are solved within a number of simu-
lations less than 15 times the number of variables.

Finally, Figure 4 shows that: DFLBOX requires a small number of simu-
lations (less than 200) for the 60% of the problems it succeeds to solve, the
two DFOb methods need less than 200 function evaluations for all successful
problems but one (only one successful problem requires 270 function evalua-
tions for each solver), whereas RBFOpt and NOMAD require more than 200
objective-function evaluations for 29.4% and 66.7% of their successful prob-
lems, respectively.

To summarize, the results obtained on this benchmark of 25 analytical
functions demonstrate the efficiency of the DFOb methods within a limited
budget of function evaluations. Moreover, 18 out of the 25 problems are solved
by DFOb-dneck with, generally, a smaller number of function evaluations com-
pared with the two state-of-the-art solvers NOMAD and RBFOpt. DFLBOX
method shows good performances in terms of number of simulations but is
able to solve fewer problems than the DFO methods and RBFOpt.

In order to investigate the impact of problem dimension on the performance
of the different methods, we analyze separately the subset of the 10 bench-
mark problems that involve more than 3 continuous variables (Figures 5, 6,
and 7). RBFOpt and DFOb-dneck succeed to solve 7 problems over 10, whereas
DFOb-dH and NOMAD only solve 5 problems, and DFLBOX only 4. These
results show that, for higher-dimensional problems, RBFOpt and DFOb-dneck
reach the best performances, and DFLBOX the worst ones. This is not com-
pletely surprising as DFOb-dH , DFLBOX and NOMAD are local optimiza-
tion methods (with respect to the continuous search space, Rm). DFOb-dneck
is also a local solver but with the help of the new distance, it succeeds to
find better solution within the budget of simulations. RBFOpt is designed to
address global optimization problems. Current research work is dedicated to
this global-optimization issue via the proposition of a diversification search
strategy for DFOb-dneck in the continuous search space, Rm.
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Fig. 2 Performance profiles of the for the 25 analytical problems

Fig. 3 Data profiles of the five solvers for the 25 analytical problems
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Fig. 4 Number of function evaluations to reach f∗ up to τ = 10−3 for each of the 25
analytical problems for the five solvers (successful runs only) together with percentage of
success (in parentheses)

4.3 Design of compressor blades in a helicopter turbomachine

In this subsection, we present results for a simplified optimal design application
provided by Safran. Contrary to the benchmark of the previous subsection, this
is a real-life cyclic-symmetry application.

For the sake of fair comparison, we repeat 50 runs of each of the four
solvers. Each run starts with a different design of experiments (of cardinality
n+m+1 = 14), following the construction process described in Subsection 2.2.
Again, we report performance (Figure 8) and data (Figure 9) profiles, as well as
the number of iterations (Figure 10) to reach, this time, a reduced accuracy of
τ = 10−5 (due to the scale of the objective function) on the function reduction
(33) associated with these 50 runs.

DFLBOX shows very good performances on this test case: it can solve all
of the 50 repetitions within a very small number of simulations. As already
noticed on the benchmark function results, DFLBOX is more efficient on small-
dimensional problems than on large ones. For this application, which involves
only one continuous variable, it clearly outperforms the four other methods.
DFLBOX algorithm is based on line searches in each coordinate direction for
both continuous and discrete variables. In this example, for all admissible con-
figurations of variables, the minimum of the function corresponds to the same
value of the continuous variable, so the relaxation used in DFLBOX works
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Fig. 5 Performance profiles of the five solvers for the 10 highest dimension analytical prob-
lems

Fig. 6 Data profiles of the five solvers for the 10 highest dimension analytical problems

very well. In this particular problem, with one continuous variable and 12 bi-
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Fig. 7 Number of function evaluations to reach f∗ up to τ = 10−3 for each of the 10
highest dimension analytical problems for the five solvers (successful runs only) together
with percentage of success (in parentheses)

nary variables, this methodology is quite efficient as shown in the presented
results.

