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Abstract

Because energy is usually absent from modern growth analysis, Unified growth models designed to
study the economic take-off process have tended to focus on the role of human capital accumulation
and its interaction with technical change. However, prominent economic historians claim that the
transition to coal and its use in steam engines was the main driver of the Industrial Revolution. In
order to try to reunite these diverging point of views, we provide in this article a quantitative anal-
ysis of the role of energy in long-term growth, accounting for the interaction between human capital
accumulation and technological change. To do so, we design a unified growth model featuring fertil-
ity and educational choices, energy resources extraction, directed technical change, and endogenous
general purpose technologies (GPTs) diffusion. The associated energy transition results from the en-
dogenous shortage in the availability of renewable resources (wood), and the arrival of new GPTs that,
together, redirect technical change towards the exploitation of previously unprofitable exhaustible en-
ergy (coal). A calibrated version of the model replicates the historical episode of the British Industrial
Revolution, for which counterfactual simulations are performed to characterize the impact of the en-
ergy transition on the timing and magnitude of the economic take-off. Another numerical exercise
provides a comparative analysis of Western Europe and Eastern Asia, emphasizing the relevance of
discrepancies in terms of energy resources accessibility to explain the diverging dynamics of these
two world regions. Our findings show that, whenever demographic dynamics and human capital ac-
cumulation are accounted for, energy use appears as a vital catalyst for the economic take-off process.

which has been promoted by recent advances in the growth literature
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JEL Classification: C68, J13, J24, N10, O31, O40

1 Introduction

In this article, we assess the role of energy in long-term growth alongside the more conventional
contribution of human capital, fertility choices, and technological changes. In a theoretical model
that is simulated against historical data, we show that changes in energy resources and their uses
acted as a catalyst for the Industrial Revolution. Our results suggest that the transition towards fos-
sil fuel was not a necessary condition to observe an economic take-off, but it was clearly required
to observe the magnitude in the take-off that was required to reach current levels of economic de-
velopment. Moreover, heterogeneity in energy resources endowments help to shed some light on
the timing of the economic take-off across world regions, and thus contributes to the analysis of the
Great Divergence debate.

Precisely, we develop in the current paper a unified growth model able to account for the transi-
tion between: (i) a pre-modern organic regime defined by limited growth in per capita output, high
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fertility, low levels of human capital, prevalent learning-by-doing technical change, and rare general
purpose technology (GPT) arrivals; and (ii) a modern fossil regime characterized by sustained growth
in per capita output, low fertility, high levels of human capital, prevalent profit-motivated techni-
cal change (R&D), and increasingly frequent GPT arrivals. More precisely, we develop a general
equilibrium endogenous growth model of a closed economy with five types of agents: households,
final good firm, input producers, capital good producers and innovators. Households are modeled
through three overlapping generations representing children, adults and retirees. The representa-
tive adult allocate her time between labor and child rearing, and her income between consumption,
savings, and education expenditures. These decisions set the supply of human and physical capital,
endogenously featuring a demographic transition trough a quantity-quality trade-off that represent
the first economic take-off mechanism discussed in this paper. On the supply side, the production of
the final good is competitive and relies on imperfectly substitutable inputs. Each input is also pro-
duced competitively, relying on human capital, capital goods, and an energy flow extracted from
a sector-specific resource. Moreover, each input producer benefits from sector-specific learning-by-
doing improvements – prevalent during the pre-modern era –, and Schumpeterian technical changes
– that gain significant momentum during the industrial revolution because profit-motivated R&D
relying on human capital becomes abundant when the demographic transition is initiated. The in-
teraction between technical change and the relative prevalence of energy inputs features the second
mechanism for economic take-off discussed in this paper: the exhaustion of pre-modern energy
sources foster technical improvements in modern-energy complementary inputs, and the resulting
energy transition allows to expand the production scale by exploiting additional energy resources.
At last, we introduce some stochasticity in this framework by modelling the endogenous arrival of
GPTs with increased frequency while applied knowledge improves, which features technical busi-
ness cycles that shape the efficiency of both learning-by-doing and Schumpeterian technical changes.

We then provide some analytical results about the underlying force that shape these two eco-
nomic take-off mechanisms. We finally turn to numerical simulations to replicate and analyse the
historical experiences of Great Britain on the one hand, and Western Europe and Eastern Asia on the
other. To do so, we calibrate our model with historical data and implement a counterfactual analysis
of changes in of key factors, such as energy extraction costs, energy resource levels, and knowledge
accumulation. We quantitatively show that, if energy use per se is not a necessary condition to reach
a modern growth regime in our model, it certainly is a catalyst required to achieve high level of
economic development. Moreover, variations in energy resources “quality” (extraction cost) and en-
dowments explain the timing differential in economic take-off that resulted in the Great Divergence
phenomenon. In particular, we show that a lower stock or a higher extraction cost for coal, or a
lower initial level in learning-by-doing technical change, introduce significant delays in economic
take-off. Hence, this paper helps to reconcile economic growth theory with historical facts regarding
the role of energy and knowledge. It supports a crucial for the transition to fossil energy because
such this element is necessary to reproduce the timing and magnitude, but not the occurrence per se,
of past economic take-off.

The remaining of the article is organized as follows. Section 2 reviews the related literature and
presents several empirical facts regarding the relation of demography, knowledge, and energy with
the take-off towards modern economic standards. Based on these insights, Section 3 develops a
knowledge-based and energy-centered unified growth model, for which Section 4 provides some
analytical results. Then, Calibrations and simulations of the model with respect to the historical
experiences of Great Britain, and then Western Europe and Eastern Asia, are performed in Section 5.
Finally, a summary of the contributions of this article is given in Section 6.
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2 Related Literature

In this section, we briefly survey the literature centered around demography, knowledge, and energy
in the economic growth process. Performing this literature review allows us to precise the gap we
want to fill and the main building blocks of the theoretical framework presented in Section 3.

2.1 Demography, Human Capital, Useful Knowledge and Technology

This article contributes to the unified growth theory that was pioneered by the seminal work of
Galor & Weil (2000).1 In this model and in subsequent frameworks, a central feature is the tight
relationship between human capital accumulation, the endogenous demographic transition, and
the take-off from limited to sustained economic growth during the industrial revolution. In some
of these models, parents consciously evaluate a trade-off between the number of children they want
to have and the level of education they choose for their children. However, as detailed in A.1,
the empirical evidence precludes any consensus on the existence and the causes of such a child
quantity-quality trade-off. Hence, several authors have emphasized that additional mechanisms are
necessary to explain the timing of both the demographic transition and the industrial revolution,
especially in Great Britain. Moreover, if schooling and the resulting improvements in human capital
were indeed probably important to foster the second phase – after around 1850 – of the industrial
revolution, it is not so sure that human capital of the general population was crucial before (see
details in A.2).

