Supporting Information

Monocationic bis-alkyl and bis-allyl yttrium complexes, synthesis, ⁸⁹Y NMR characterization, ethylene or isoprene polymerization and modelling

Alexis D. Oswald,^a Aymane El Bouhali,^b Emmanuel Chefdeville,^b Pierre-Alain R. Breuil,^c Hélène Olivier-Bourbigou,^c Julien Thuilliez,^d Florent Vaultier,^d Aimery De Mallmann,^a Mostafa Taoufik,^{a, *} Lionel Perrin^{b, *} and Christophe Boisson^{a, *}

^a Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France

^b Univ Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE, UMR 5246, ICBMS, 1 rue Victor Grignard, F-69622 Villeurbanne cedex, France

^c IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, 69360 Solaize, France

^d Manufacture Michelin, 23 places Carmes Déchaux, F-63000 Clermont-Ferrand, France

Figure S1. ¹ H NMR spectrum of Y(CH₂SiMe₂Ph)₃(THF)₂ (1a) in C ₆ D ₆ at 298 K.	3
Figure S2. ¹³ C-{ ¹ H} NMR spectrum of Y(CH₂SiMe₂Ph)₃(THF)₂ (1a) in C₅D₅ at 298 K.	4
Figure S3. ⁸⁹ Y INEPT spectrum of Y(CH₂SiMe₂Ph)₃(THF)₂ (1a) in C₅D₅ at 298 K.	5
Figure S4. ⁸⁹ Y INEPT spectrum of Y(CH₂SiMe₂Ph)₃(THF)₂ (1a) complex in THF-d ₈ at 298 K.	6
Figure S5. 2D ¹ H- ⁸⁹ Y HMBC NMR spectrum of Y(CH ₂ SiMe ₂ Ph) ₃ (THF) ₂ (1a) in THF-d ₈ at 298 K.	7
Figure S6. ¹ H NMR spectrum of Y(CH₂C ₆ H₄NMe₂)₃ (1b) in C ₆ D ₆ at 298 K.	8
Figure S7. ¹³ C-{ ¹ H} NMR spectrum of Y(CH ₂ C ₆ H ₄ NMe ₂) ₃ (1b) in C ₆ D ₆ at 298 K.	9
Figure S8. ⁸⁹ Y INEPT spectrum of Y(CH₂C ₆ H₄NMe₂)₃ (1b) in C ₆ D ₆ at 298 K.	10
Figure S9. 2D ¹ H- ⁸⁹ Y HMBC NMR spectrum of Y(CH ₂ C ₆ H ₄ NMe ₂) ₃ (1b) complex in C ₆ D ₆ at 298 K.	11
Figure S10. ¹ H NMR spectrum of Y[1,3-(SiMe ₃) ₂ C ₃ H ₃] ₃ (1c) in C ₆ D ₆ at 298 K.	12
Figure S11. ¹³ C-{ ¹ H} NMR spectrum of Y[1,3-(SiMe ₃) ₂ C ₃ H ₃] ₃ (1c) in C ₆ D ₆ at 298 K.	13
Figure S12. ⁸⁹ Y INEPT spectrum of Y[1,3-(SiMe ₃) ₂ C ₃ H ₃] ₃ (1c) complex in C ₆ D ₆ at 298 K.	14
Figure S13. 2D 1 H- ⁸⁹ Y HMBC NMR spectrum of Y[1,3-(SiMe ₃) ₂ C ₃ H ₃] ₃ (1c) in THF- <i>d</i> ₈ at 298 K.	15
Figure S14. ¹ H NMR spectrum of [Y(CH ₂ SiMe ₂ Ph) ₂ (THF) ₄][B(C ₆ F ₅) ₄] (2a) in THF- <i>d</i> ₈ at 298 K.	16
Figure S15. ¹³ C-{ ¹ H} NMR spectrum of [Y(CH ₂ SiMe ₂ Ph) ₂ (THF) ₄][B(C ₆ F ₅) ₄] (2a) in THF- <i>d</i> ₈ at 298 K.	17
Figure S16. ¹⁹ F NMR spectrum of [Y(CH ₂ SiMe ₂ Ph) ₂ (THF) ₄][B(C ₆ F ₅) ₄] (2a) in THF- <i>d</i> ₈ at 298 K.	18
Figure S17. ⁸⁹ Y INEPT NMR spectrum of $[Y(CH_2SiMe_2Ph)_2(THF)_4][B(C_6F_5)_4]$ (2a) in THF-d ₈ at 298 K.	19
Figure S18. ¹ H NMR spectrum of [Y(CH ₂ C ₆ H ₄ NMe ₂) ₂ (THF) ₂][B(C ₆ F ₅) ₄] (2b) in THF- <i>d</i> ₈ at 298 K.	20
Figure S19. ¹³ C-{ ¹ H} NMR spectrum of [Y(CH ₂ C ₆ H ₄ NMe ₂) ₂ (THF) ₂][B(C ₆ F ₅) ₄] (2b) in THF- <i>d</i> ₈ at 298 K.	21
Figure S20. ¹⁹ F NMR spectrum of [Y(CH₂C₀H₄NMe₂)₂(THF)₂][B(C₀F₅)₄] (2b) in THF- <i>d</i> ₈ at 298 K.	22
Figure S21. 2D ¹ H- ⁸⁹ Y HMBC NMR spectrum of [Y(CH ₂ C ₆ H ₄ NMe ₂) ₂ (THF) ₂][B(C ₆ F ₅) ₄] (2b) in THF-d ₈ at	: 298
К.	23
Figure S22. ¹ H NMR spectrum of [Y[1,3-(SiMe ₃) ₂ C ₃ H ₃] ₂ (THF) _n][B(C ₆ F ₅) ₄] (2c) in THF- <i>d</i> ₈ at 298 K.	24
Figure S23. ¹ H NMR spectrum of [Y[1,3-(SiMe ₃) ₂ C ₃ H ₃] ₂ (THF) _n][B(C ₆ F ₅) ₄] (2c) after 12 h in THF-d ₈ at	298
К.	25
Figure S24. ⁸⁹ Y INEPT NMR spectrum of Y[1,3-(SiMe ₃) ₂ C ₃ H ₃] ₂ (THF) _n][B(C ₆ F ₅) ₄] (2c) after 12 h in THF	<i>-d</i> ₈ at
298 K.	26
Figure S25. ¹⁹ F NMR spectrum of [Y[1,3-(SiMe ₃) ₂ C ₃ H ₃] ₂ (THF) _n][B(C ₆ F ₅) ₄] (2c) after 12 h in THF- <i>d</i> ₈ at	298
К.	27