Concerning the four other methods, the results show the very good perfor-
mance of DFOb-dneck, as it reaches the value f∗ (up to τ accuracy) for 88%
of the runs, compared with 84%, 56% and 78% for DFOb-dH , NOMAD and
RBFOpt, respectively. One therefore observes that, depending on the initial
design of experiments, some runs do not achieve to reach the required reduc-
tion of the objective function. However, the two versions of DFOb are robust
methods with regardto the initial design, with more than 80% of success within
the budget of simulations.

Data profiles in Figure 9 show the robustness of the DFOb methods and
their good performances in terms of number of simulations compared to RB-
FOpt and NOMAD methods. Figure 10 illustrates the efficiency of DFOb-
dneck, with only one successful run that requires more than 150 simulations.

Finally, Figure 11 displays the distribution of the 50 solutions found by
DFOb-dneck for each of the 50 runs. For 88% of the runs, DFOb-dneck con-
verged to a point, denoted (x∗, y∗1), corresponding to the minimal objective-
function value f∗ (probably a global minimum); the remaining runs termi-
nated with three other (locally-optimal) solutions, denoted (x∗, y∗2), (x∗, y∗3)
and (x∗, y∗4). All the runs converged to the same value of the continuous-
variable component: x∗ = 0.03 (corresponding to some geometry feature of
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the blades). The discrete-variable components of these four different solutions
found by DFOb-dneck are displayed in Figure 12, where the 0 and 1 values
correspond to different pre-defined types of blades.

Fig. 8 Performance profiles of the four solvers for the blade design application with 50
repetitions

5 Conclusion and perspectives

In this paper we addressed derivative-free mixed binary optimization prob-
lems involving a cyclic symmetric property, by proposing an adapted distance,
dneck, for the binary search space. We presented theoretical results related to
the linear formulation of constraints involving this necklace distance that al-
lowed us to integrate dneck in the trust-region derivative-free method DFOb-dH
proposed by [14] for mixed binary problems, in place of the Hamming distance.
The convergence of both DFOb-dH and that of the adapted algorithm, named
DFOb-dneck, to a locally-optimal solution was proved.

We proposed 25 analytical mixed binary cyclic-symmetry test problems
built from a collection of continuous-optimization instances from the literature.
The DFOb-dneck method was evaluated on these analytical instances as well
as on a surrogate approximation of a real optimal design application. Three
state-of-the-art derivative-free mixed binary optimization solvers, NOMAD,
DFLBOX and RBFOpt, were also applied for comparison. These preliminary
results are very encouraging as our proposed method generally outperforms
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Fig. 9 Data profiles of the four solvers for the blade design application with 50 repetitions

the other methods in terms of both robustness and of number of objective-
function evaluations on this benchmark.

There remains several opportunities of improvement as future work. First,
since the computational results revealed the sensitivity of the results to the
initial points for some of the analytical benchmark problems, we are currently
working on a method to provide a design of experiments that is adapted to
mixed discrete variables. Another important challenge is to improve the capac-
ity of DFOb-dneck to find solutions that are globally optimal, especially with
respect to the continuous variables. A classical approach to overcome local
minima is a multi-start technique [11, 49]. The high simulation costs and the
presence of binary variables may however make this type of method inefficient.
A coupling approach of our trust-region method with surrogate models may
be a promising approach.
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y = y0 is fully linear in By0(x0, ∆x). In other words, for all x ∈ By0(x0, ∆x),
there exist κ∗f , κ

∗
g > 0 such that:

|f(x, y0)− m̃(x, y0)| ≤ κ∗f∆2
x, (36)

and
‖Oxf(x, y0)− Oxm̃(x, y0)‖2 ≤ κ∗g∆x. (37)

Proof The model constructed in mixed space is given as:

m̃(z) = c+ gT z +
1

2
zTHz,

where z = (x, y), g = (gx, gy), H =

Hxx Hxy

Hyx Hyy

, Hxy = Hyx, and where

Hxx, Hyy are symmetric matrices.
Thus, the model with y fixed to y0 is defined as follows:

m̃(x, y0) = c̄x + ḡxx+
1

2
xT H̄xx, (38)

with c̄x =
(
c+ gTy y0 +

1

2
yT0 Hyyy0

)
, ḡxx =

(
gTx +Hxyy0

)
and H̄x = Hxx.