Recent theoretical and empirical literature indeed emphasise that useful knowledge is a more likely
cause of the intellectual changes necessary for the first phase of the industrial revolution. Goldstone
(2009), Jacob (2014), and Mokyr (2011, 2017) attribute much of the credit for the burst of innova-
tions and accelerated diffusion of best practices after 1750, not to mass education in general, but
to the scientific culture that emerged with the European Enlightenment. They argue that Western
European societies were inclined to see technical breakthroughs in the eighteenth century thanks to
the increase in – and propagation during the previous two hundred years of – printing books, pub-
lishers, scientific societies, university networks, relatively accessible public lectures, and growing
day-to-day exchanges between scientists, engineers, and craftsmen. Hence, these authors explain
the success of the British industrial revolution through changes in the intellectual, social, and insti-
tutional background environment that enabled Great Britain to acquire a modern science culture.
This change in the intellectual environment permeated the whole society and was decisive in con-
verting useful knowledge – i.e., ideas and inventions that often came from distant parts of the world
– into workable innovations that were rapidly transformed into practical technologies necessitating
applied knowledge – i.e., skills – yielding profits to their developers. Recent empirical assessments
support the role of useful knowledge and applied knowledge as crucial initial levers of the indus-
trial revolution. For instance, Squicciarini & Voigtländer (2015) shows that ‘upper-tail knowledge’ –
proxied by Encyclopédie subscribers’ density – is a strong predictor of city growth after the onset of
the French industrialization. Furthermore, de Pleijt et al. (2019) perform a quantitative assessment
of the effect of industrialization – captured by the number of steam engines per person installed in

1Following the path-breaking work of Galor & Weil (2000) different mechanisms have been discussed to explain the
long-term growth process, such as: the scale effect of population on technical change in Galor & Weil (2000), Yakita (2010),
Galindev (2011), Fröling (2011), and Strulik et al. (2013); the Darwinian selection of child-quality oriented individuals in
Galor & Moav (2002); the Darwinian selection of entrepreneurial-oriented individuals in Galor & Michalopoulos (2012);
the improvements in gender equality in Lagerlöf (2003); the decreasing demand for child labor in Doepke (2004); the
decreasing child mortality rate and consequent improvement in life expectancy at birth in Cervellati & Sunde (2005); the
improvement of health (but not longevity) in Hazan & Zoabi (2006); the increasing productivity of agriculture in Strulik
& Weisdorf (2008); the increasing size of markets in Desmet & Parente (2012); and the increase in general knowledge in
O’Rourke et al. (2013).
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England by 1800 – on the average working skills of 2.6 millions workers. Their findings support
for a causal relationship going from the diffusion of steam engines to higher skill-demand. More-
over, ? show that early industrialization was negatively associated with primary schooling and with
the acquisition of literacy skills for women. Overall, ?’s (?) findings tend to (i) confirm Mokyr’s
(2011) conclusion that basic education and the associated human capital was not a key ingredient
in England’s early industrialization; and (ii) show that the causal relationship running from use-
ful knowledge (i.e., scientific ideas and inventions) to industrialization, highlighted by Squicciarini
& Voigtländer (2015), was complemented by a causal relationship going from industrialization to
applied knowledge (i.e., skills).

Recent unified growth models have taken into account these different findings. Strulik et al.
(2013) introduce a setting where technical change is initially only due to learning-by-doing prior
to the apparition of an expanding input variety R&D sector that then fosters sustained economic
growth. O’Rourke et al. (2013) introduce a stock of useful general knowledge whose level impacts
the cost of innovation in a Schumpeterian R&D sector. As will be shown in Section 3, we build
on these articles and explicitly introduce a stock of useful knowledge. Moreover, our population
module is an adaptation of Strulik et al.’s (2013) formulation to which we have added an impact
of the stock of useful knowledge on the efficiency of the human capital production. Furthermore,
following the historical and theoretical account of Lipsey et al. (2005), we also rely on the innovative
theoretical approach of Schaefer et al. (2014) in which the stock of useful knowledge shapes the
pattern of arrival of general purpose technology (GPT). In turn, the latter then impact the rate of
change of both learning-by-doing and Schumpeterian technical changes in all sectors.

2.2 Energy and the Economic Engine

Energy use is usually absent from modern growth analysis because it is assumed to have a second-
order impact due to its abundance and modest cost-share. However, as detailed in A.3 and , several
empirical and theoretical arguments indicate that energy is in fact far more important for the modern
growth process than usually assumed. Regarding the British economic take-off process during the
industrial revolution, the central role of coal and the steam engine is obvious for many economic
historians. Understanding this line of arguments requires to start our analysis a few decades before
this major historical event.

First, it is recognized that, from the sixteenth century onward, the expansion of European mar-
kets due to the Atlantic (slave) trade and the institutional changes that accompanied it, lead several
Western European countries towards an Industrious Revolution characterized by an increasing preva-
lence of labor offered on a specialized and relatively well-remunerated markets (de Vries, 1994). In
particular, for two Western European proto-industrial nations, Great Britain and the Netherlands,
wages broadly increased from the sixteenth to the eighteenth centuries relatively to other parts of
Europe and the world. This so-called Little Divergence within Europe implied that incentives for
labor-saving technologies were more important in Great Britain and the Netherlands compared to
other European nations, while nonexistent in China, Japan or India where labor remained relatively
cheap (Allen, 2011; Allen et al., 2011). Simultaneously, because proto-industries heavily relied on
wood fuel, and because the supply of wood is ultimately bounded, wood scarcities leading to price
increases were frequent in most of Western Europe and especially in Great Britain (Pomeranz, 2000,
pp. 220–223). There, imports of wood from the Baltic Sea and North America did not prevent its
price from rising by about 700% between 1500 and 1630, much faster than general inflation (Crosby,
2007, p. 69). As Goldstone (2002, p. 361) rightly states, the ultimate bottleneck in pre-industrial
economies lay not in land or other raw materials but in energy.