3

NMR Spectra

Figure S1. ¹H NMR spectrum of $Y(CH_2SiMe_2Ph)_3(THF)_2$ (1a) in C₆D₆ at 298 K.

Figure S2. ¹³C-{¹H} NMR spectrum of $Y(CH_2SiMe_2Ph)_3(THF)_2$ (1a) in C₆D₆ at 298 K.

Figure S3. ⁸⁹Y INEPT spectrum of $Y(CH_2SiMe_2Ph)_3(THF)_2$ (1a) in C_6D_6 at 298 K.

Figure S4. ⁸⁹Y INEPT spectrum of Y(CH₂SiMe₂Ph)₃(THF)₂ (**1a**) complex in THF-*d*₈ at 298 K.

Figure S5. 2D ¹H-⁸⁹Y HMBC NMR spectrum of $Y(CH_2SiMe_2Ph)_3(THF)_2$ (**1a**) in THF- d_8 at 298 K.

Figure S6. ¹H NMR spectrum of $Y(CH_2C_6H_4NMe_2)_3$ (1b) in C_6D_6 at 298 K.

Figure S7. ¹³C-{¹H} NMR spectrum of Y(CH₂C₆H₄NMe₂)₃ (**1b**) in C₆D₆ at 298 K.

Figure S8. ⁸⁹Y INEPT spectrum of Y(CH₂C₆H₄NMe₂)₃ (**1b**) in C₆D₆ at 298 K.

Figure S9. 2D $^{1}H^{-89}Y$ HMBC NMR spectrum of Y(CH₂C₆H₄NMe₂)₃ (1b) complex in C₆D₆ at 298 K.

Figure S10. ¹H NMR spectrum of Y[1,3-(SiMe₃)₂C₃H₃]₃ (**1c)** in C₆D₆ at 298 K.

Figure S11. ¹³C-{¹H} NMR spectrum of Y[1,3-(SiMe₃)₂C₃H₃]₃ (**1c)** in C₆D₆ at 298 K.

Figure S12. ⁸⁹Y INEPT spectrum of Y[1,3-(SiMe₃)₂C₃H₃]₃ (**1c)** complex in C₆D₆ at 298 K.

Figure S13. 2D ¹H-⁸⁹Y HMBC NMR spectrum of Y[1,3-(SiMe₃)₂C₃H₃]₃ (**1c)** in THF-*d*₈ at 298 K.

Figure S14. ¹H NMR spectrum of [Y(CH₂SiMe₂Ph)₂(THF)₄][B(C₆F₅)₄] (**2a**) in THF-*d*₈ at 298 K.

Figure S16. ¹⁹F NMR spectrum of $[Y(CH_2SiMe_2Ph)_2(THF)_4][B(C_6F_5)_4]$ (**2a**) in THF-*d*₈ at 298 K.

Figure S18. ¹H NMR spectrum of [Y(CH₂C₆H₄NMe₂)₂(THF)₂][B(C₆F₅)₄] (**2b**) in THF-*d*₈ at 298 K.

Figure S19. ¹³C-{¹H} NMR spectrum of [Y(CH₂C₆H₄NMe₂)₂(THF)₂][B(C₆F₅)₄] (**2b**) in THF-*d*₈ at 298 K.

Figure S20. ¹⁹F NMR spectrum of $[Y(CH_2C_6H_4NMe_2)_2(THF)_2][B(C_6F_5)_4]$ (**2b**) in THF-*d*₈ at 298 K.

Figure S21. 2D ¹H-⁸⁹Y HMBC NMR spectrum of [Y(CH₂C₆H₄NMe₂)₂(THF)₂][B(C₆F₅)₄] (**2b**) in THF-*d*₈ at 298 K.

Figure S22. ¹H NMR spectrum of [Y[1,3-(SiMe₃)₂C₃H₃]₂(THF)_n][B(C₆F₅)₄] (**2c**) in THF-*d*₈ at 298 K.

Figure S23. ¹H NMR spectrum of [Y[1,3-(SiMe₃)₂C₃H₃]₂(THF)_n][B(C₆F₅)₄] (**2c**) after 12 h in THF-*d*₈ at 298 K.

Figure S24. ⁸⁹Y INEPT NMR spectrum of $Y[1,3-(SiMe_3)_2C_3H_3]_2(THF)_n][B(C_6F_5)_4]$ (**2c**) after 12 h in THF-*d*₈ at 298 K.

Figure S25. ¹⁹F NMR spectrum of [Y[1,3-(SiMe₃)₂C₃H₃]₂(THF)_n][B(C₆F₅)₄] (**2c**) after 12 h in THF-*d*₈ at 298 K.