The gradient of m̃(x, y0) with respect to x is therefore:

Oxm̃(x, y0) = ḡx + H̄xx.

To be convenient, let us introduce the following notations: f0(x) = f(x, y0),
m̃0(x) = m̃(x, y0), Of0(x) = Oxf(x, y0) , Om̃0(x) = Oxm̃(x, y0) and
B0(∆x) = By0(x0, ∆x).

We define
errf0 (x) = f0(x)− m̃0(x),

errg0(x) = Of0(x)− Om̃0(x).

For all xi ∈ B0(∆x), we develop

(xi − x)T errg0(x) = (xi − x)T (H̄xx+ ḡx − Of0(x))

= (xi − x)T H̄xx+ (xi − x)T ḡx − f0(xi) + f0(x)

+ [f0(xi)− f0(x)− (xi − x)TOf0(x)]

= m0(xi)−m0(x)− 1

2
(xi − x)T H̄x(xi − x)− f0(xi) + f0(x)

+ [f0(xi)− f0(x)− (xi − x)TOf0(x)]

= errf0 (xi)− errf0 (x)− 1

2
(xi − x)T H̄x(xi − x)

+ [f0(xi)− f0(x)− (xi − x)TOf0(x)].
(39)
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Since f0 is continuously differentiable, we have:

[f0(xi)−f0(x)−(xi−x)TOf0(x)] =

∫ 1

0

(xi−x)T (Of0(x+t(xi−x))−Of0(x))dt,

which implies that

(xi − x)T errg0(x) =

∫ 1

0

(xi − x)T (Of0(x+ t(xi − x))− Of0(x))dt

+ errf0 (xi)− errf0 (x)− 1

2
(xi − x)T H̄x(xi − x).

(40)

Using (40) with x = x0, we obtain:

(xi − x0)T errg0(x) = (xi − x)T errg0(x)− (x0 − x)T errg0(x)

=

∫ 1

0

(xi − x)T (Of0(x+ t(xi − x))− Of0(x))dt+ errf0 (xi)

− 1

2
(xi − x)T H̄x(xi − x)

−
∫ 1

0

(x0 − x)T (Of0(x+ t(x0 − x))− Of(x))dt− errf0 (x0)

+
1

2
(x0 − x)T H̄x(x0 − x).

(41)

First, note that errf0 (x0) = 0. Then, for each terms of (41), we obtain the
following upper bounds:

� From the Lipschitz property of f0(x) (Assumption 1), one has:∣∣ ∫ 1

0

(xi − x)T (Of(x+ t(xi − x))− Of(x))dt
∣∣ ≤ 1

2
ν‖xi − x‖2

≤ 1

2
ν(2∆x)2

≤ 2ν∆2
x.

(42)

� In the same way, we have:

∣∣ ∫ 1

0

(x0 − x)T (Of(x+ t(x0 − x))− Of(x))dt
∣∣ ≤ 1

2
ν‖x0 − x‖2 ≤

1

2
ν∆2

x.

(43)

� In the following two inequalities, note that ‖H̄x‖F is bounded from As-
sumption 2:

|1
2

(xi−x)T H̄x(xi−x)| ≤ 1

2
‖H̄x‖F ‖xi−x‖2 ≤

1

2
‖H̄x‖F (2∆x)2 ≤ 2‖H̄x‖F∆2

x.