At these times of significant incentives for both labor-saving and woodfuel-saving technologies
in Western Europe, Western European countries, and here again most notably Great Britain, were
lucky to be endowed with large and relatively accessible deposits of coal, which was not the case for
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China where coal deposits were distant from the major manufacturing regions of the lower Yangzi
and the south (Pomeranz, 2000, p. 65). Substituting wood and charcoal for coal in heat generation
had been well-known for centuries. However, a major breakthrough came with the development of
the steam engine that enabled to turn the heat released from coal combustion into mechanical energy.
As a provider of mechanical energy, steam engines were substitutes for waterwheels and labor. As
argued by Malm (2013), steam engines progressively replaced waterwheels not because they were
initially more powerful, more efficient, cheaper or because the hydraulic potential of British rivers
was scarce, but simply because they were mobile and could work continuously within cities where
abundant and concentrated quantities of labour were present after agricultural improvements had
pushed many peasants towards cities. On the contrary, waterwheels were fixed, located in rural
environment, and were prone to stop due to flooding or freezing of rivers. Steam engines enabled
a large concentration of energy in time and space, were eventually more powerful than previous
sources of mechanical energy, and turned out to be much easier to control (Kander et al., 2013, p.
367).2 Kander et al. (2013, pp. 367–368) assert that the high complementary between coal, the steam
engine, and the iron industry was crucial in delivering unprecedented amounts of mechanical en-
ergy that structurally reshaped the industrializing British society. As Berg (1994, p. 207) similarly
notes, it was not the spinning machinery itself (in operation since 1770) that made England a leader
in textile production, but rather the application of steam power to spinning, water and surface trans-
port, brick- and iron-making, grain-threshing, construction, and all other sorts of manufacturing
processes that transformed the British economy.3

Synthesizing those elements, Allen (2011, 2009) comprehensively argues that the British Indus-
trial Revolution originated in the willingness and ability of its people to (i) tap their favorable coal
endowment thanks to economic incentives represented in relative factor prices (of labor, capital,
wood, and coal, see Figure 1), and (ii) apply knowledge brought by science (as already highlighted
in Subsection 2.1) to convert coal into mechanical energy, and in doing so direct and foster sustained
technical change during the Industrial Revolution. Exploiting geographical variation in city and
coalfield locations, alongside temporal variation in the availability of coal-powered technologies,
Fernihough & O’Rourke (2014) support and quantify Allen’s (2011; 2009) theory. Precisely, these au-
thors estimate that coalfields’ location and the availability of steam engines explain around 60% of
the growth in European city populations from 1750 to 1900. In a complementary approach, Malan-
ima (2016, pp. 96–99) estimates land- and labor- savings due to coal use, respectively as a source of
heat and mechanical energy, in England & Wales on the period 1560–1913. The results indicate that
from 1800 to 1900, the land-related (resp. labor-related) savings grew from 1 to 14 times the extent
of the entire country of 15 million hectares (resp. from 1 million to almost 290 million workers while
the English labor force was about 13–14 million workers in 1900). These estimates strongly support
Wrigley’s (2016, pp. 2–4) claim that, given the amount of energy required to produce iron and steel
on a large scale, an Industrial Revolution could not have been accomplished as long as mechanical
energy continued to be provided principally by human and animal muscle – and thus ultimately by
the annual flow of solar energy derived from plant photosynthesis and river flows.

Based on these evidences, we hereafter present a unified growth model that allow us to (i) dis-
tinguish several energy forms (and their corresponding prices), (ii) describe the technical change
associated with fossil energy as a response to pre-modern renewable energy shortage, and (iii) em-
phasize the key role of the abundant and cheap fossil energy supply during the Industrial Revolution
and the subsequent modern regime.

2It is sometimes argued that early steam engines were extremely inefficient and that the end-use cost of the mechanical
energy produced by a steam engine was not lower than that produced by a windmill, waterwheel, or worker. This paradox
is solved when one considers that a steam engine is both mobile and continuously operational.

3It is because they completely miss the importance of the synergy between coal, the steam engine, and the iron industry
that Clark & Jacks (2007), relying solely on the contribution of coal mining rents to national income, can claim that coal
made a negligible contribution to the success of the British Industrial Revolution.
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Fig. 1 Panel (a) - Labor to capital real prices in England (solid line), Strasbourg (dashed line), and Vienna (dotted line),
1630–1800; Panel (b) - Real prices of firewood (solid line) and coal (dashed line) in England, 1300-1870, time series smoothed
with Hodrick-Prescott filter (factor 1000); Panel (c) - Labor to energy real prices in six cities, early 1700s.
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2.3 Recent Long-Term Growth Models

The role of energy use in long-term growth has not been extensively discussed in the unified growth
literature. As a matter of fact, the only published exception is the article of Fröling (2011) and Gars &
Olovsson (2019). However, Fröling’s (2011) set-up does not disentangle the different incentives that
shape the synergy between technologies and energy resources, which explains why Fröling’s (2011)
model fits rather poorly to the global historical data. Several papers of the endogenous growth lit-
erature have tried to better address the interplay between resources, technologies and growth. In
his seminal article, Acemoglu (2002) focuses on the interplay between directed technical change and
growth patterns that appear when R&D is profit-motivated and complement specific technologies.
Acemoglu et al. (2012) apply this framework to climate change issues, introducing an exhaustible
resource that shape R&D bias. Additional contribution have generalized this approach to many
sectors (Gars & Olovsson, 2019; Lemoine, 2018), or to the specific case of the British Industrial Rev-
olution as in Otojanov (2018) and Stern et al. (2019). These papers assume either constant energy
extraction, and/or a normalized pool of scientist driving R&D, which preclude any population scale
effect. Moreover, the population size is exogenous in all these approaches that neither incorporate
education nor human capital. As a consequence of these omissions – on which unified growth mod-
els usually put an important emphasis –, these contribution might overestimate the role of changes
in energy use during the Industrial Revolution. Indeed, the coal-hypothesis appears as the sole
driver of the industrial revolution in these approaches. Therefore, the present article complements
this literature through its focus not only on: (i) the interaction between technology and extraction
costs that allows for learning effects documented in the literature (see e.g., Court et al., 2018), but
also on (ii) Schumpeterian R&D fueled by human capital, and (iii) endogenous fertility and educa-
tion choices. Our modeling setting allows us to disentangle the role of energy and human capital
accumulation for the timing and magnitude of the economic take-off. Moreover, we extend our
numerical analysis to the analysis of the British case and the comparative development of Western
Europe and Eastern Asia, as an assessment of the narrative prompted by Pomeranz (2000) and Allen
(2011, 2009). Our model shows that once fertility and human capital are accounted for, energy is not
the sole root-cause of the Industrial Revolution, but it remains a key catalyst needed to explain the
different paces of development trajectories over the last two centuries.
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3 A Model of Energy, Demographic and Economic Transitions

In this section, we construct a general equilibrium growth model to study the role of energy use
in the economic take-off during the industrial revolution. We consider a closed economy in dis-
crete time, indexed by t. We distinguish five types of agents: household, final good producer, input
producers, capital good producers and innovators. The representative household consists in three
overlapping generations: childhood, adulthood and retirees. Only adults allocate their workforce
between labor and rearing children, and their income between present consumption, savings for (fu-
ture consumption while retired), and children education. These decisions endogenize the provision
of human and physical capital. The final good producer combines inputs to provide a composite
good that will be used for consumption and investment. Input producers, combine labor (human
capital), capital goods, and an energy input coming from a specific resource for each input producer
– e.g. renewable and exhaustible. Monopolistic capital good producers transform physical capital
into machines to supply intermediate producers. Innovators hire labor to perform R&D and, in case
of innovation success, replace an existing monopolist in the corresponding sector by providing a
more efficient machine. Thus, input sectors differ in terms of energy resource availability and av-
erage technical level. This affects not only the current production in the final good sector through
substitution effects, but also the future production through endogenous effort to perform sector-
specific R&D. At last, R&D being a quite recent way of technical progress that gained momentum
during the industrial revolution, we also allow for sector-specific learning-by-doing effects that will
prevail during the pre-industrial era. Figure 2 graphically represents our modeling framework. Fi-
nally, we introduce some stochasticity in this setup by modelling the endogenous arrival of GPTs,
with increased frequency while applied knowledge improves, featuring technical business cycles
that shape the efficiency of learning-by-doing and Schumpeterian technical changes in all sectors.

