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Uncertainty in ε 

The porosity   reads: 
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Let   ,   {     }, be   statically independent variables with uncertainties    . Let  (  ) 

be a moderately non-linear function of the variable   . If the     are small then    the 

uncertainty in  (  ) reads:  
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From equation ( 1 ) we obtain: 
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From which we recover equation ( 9 ) of the paper : 
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Equation ( 10 ) is undefined for  ̅     (   ) so that uncertainty must be obtained by 

another way. Let       be the volume fraction of matter. Obviously we have       

and: 
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The same procedure of uncertainty propagation leads to: 
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Equation ( 12 ) allows to evaluate the uncertainty in   close to    . It is not defined for 

 ̅     (   ). 

Uncertainty in  ̅ 

Let  [ ] be the expectation and    [ ] the variance. Figure 1 presents the detection chain 

for the acquisition of backscattered electron signal on a single pixel (see (Reimer 2010) 

p196). During the detection time, a number    of impinging electron is set on the sample.    

follow a Poisson distribution with    [  ]   [  ]   . A fraction of this incoming 

electrons  [  ]     [  ]   ̅  enter the detector and are converted into a signal   with 

 [  ]    ̅ . The variance of   reads : 
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Where    is an electronic noise independent of the number of detected electrons. 

 

Figure 1 : Scheme of the detection chain. Pre-amp.: pre amplifier; Amp.: amplifier; ADC: 

analog to digital converter. 

The signal        coming out the amplifier is submitted to an electronic noise    

independent of   so that : 
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The standard uncertainty    in the signal   reads: 
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The analog to digital converter adds another contribution to the digital signal  ̂ so that its 

standard uncertainty   ̂ reads: 

 

  ̂
    

  
 

  

      [  ]   
   

    
  

 

  

    ̂        
    

  
 

  
   ̂   

 ( 16 ) 

 



5 
 

Optimal working distance 

 

Figure 2 : Scheme of the detector geometry. 

Figure 2 describes the geometry of the annular detector. The relations between the internal 

radius of the detector   , its external radius   , the working distance    and the collection 

angle range [     ] read: 
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The angular distribution of backscattered electrons is well approximated by a Lambert’s law: 
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Hence the detected signal    may be approximated by : 
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Using the trigonometric identity       (       ) (       )⁄  in Equation ( 19 ) in 

combination with Equations ( 17 ) and ( 18 ) we obtain : 

 

   
 

 

(

 
 
  

  
 

  
 

  
  
 

  
 

 

  
  
 

  
 

  
   

  
 

)

 
 

 
   

 (  
    

 )

(  
    

 )(  
     )

 ( 21 ) 

 

Figure 3 : Theoretical influence of the working distance on the detected signal for detector 

radii given by the microscope manufacturer        mm et      mm. Dotted line 

indicates the optimal working distance   ̂. 

Figure 3 shows the influence of the working distance on the detected signal with internal 

and external radii given by the microscope manufacturer. There exists an optimal working 

distance where the detected signal is the higher. Close to this maximum, the detected signal 

is very weakly dependent on the precise value of the working distance. From Equation ( 21 ) 

we obtain: 
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Then the optimal working distance   ̂ is obtained when 
   

   
(  ̂ )   : 

   ̂  √     ( 23 ) 

Thus a small variation of 0.3 mm around   ̂       mm leads to a variation of signal less 

than 0.6 %. 

If experimental backscattering signal  ̂ is concerned Equation ( 21 ) has to be corrected with 

the contrast ( ) and brightness ( ) ajustements and with a deviation of the indicated 

working distance given by the microscope (  ) from the true working distance (    ). 

Then Equation ( 21 ) transforms into: 

  ̂    
 (    )

 (  
    

 )

((    )    
 )((    )     )

   ( 24 ) 

Hence optimal indicated working distance is given by   ̂  √      . Figure 4 shows the 

mean grey levels measured on a same zone containing resin and massive alumina with the 

same adjustments for contrast and brightness but with varying the working distance. The 

continuous curves are a simultaneous least square fit of Equation ( 24 ) on both resin and 

alumina with only  ,   and   as free parameters. Values of        mm and      mm are 

given by the microscope manufacturer. The value for   for resin and alumina is taken from 

the Monte-Carlo simulations. The agreement between data and theoretical model of 

Equation ( 23 ) is very satisfactory. A very poor fit is obtained if the parameter   is omitted. 

Optimized values of the parameters are given in Table 1. The value obtained for   (406 µm) is 

not surprising taking into account the practical difficulty to precisely calibrate the working 

distance on a SEM. The discrepancies between data and model shown on the three lowest 
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working distance for resin are due to the damage done to the resin after seven frames 

acquisition. 

  
(a) (b) 

Figure 4 : Mean grey levels  ̂ on (a) PMMA resin and (b) massive alumina as function of the 

indicated working distance   . Symbols are experimental data and continuous lines are 

the results of the least square fit of Equation ( 24 ). 

Table 1: Optimized parameters for least square fit of Equation ( 23 ) shown in Figure ( 4 ) 

Parameter Value 

  4134 

  -50.94 

  (mm) 0.4058 
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High resolution SEM images 

A section of impregnated extrudates of sample B3000 was milled and thin slices were cut at 

a 300 nm thickness by a RMC PowerTome PT PCZ ultramicrotome fitted with a diamond 

knife. Thin sections were deposited on an aluminum stub and observed with a FEI Nova 

NanoSEM in low vacuum mode (10 Pa H2O) at 5 kV with a GAD detector. 

 

Figure 5 : Low resolution SEM image of thin slice of sample B3000 showing rare cavities 

(arrows) due to porosity not impregnated with resin. 

Figure 5 shows a low resolution SEM image of a rare part of the B3000 where cracks are 

observed. Bubbles due to improper resin impregnation are sometimes observed in these 

cracks. Figure 6 is a high resolution SEM image of the same sample. No evidence of unfilled 

pores are observed. 
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Figure 6 : High resolution SEM image of thin slice of sample B3000 showing no cavities due 

to porosity not impregnated with resin. 
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