(44)

|1
2

(x0 − x)T H̄x(x0 − x)| ≤ 1

2
‖H̄x‖F ‖x0 − x‖2 ≤

1

2
‖H̄x‖F∆2

x. (45)
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� There exists ε′ > 0 such that

|errf0 (xi)| ≤ ε′∆2
x, (46)

which can be shown by contradiction. Indeed, suppose that we have

|errf0 (xi)| > ε′∆2
x ∀ε′ > 0. (47)

By definition of errf0 and from the continuity assumption on f0 and m̃ on
B0(∆x), there exist ε1, ε2 > 0 such that:

|errf0 (xi)| = |f0(xi)− m̃0(y0)|
= |f0(xi)− f0(x0) + m̃0(x0)− m̃0(xi)|
≤ |f0(xi)− f0(x0)|+ |m̃0(x0)− m̃0(xi)|
≤ (ε1 + ε2)∆x. (48)

Thus, setting ε′ =
ε1 + ε2
∆x,min

≥ ε1 + ε2
∆x

in (47) contradicts (48).

Thus, we find from (41) and the inequalities (42-46):

|(xi − x0)T errg0(x)| ≤ 5

2
∆2
x

(
ν + ‖H̄x‖F + ε

)
, (49)

with ε =
2

5
ε′.

Using now Cauchy-Schwarz inequality, we obtain:

‖errg0(x)‖2 ≤
5

2
∆x

(
ν + ‖H̄x‖F + ε

)
. (50)

Consider now the matrix X =
1

∆x

[
x1 − x0, x

2 − x0, . . . , x
p − x0

]
.

We recall that the interpolation set Z is defined as

Z =


x0 y0

x1 y1

...
...

xp yp

 . (51)

Since Z is poised, Z is full rank, i.e., rank(S) = min(p,m+ n) = m+ n based
on the fact that p > m + n (see Subsection 2.1), and the m column vectors
x0, x

1, . . . , xp are linearly independent. Therefore,XT is a non-singular matrix.
We have

XT errg0(x) =
1

∆x


(x1 − x0)T

...

(xp − x0)T

 errg0(x). (52)
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Then, we obtain from inequality (49):

‖XT errg0(x)‖∞ =
1

∆x
max
i=1,...,p

|(xi − x0)T errg0(x)|

≤ 1

∆x

[
5

2
∆2
x

(
ν + ‖H̄x‖F + ε

)]

= ∆x

[
5

2

(
ν + ‖H̄x‖F + ε

)]
.

(53)

Moreover, we have:

‖errg0(x)‖2 = ‖X−TXT errg0(x)‖2
≤ ‖X−T ‖2 ‖XT errg0(x)‖2.

(54)

Thus, we obtain:

‖errg0(x)‖2 ≤
√
m‖X−T ‖2 ‖XT errg0(x)‖∞ ≤

√
m‖X−T ‖2 ∆x

[
5

2

(
ν+‖H̄x‖F+ε

)]
.

(55)

Recovering errf0 (x) by equation (40), we have:

|errf0 (x)| ≤ ‖errg0(x)‖∆x + 2ν∆2
x + 2‖H̄x‖F∆2

x + |errf0 (xi)|

≤

[
√
m‖X−T ‖2

5

2

(
ν + ‖H̄x‖F + ε

)
+ 2(ν + ‖H̄x‖F ) + ε′

]
∆2
x.

(56)

We complete the proof by the definition of the two required constants:

κ∗g =
5

2

√
m‖X−T ‖2

(
ν + ‖H̄x‖F + ε

)
, (57)

and

κ∗f =
(
ν + ‖H̄x‖F )

)(5

2

√
m‖X−T ‖2 + 2

)
+

5

2
ε
(√

m‖X−T ‖2 + 1
)
. (58)

�

Appendix B Proof of Proposition 1

Proposition 1 Let µ > 0 be a given constant, N,n be positive integers, and
let f : Ω ⊆ RN → R be a quadratic function, gi : Ω → R, i = 1, 2, . . . , n, be
real-valued functions satisfying 0 ≤ gi(z) ≤M , for all z ∈ Ω, for some M > 0.
Then, the two following optimization problems are equivalent:
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min
z,t

f(z) + µt

s.t. t = min
i=1,2,...,n

{gi(z)}.
(P1)



min
z,ỹ,t

f(z) + µt

s.t. t ≥ gi(z)−Mỹi, i = 1, 2, . . . , n∑n
i=1 ỹi = n− 1,

ỹi ∈ {0, 1}, i = 1, 2, . . . , n.