Fig. 2 Graphical representation of the economy.

Households
Overlapping generations (children, adults, retirees)

Time and income allocation

Innovators (R&D)
Machine suppliers

Renewable input firm Exhaustible input firm

Final good firm

Renewable resource Exhaustible resource

Human
capital

Physical
capital

Machines

Renewable
energy

Exhaustible
energy

Learning
by doing

Learning
by doing

Fertility and
education

3.1 Preferences and Factor Supply

We consider an economy in which each overlapping generation (children, adults, and retirees) ad-
mits a representative individual. At each time period t, there are Nt representative adults. Each
representative adult is endowed with one unit of time that can be dedicated to (i) effective labor,
to earn a wage, or (ii) child-rearing, thus setting the number of adults in the next period, t + 1.
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Moreover, the representative adult allocates her income between direct consumption, children’s ed-
ucation, and savings. Children do not work, nor consume, and inherit from the level of education
chosen by adults. Thus, higher expenditures in education builds greater human capital for the next
generation, hence greater effective labor supply. Retirees do not work and consume their past sav-
ings. Fertility, education, and savings decisions shape the supply of human and physical capital.

3.1.1 Household’s Preferences

In order to derive the main results conveniently and get closed-form solutions, we make a number
of simplifying assumptions that are typical for unified growth overlapping generation models, that
admit a representative household at each generation (e.g. Strulik et al., 2013).

Assumption 1 Each household consists in: (i) a number Nt ≥ 0 of unisex parent with non-operational
education expenditures motives, (ii) a continuous number bt ≥ 0 of children, and (iii) a number Nt−1 ≥ 0 of
retirees.

These assumptions respectively allow to avoid matching issues between adults, indivisibility
problems for children, and issues of dynastic value function maximisation regarding education.4

The representative adult is the only decision-making unit and admits perfect expectations. Her
preferences are represented by a logarithmic utility function defined over: (i) immediate consump-
tion, ct ≥ 0, (ii) future consumption during retirement, cr

t+1 ≥ 0, (iii) births per capita, bt ≥ 0,
determining family size, and (iv) the future level of human capital, ht+1 ≥ 0, that each child receives
through present education. Thus, the representative household’s utility function writes

ut = log(ct) + χ log(cr
t+1) + ρ log(ht+1) + η log(bt), (1)

where the positive parameters χ, ρ, and η capture, relative to current consumption, the elasticities
of utility with respect to future consumption during retirement, the human capital of children, and
the family size.

The representative adult benefits from two revenue sources: labor wages and patenting revenue
from the R&D sector. The latter is driven to zero under the free-entry condition in R&D and our
market design for capital goods production presented hereafter in Subsection 3.2.3.5 We adopt a
sequential trading approach of the young adult’s decisions. At each time period, there is a spot
market for the final good (that is either consumed, saved or spent in education). In addition, there
is an asset market though which savings decision are performed, one unit of consumption invested
in period t delivers 1 + rt+1 accrued units of consumption in period t + 1. Thus, the representative
adult planner face the two following constraints:

ct + st + btet ≤ wtht[1− τbt], (2)
cr

t+1 ≤ (1 + rt+1)st, (3)

where st ≥ 0 is the savings of generation t, et ≥ 0 is the education expenditure per child,6 wt ≥
0 is the competitive market wage per efficiency labor unit ht ≥ 0, τ ≥ 0 is the fraction of the
adult’s time endowment required to raise one child, and rt+1 ≥ 0 is the interest rate from period t
to period t + 1. Eq. (2) represents the current period budget constraint of the representative adult,

4This last point means that the parent’s motivation to spend on their children’s education is not driven by the antici-
pation of the increase of children’s utility caused by this expenditure, but by a general desire for having ‘higher quality’
children.

5Relaxing these hypotheses would not change qualitatively the behavior of the representative household.
6In other words, the provision of aggregate education services btet Nt has a cost of btet Nt units of final good. This

technical assumption ensures market clearing on the final good market, as illustrated hereafter in Eq. (26).
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the income (right-hand side) being allocated to current consumption, savings and education (left-
hand side). Raising one child can be seen as an opportunity cost valued at τwtht. Eq. (3) represents
the intertemporal budget constraint, the sole revenue of the current retired generation consisting in
the savings accrued in former adulthood, as is typical in the overlapping generation literature (see
de La Croix & Michel, 2002). Formally, we shall assume that savings are invested in a financial asset
at the interest rate rt+1. Relying on the usual ‘no arbitrage’ assumption between the financial market
and the physical market—physical assets being used for production—, this interest rate shall then
be equated to the price charged to productive firms plus the depreciation rate of physical capital. For
simplicity and to avoid multiplying notation, we immediately assume for the rest of this paper that
savings are only invested in physical capital priced accordingly.

Furthermore, we assume that education expenditures, et, are converted into human capital ht+1
through a schooling technology that controls for schooling costs, approximated by wt,7

ht+1 = AE(Qt)
et

wt
+ h̄, (4)

where h̄ ≥ 0 represents informal human capital acquired without formal education,8 and AE(·) a C2

function of the total applied knowledge of the economy, Qt ≥ 0, defined thereafter. We assume that
the education technology shows decreasing returns with respect to this stock of applied knowledge,
so AE(·) satisfies the following conditions: AE(0) = 0, ∂AE/∂Q > 0 and ∂2AE/∂Q2 < 0. In other
words, we assume that the overall level of applied knowledge, Qt, is a good proxy for various
phenomena that positively affect the efficiency of schooling, such as the rising spatial density of
schools (Boucekkine et al., 2007), the evolution of social norms favoring formal education, or changes
in law limiting child’s labor (Doepke, 2004). Another interpretation, which is more consistent with
the seminal work of Galor & Weil (2000), is that a greater stock of global knowledge increases the
returns to education to cope with a potentially more complex and rapidly evolving environment.
Our specification is neutral with regards to these two interpretations. Throughout this paper, we
assume AE(Qt) = ĀEQt/(1 + Qt), with ĀE > 0.