(P2)

Proof We prove the proposition in two steps:

� firstly, we show that, (P2) is a relaxation of (P1) in the sense that if (z̄, t̄)
is a feasible solution of (P1), then (z̄, ȳ, t̄) is a feasible solution of P2;

� secondly we prove that any optimal solution (z∗, y∗, t∗) of (P2) is feasible
for(P1).

Let us consider the first assertion: (P2) is a relaxation of (P1).
Let (z̄, t̄) be a feasible solution of (P1).
Consider now the point (z̄, ȳ, t̄) where, for i = 1, 2, . . . , n:

ȳi :=

{
0, if i is the smallest index such that t̄ = min

i=1,2,...,n
{gi(z̄)},

1, otherwise.
(59)

Let I be the unique index i such that ȳi = 0.
From the definition of ȳ , we note that:

� t̄ = gI(z̄),
� ȳI = 0,
� ȳi = 1 for all i 6= I.

Then, for i 6= I, the constraint t̄ ≥ gi(z̄)−M holds since

t̄ = gI(z̄) = min
i=1,2,...,n

{gi(z̄)} ≥ 0 ≥ gi(z̄)−M.

And for i = I, t̄ ≥ gI(z̄)−M holds also since

t̄ = gI(z̄) ≥ gI(z)−MȳI = gI(z̄).

Then, (z̄, ȳ, t̄) is feasible for (P2).

For the second step, let us now show that: if (z∗, y∗, t∗) is an optimal
solution of (P2) then (z∗, t∗) is feasible for (P1), i.e., we want to prove that
t∗ = min

i=1,2,...,n
{gi(z∗)}.

By contradiction, we shall suppose that this optimal solution of (P2) is such
that t∗ 6= min

i=1,2,...,n
{gi(z∗)}.

Let us consider two cases:
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� either t∗ < min
i=1,2,...,n

{gi(z∗)},

� or t∗ > min
i=1,2,...,n

{gi(z∗)}.

Let Iy∗ denote the unique index i such that y∗i = 0.
Then, yIy∗ = 0 and y∗i = 1, for all i 6= Iy∗ .
Using the fact that (z∗, y∗, t∗) is a feasible solution for (P2), we have

t∗ ≥ gIy∗ (z∗). (60)

In the first case, with t∗ < min
i=1,2,...,n

{gi(z∗)}, we have

gIy∗ (z∗) ≥ min
i=1,2,...,n

{gi(z∗)} > t∗,

which contradicts (60).

Therefore, the second case necessarily holds, i.e., t∗ > min
i=1,2,...,n

{gi(z∗)}. Con-

sider now a solution (z̄, ȳ, t̄) defined as follows:

z̄ = z∗,

t̄ = min
i=1,2,...,n

{gi(z∗)}, (61)

and

ȳi :=

{
0, if i is the smallest index satisfying gi(z

∗) = min
i=1,2,...,n

{gi(z∗)},

1, otherwise,

(62)
where I∗ = {i : gi(z

∗) = min
i=1,2,...,n

{gi(z∗)}}. We have:

� This new solution (z̄, ȳ, t̄) is feasible for (P2). Indeed, for i 6= I∗, the ith

constraint, t ≥ gi(z) −Myi, is satisfied for (z̄, ȳ, t̄), since M is an upper
bound for the function gi(z) and ȳi = 1.
If i = I∗, then on the one hand min

i=1,2,...,n
{gi(z∗)} = t̄, and on the second

hand gI∗(z̄) = gI∗(z∗) = min
i=1,2,...,n

{gi(z∗)} by definition of I∗. Therefore,

the I∗th constraint of (P2) is satisfied for (z̄, ȳ, t̄).
� In terms of objective-function values, it is clear that

f(z∗) + µt∗ > f(z̄) + µt̄,

since by hypothesis t∗ > min
i=1,2,...,n

{gi(z∗)}, while t̄ = min
i=1,2,...,n

{gi(z∗)}. This

contradicts the optimality of (z∗, y∗, t∗).

�
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