The utility-maximizing behavior of the representative households can then be formally intro-
duced through the following optimization problem.

Problem 1 (HH - Household) The representative adult planner seeks to maximize the utility function
define in Eq. (1) under the schooling technology defined in Eq. (4), and the budget constraints defined in Eqs
(2) and (3). Hence, taking factor prices wt and rt as given, the household’s problems writes

max
ct,cr

t+1,st,bt,et
ut = log(ct) + χ log(cr

t+1) + ρ log(ht+1(et, Qt)) + η log(bt)

s.t. ct + st + btet ≤ zt[1− τbt],
cr

t+1 ≤ (1 + rt+1)st,
ct ≥ 0, cr

t+1 ≥ 0, st ≥ 0, bt ≥ 0, et ≥ 0.

3.1.2 Supply of Physical and Human Capital

Aggregating over the number of representative adults, Nt, at each period, households inelastically
supply two production factors that depend on their savings and fertility decisions: physical capital

7One can think of wt as the wage of teachers, hence et/wt represents efficient education expenditure.
8Such a basic human capital level can be thought as informal knowledge that children acquire through the time τ

spends observing and imitating their parents and peers at work. This knowledge (of farming or a particular craft, for
example) is useful, i.e. it creates human capital at level h̄, but it comes for free, at no educational cost. On the contrary, et is
a financial investment that allows the child to receive a formal education through school and the consumption of cultural
goods in order to increase their human capital above h̄.
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and human capital. The stock of physical capital results from the aggregate accumulation of net
savings of households following the usual law of accumulation

Kt+1 = It + (1− δ)Kt, (5)

where δ ∈ [0, 1] stands for the depreciation rate of capital, and It ≥ 0 is the net investment which
consists in savings of the current generation of young adults, stNt, minus the dissavings of the cur-
rent generation of retired adults. As we preclude voluntary bequest motives, the retired generation
withdraws all the remaining stock of physical capital they hold, that is (1− δ)Kt.9 The stock of phys-
ical capital for the next period is thus entirely determined by the savings of the current young adult
generation, such that Eq. (5) simply write Kt+1 = stNt. Turning to the supply of human capital, one
can first derive the law of motion of the population of young adults, Nt, as

Nt+1 = btNt.10 (6)

Taking child-rearing time into account, the size of the workforce, Lt, is then given by

Lt = (1− τbt)Nt, (7)

whereas the aggregate human capital supply, Ht, corresponds to

Ht = htLt. (8)

3.2 Production

We turn now to the description of the production side of the economy. Following Acemoglu et al.
(2012), we consider a final sector in which a composite good is competitively produced with k imper-
fectly substitutable inputs. Each k input comes from the combination of intermediate capital goods
(i.e., machines), human capital, and primary energy. The different k energy types come either from
renewable or exhaustible resources, and their use incurs a sector-specific extraction cost.

Final good and inputs production are assumed to be perfectly competitive, while the supply of
machines is monopolistic. Indeed, technical change is assume to take place in a Schumpeterian fash-
ion where quality improvements are specific to each machine line (Aghion & Howitt, 1992). Thus,
machines are provided by monopolists owning a patent on their variety, endogenously supplanted
by successful innovators in a process of creative destruction. Moreover, as described in Section 3.3,
this profit-motivated R&D innovation interacts with General Purpose Technologies (GPTs), which
also shapes the level of a learning-by-doing knowledge, affecting production.

3.2.1 Final Composite Good

The final composite good, Yt, is an aggregate of k ∈ K inputs, Yk,t, according to a Constant Elasticity
of Substitution (CES) technology,

Yt =

[
∑

k∈K
ϑkY

σ−1
σ

k,t

] σ
σ−1

, (9)

where ∑k∈K ϑk = 1, with ϑk ≥ 0 measuring the relative economic usefulness of inputs, Yk, and σ ≥ 0
is the elasticity of substitution between inputs. The set K refers to the kind of primary energy used

9It is worth mentioning that, as exposed hereafter in Subsection 3.2.3, physical capital holders are exactly compensated
for the depreciation δ, such that the overall interest paid to the retired generation is the interest rate rt plus the depreciation
rate δ.

10Accordingly, the total population, Pt, corresponds to Pt = 2[(1 + bt)Nt + Nt−1].
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to produce the corresponding input, as defined shortly. This good is used for consumption and
investment purposes by households, and her price taken as the numeraire. The final good sector
can then be formally described through the following optimization problem.

Problem 2 (FG – Final good producer) The final good producer is perfectly competitive and uses the
technology defined in Eq. (9). Its price is chosen as the numeraire. The representative firm takes the prices of
the final inputs {pk,t}k∈K as given to solve

max
{Yk,t}k∈K

[
∑

k∈K
ϑkY

σ−1
σ

k,t

] σ
σ−1

− ∑
k∈K

pk,tYk,t

s.t. ∀k ∈ K, Yk,t > 0.

3.2.2 Inputs

We denote by K the set of primary energy resources that are specific to each input sector. These
energy carriers are either: (i) renewable energy resources corresponding to biomass, wind, water
and solar flows; or (ii) exhaustible energy resources corresponding to fossil fuels – such as coal, oil,
gas – and fissile materials – such as uranium. For each primary energy type, k ∈ K, the provision
of the final input, {Yk,t}k∈K, results from the combination of (i) a continuum of machines of measure
one, {xk,i,t}i∈[0,1] with specific endogenous quality, {qk,i,t}i∈[0,1], (ii) human capital, Hk,t, and (iii) a
primary energy flow, Ek,t. It is worth mentioning that qk,i,t designates the quality level after inno-
vation decisions of period t, which occur prior to production decisions. These factors are combined
according to the following Cobb-Douglas technology,

Yk,t = Ak,t

[∫ 1

0
q1−αk

k,i,t xαk
k,i,tdi

]
Hβk

k,tE
γk
k,t, (10)

where αk + βk + γk = 1, and Ak,t is the technical level achieved through learning-by-doing in sector
k. The provision of the final input {Yk,t}k∈K is perfectly competitive. Each final input is ultimately
sold, at a price pk,t > 0, to the final composite good sector. The costs of sector-specific machines,
human capital and sector-specific energy flow are respectively denoted by px

k,i,t > 0, wt > 0, and
Ψk,t > 0. The latter cost consists in a function Ψ(·, ·) that captures the assumed convexity of the
extraction of primary energy. 11 We model two underlying forces that shape this cost function,
namely, the remaining level of primary energy resource, and the level of technical advancement
achieved in the sector. The dynamics of primary energy resources are given by

Rk,t = Rk,0 − Ek,t, (11)

in case of a renewable resource, and

Rk,t = Rk,0 −∑
a<t

Ek,a, (12)

11This extraction cost might also be seen as the price charged by a perfectly competitive primary energy extracting firm.
Thus, our framework is neutral regarding an integrated or segmented energy sector.
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in case of an exhaustible resource. The set {Rk,0}k∈K is determined by the natural environment
and corresponds to the levels of (renewable or nonrenewable) primary energy virgin resources.12

Following Court et al. (2018), we suppose that as each stock of resource Rk,t gradually decreases
towards zero, it becomes increasingly difficult to extract primary energy. On the other hand, tech-
nical improvements can lower the extraction cost of primary energy. We use the stock of applied
knowledge specific to the sector, Q̂k,t (introduced thereafter in Eq. (17) of Section 3.3), as a proxy for
the technical advancements that decrease extraction costs, so as to extend the amount of economi-
cally profitable reserves out of physically bounded resources. NormalizingRk,t and Q̂k,t to their initial
values, we then define {Ψk}k∈K as follows

Ψk = Ψk

(
Rk,t+1

Rk,0

)ψR,k
(

Q̂k,t

Q0

)ψQ,k

. (13)

with Ψk > 0 a scaling parameter, and ψR,k < 0 and ψQ,k < 0 defining the convexity of the extraction
cost. Input provision sectors can then be formally described through the following optimization
problem.

Problem 3 (IG – Intermediate goods) The input provider k ∈ K is perfectly competitive and uses the
technologies defined in Eq. (10) and (13). The representative firm takes prices of machines, human capital,
and final inputs ({px

k,i,t}i∈[0,1], wt, and {pk,t}k∈K respectively), the current level of technologies, Ak,t and
{qk,i,t}i∈[0,1], as given, as well as the current level of resource,Rk,t, to solve

max
{xk,i,t}i∈[0,1],Hk,t,Ek,t

pk,t Ak,t

[∫ 1

0
(qk,i,txk,i,t)

αk di
]

Hβk
k,tE

γk
k,t

−
∫ 1

0
px

k,i,txk,i,tdi− wtHk,t −Ψk,tEk,t

s.t. ∀i ∈ [0, 1], xk,i,t > 0, Hk,t > 0, Ek,t > 0.

3.2.3 Capital Goods

The machines that are used by intermediate input producers can be seen as capital goods produced
from the stock of row physical capital, Kt. They are supplied under a hybrid monopolistic competi-
tion, contingent on R&D processes. As described in more detail in Subsection 3.3.3, R&D is assumed
to be specific to each machine line and to occur prior to production decisions. As is customary in
the Schumpeterian literature (see Acemoglu, 2009), and under Assumption 2 introduced shortly, in-
novation is assumed to be performed only by potential entrants that have greater incentives than
incumbents, due to a monopoly profit they can benefit in case of success. Indeed, each successful
innovator is endowed with a one-period patent on the corresponding machine line. He will then re-
place the former machine producer and act as a monopolist on this machine variety. Otherwise, the

12Nonrenewable and renewable primary energies are both physically bounded by the finite character of planet Earth.
This point is straightforward for nonrenewable energies that come from finite stocks. The untapped level of a nonrenew-
able primary resource, Rk,0, formally corresponds to the Ultimately Recoverable Resource (URR). According to British
Petroleum (2015), the URR is an estimate of the total amount of a given resource that will ever be recovered and pro-
duced. It is a subjective estimate in the face of only partial information. Whilst some consider URR to be fixed by geology
and the laws of physics, in practice estimates of URR continue to be increased as knowledge grows, technology advances
and economics change. The URR is typically broken down into three main categories: cumulative production, discovered
reserves and undiscovered resource. Renewable energies are also bounded by the ultimate size of their annual flows (as
an illustration, one might consider that, for a given year, the maximum solar energy ultimately recoverable cannot ex-
ceed the natural sun radiation), which is called the Technical Potential (TP) and corresponds to Rk,0 in our framework.
For the IIASA (2012, chapter 7, p. 434), the renewable Technical Potential is the degree of use that is possible within
thermodynamic, geographical, or technical limitations without a full consideration of economic feasibility.
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machine line is produced competitively under the previous design, a situation one shall interpret as
patents becoming public. This hybrid setup, combining perfect and monopolistic competition with a
free-entry condition into R&D introduced in Eq. (25), ensures that there are no aggregate monopoly
profits.13

For each machine line i in the sector k, the production technology is linear and transforms one
unit of the capital stock, Kt – which is rented from households at the interest rate rt plus the deprecia-
tion rate of capital δ – into one unit of specialized machine xk,i,t. Hence, the corresponding operating
profit is πk,i,t = (px

k,i,t − rt − δ)xk,i,t. The capital good provision can be formally described through
the following optimization problem.

Problem 4 (CG – Capital good producers) Each capital good sector k ∈ K sustains a hybrid regime
of perfect and monopolistic competition, depending on the success of profit-motivated R&D. Whenever inno-
vation is unsuccessful in machine line i, the latter is produced under perfect competition. In the first case
the machine price is equated to the marginal cost of production, that is px

k,i,t = rt + δ (also denoted pc
k,i,t).

Whenever innovation is successful in machine line i, the latter is produced under monopolistic competition.
In the second case the capital good producer takes as given the price of capital, rt + δ, to solve

max
px

k,i,t>0
πk,i,t = (px

k,i,t − rt − δ)xk,i,t(px
k,i,t)

thus setting the price of intermediate capital goods also denoted pm
k,i,t.

3.3 Knowledge and Technical Change

Following Strulik et al. (2013), we consider two kinds of technical changes for each input provider:
non-profit motivated learning-by-doing and profit-motivated R&D. As suggested by Schaefer et al.
(2014), all these technical advancements should be interrelated by the evolution of a General Purpose
Technology (GPT). Lipsey et al. (2005, p. 98) define a GPT as a single generic technology, recognizable
as such over its whole lifetime, that initially has much scope for improvement and eventually comes
to be widely used, to have many uses, and to have many spillover effects.14

3.3.1 General Purpose Technologies

Following Schaefer et al. (2014), we assume that successive vintages of GPTs, Gv,t, are developed
endogenously as a result of non-profit motivated activities. In the following setting, we suppose
that the level of the current GPT vintage positively affects technical change, i.e. the rate of growth
of technical levels achieved through learning-by-doing or R&D. In a sense, GPTs gather all kinds
of technical externalities fostering technical change. We assume that several vintages of GPTs, in-
dexed by v, succeed over time. While it is still active, the level of a given vintage of GPT might
also evolve over time, featuring learning-effects. The magnitude of the latter phenomenon, along
with the evolution of the expected duration before the arrival of a new GPT, has a crucial impact
on the degree of complementarity between past and current knowledge. Together, those features
allow compliance with two stylized facts regarding the historical arrival of GPTs: (i) the initially

13These assumptions prevent any issue of inter-temporal patent allocation and pricing, without precluding the set of
incentives central to profit-motived R&D (Acemoglu, 2002; Aghion & Howitt, 1992, 1998).

14Lipsey et al. (2005, p. 97) further stress that GPTs are typically use-radical but not technology-radical, meaning that
GPTs do not stand out from other technologies because of a revolutionary technical basis, but rather because of outstand-
ing applications and adaptations to other technologies and sectors of the economy. GPTs are typically not born in their
final form, so they often start off as something we would never call a GPT and then develop into something that trans-
forms an entire economy. The considerable scope of improvement of GPTs is explored as their range and variety of use
increase, which in the meantime generate knowledge and practical spillovers on other technologies and organizational
processes.
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slow evolution of the efficiency of new GPTs, and (ii) the decreasing time interval between succes-
sive GPTs. We differ from Schaefer et al. (2014) in two ways. First, following the endogenous growth
literature centered on human capital (Jones, 1995; Strulik et al., 2013), we consider researchers (i.e.,
human capital allocated to R&D) rather than machines (i.e., lab-equipment purchased though finan-
cial expenditures) to be the key driver of innovation processes. Moreover, we consider that all kinds
of technical changes are involved in the evolution of GPTs. Finally, we assume that GPT vintages
active for period t evolve prior to innovation and production decisions; that is, at the beginning of
the current period.

To start with, let’s assume that new GPT vintages follow a non-homogeneous Poisson process
with endogenous mean, µt, defined as

µt = µ0Gv,t−1, (14)

with µ0 ∈ [0, 1]. The level of the active GPT, Gv,t−1 eases the arrival of the new vintage.15 Once
discovered, a new GPT is initialized with a level of

Gv+1,t = Ḡq̃t (15)

where Ḡ is a positive scaling parameter, and q̃t is an index of applied knowledge available for the
GPT in period t. To further characterize the index of available applied knowledge, q̃t, let us define
two stocks of knowledge, Q̃v+1,t and Q̃v,t. The former represents the improvement history of the
current (and potentially newly introduced) GPT, whereas the latter tracks the improvement history
of all previous vintages of GPTs. We now introduce the stock of applied knowledge, as an aggregate
quality index of the economy

Qt = ∑
k∈K

Q̂k,t, (16)

with its sectoral components,
Q̂k,t = Ak,t + Qk,t. (17)

This index measures the extent of all technical developments through both learning-by-doing and
R&D within the period t. One can then write the following identity

Q̃v+1,t + Q̃v,t = Qt. (18)

It is worth noting that the total quality index of the economy, Qt, should be interpreted as the overall
stock of applied knowledge already introduced in the efficiency of the schooling technology, Eq. (4),
and the extraction technology of primary energy inputs, Eq. (13). Following Mokyr (1990, 2011), ap-
plied knowledge, taking the form of learning-by-doing and R&D technologies, shall be distinguished
from useful knowledge contained in human capital and in GPT’s waves that evolve concomitantly
with the development of applied knowledge. The index of applied knowledge, Qt, only captures the
quantity of applied knowledge that can be used to strengthen the current GPT vintage. Depending
of the complementarity between past and current applied knowledge, quantified by the parameter
ζ ∈ [0, 1],16 one can then define the index of applied knowledge as

q̃t = Q̃ζ
v+1,tQ̃

1−ζ
v,t . (19)

As long as it remains active, the quality increments of GPT vintage evolves over time, that is as
a function of the quality index q̃t,

Gv,t = Gv,t−1 + ξ q̃t, (20)

15In other words, the time interval between successive GPT vintages, T, is given by the cumulative distribution: P(T ≤
t) where T follows a Poisson process of mean µ, hence the average waiting time corresponds to E(T) = 1/µ.

16Past (respectively current) knowledge is useless whenever ζ = 1 (ζ = 0).
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with ξ a constant controlling the speed of diffusion of the current GPT vintage within the economy
through the learning-by-doing and R&D performed with this vintage. Thus, the efficiency of each
kind of technical knowledge is improved (as specified thereafter), again strengthening the level of
the current GPT according to Eq. (18). Moreover, as GPTs are improved, the time interval before the
arrival of a new GPT decreases according to Eq. (14).

3.3.2 Learning-by-doing

We model the technical level achieved through learning-by-doing in input sector k ∈ K, Ak,t, as a
function of (i) the current human capital stock allocated to the specific production sector, Hk,t, and
(ii) the current GPT’s level, Gv,t, capturing the conventional technical externality (i.e., the so-called
standing-on-giants-shoulders effect).17 With Ω > 0 representing the efficiency with which use-
ful knowledge contained in human capital and GPT-related know-how are converted into applied
learning-by-doing knowledge for production, we have

Ak,t+1 − Ak,t = ΩHωH,k
k,t GωG,k

v,t , k ∈ K. (21)

We suppose that there are decreasing returns in both human capital and technical externalities,
i.e., ωH,k ∈]0, 1[ and ωH,k ∈]0, 1[, meaning that in the long run there is no more technical change
through leaning-by-doing. This assumption calls for another source of technical change, namely,
profit-motivated R&D presented below, to sustain growth in the long-run. Finally, we define the
growth rate of the technical level (i.e., the technical change) obtained through learning-by-doing as
gAk ,t ≡

Ak,t−Ak,t−1
Ak,t−1

= ΩHωH,k
k,t−1GωG,k

v,t−1A−1
k,t−1, with k ∈ K.

3.3.3 Profit-motivated R&D

R&D is assumed to be profit-motivated, as customary in the endogenous growth literature (Ace-
moglu, 2002; Aghion & Howitt, 1992, 1998). As described in Subsection 3.2.3, in each sector, in-
termediate capital goods (i.e., machines) are produced either in perfect competition whenever the
corresponding patent is public, i.e. R&D was unsuccessful, or by monopolists that are former suc-
cessful innovators. We assume that each machine line follows a specific quality ladder: the quality
of the machine line in a specific sector writes qk,i,t = qκk,i,t

k , where κk,i,t is the number of successful
innovations for machine line i in sector k up to time t and qk > 1 the sector-specific rung of the
corresponding quality ladder. At the beginning of each period, successful innovations bring the cor-
responding machines to a higher rung of the specific quality ladder, that is κk,i,t becomes κk,i,t + 1.
Otherwise, the quality of machines remains constant. Moreover, to derive analytical tractable re-
sults, we hypothesize that innovation is drastic, which is a customary assumption in the patent-race
literature.

Assumption 2 The innovation regime is drastic: technical improvements resulting from a successful in-
novation (e.g., the size of each rung in the quality ladder, qk) are large enough such that entrants replace
incumbents.

In other words, we assume that productivity gains are large enough such that the monopoly
price of a successful innovator can be fully charged, resulting in a non-ambiguous replacement of
the corresponding less competitive incumbent (see Aghion & Howitt (1992) for an analysis of the
non-drastic case that yields similar comparative static results when the production function is of
Cobb-Douglas type). The key issue is that each potential successful innovator can realize a strictly

17Given that our formulation of Gv,t depends on technical levels Ak,t achieved through learning-by-doing, Eq. (21) is
strictly in line with the formulation of Jones (1995).
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positive profit, yielding incentives to enter profit-motivated R&D activities. Turning now to the R&D
technology, we follow Schaefer et al. (2014) and assume that the probability of success of a potential
innovator in a specific sector k and machine line i writes

λk,i,t = Φk,i,tHR,k,i,tGv,t, (22)

where (i) Φk,i,t,κ captures the increasing difficulty to perform R&D with the current complexity of
the corresponding production line κk,i,t, (ii) HR,k,i,t stands for the amount of human capital dedicated
to research in the machine line i of sector k, and (iii) Gv,t is the level of the current GPT vintage.
It is worth mentioning that such a modeling choice of the probability of success does not preclude
per se an upper bound for productivity gains in each sector. This is why, as advocated by Kortum
(1993) and Stokey (1995), we explicitly introduce decreasing returns for the cost of R&D through the
following functional form

Φk,i,t =
λ̄k − λk,i,t

φk

1

qκk,i,t+1
k ,

(23)

where φk > 0 is a parameter capturing the cost of innovation in sector k, and λ̄k ∈ (0, 1) stands for
the ultimate level of probability success in R&D. One can thus write the probability of an innovation
success explicitly belonging to a bounded support as

λk,i,t = λ̄k
HR,k,i,tGv,tq

−[κk,i,t+1]
k

φk + HR,k,i,tGv,tq
−[κk,i,t+1]
k

. (24)

It is clear from Eq. (24) that the probability of successful R&D converges to its limit value, λ̄k,
whenever the stock of human capital and the level of the GPT grow. Isolating HR,k,i,t from Eq. (24)
allows to give a more intuitive interpretation for our specification:

HR,k,i,t = φk × qκk,i,t+1
k × 1

Gv,t
× λk,i,t

λ̄k − λk,i,t
.

For each machine line i ∈ (0, 1) in sector k ∈ K, the R&D effort, namely the level of human capital
requirements to achieve a targeted probability sucess λk,i,t, decreases with the level of the current
GPT, Gv,t, and increases with the fixed cost, φk, and the level of complexity of the corresponding
machine line, κk,i,t, as well as the level of innovation success, λk,i,t. Moreover, due to the decreasing
returns of R&D, the probability success becomes increasingly costly while approaching its upper bar
λ̄k ∈ (0, 1).

Innovations decisions occur in machine line i ∈ (0, 1) of sector k ∈ K, prior production decisions.
They are driven by the monopoly profit that would reward a successful innovator, denoted by π̄s

k,i,t.
R&D processes and monopoly profits being defined, we can then describe the behavior of innovator
through the following free-entry condition.

Problem 5 (R&D – Sectoral innovators) Each R&D sector k ∈ K is viewed as a pool of innovators,
willing to enter the capital good production market through a successful innovation. Each potential monopolist
takes as given the current level of GPT, G(v, t), the complexity level of the targeted production line, κk,i,t,
as well as the price of human capital, wt, to maximize their expected profit, λk,i,tπk,i,tqk, such that at the
equilibrium the following free entry condition in R&D holds

λk,i,tπ
s
k,i,t = wtHR,k,i,t (25)

In writing this problem, we assume funds to be ultimately lent by households to potential in-
novators, and then repaid through profits (i.e. dividends) whenever innovation is successful. It is



17 E. Bovari, V. Court / Working paper

worth mentioning that market forces will endogenously shape the intensity of R&D in each sector.
In other words, the monopoly profit that would reward a successful innovation depends on the tech-
nical advancement and the level of the energy resource specific to each sector. Thus, most promis-
ing sectors would tend to attract greater efforts to perform R&D, ultimately bounded by the labor
force availability (market clearing condition defined shortly). In that sense, sectors that have greater
potential concentrate more researchers/engineers, and this allocation is endogenous and might re-
verse. In addition, contrary to Acemoglu et al. (2012), this specification allows for innovation to
potentially occur in both sectors simultaneously, which seems to be more suited to the analysis of
long-term growth patterns. At last, we introduce the aggregate demand for human capital dedicated
to R&D

HR,t = ∑
k∈K

∫ 1

0
HR,k,i,tdi.

3.4 Market-Clearing

At each time period, real flows must ensure that all markets – namely final good, physical capital,
human capital, and financial assets – clear, that is

Yt = ctNt + (1 + rt)st−1Nt−1 + Kt+1 − (1− δ)Kt + ∑
k∈K

Ψk,tEk,t + btetNt, (26)

Ht = ∑
k∈K

Hk,t + HR,t, (27)

Kt = ∑
k∈K

Kk,t, (28)

Kt+1 = stNt. (29)

These conditions ensure that the provision of real flows equals their uses. It is worth mentioning
that the constant returns to scale assumption for the production technologies, combined with the set
of hypotheses conditioning the behavior of the household, ensure that Eq. (26) always holds at the
equilibrium. Moreover, physical constraints shall hold in the provision of energy flows and in the
provision of capital goods. Hence, we have

Ek,t ≤ Rk,0 (renewable resource),
Ek,t ≤ Rk,0 −∑

a<t
Ek,a (exhaustible resource),

Kk,t =
∫ 1

0
xk,i,tdi, ∀k ∈ K. (30)

4 Analytical Results

In this section, we provide some analytical results to build intuition about the key transition mech-
anisms from this paper.

4.1 General Equilibrium Solution

We turn now and for the rest of this paper to the general equilibrium solution of the model exposed
in the previous section. More precisely, we look at the decentralized dynamic general equilibrium
solution defined as follows.

Problem 6 (GE – General equilibrium) An equilibrium is a sequence of: per capita consumption, {ct},
savings, {st}, fertility {bt}, educational investment {et}, physical capital allocations, {{Kk,t}k∈K, human
capital allocation, {{Hk,t}k∈K, final input provision and primary energies’ extractions flows, {{Yk,t, Ek,t}k∈K},
as well as prices {rt, wt, {pk,t}k∈K, {px

k,t}k∈K}, such that
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(i) {ct, st, bt, et} solve Problem HH;

(ii) {{pk,t}k∈K} solve Problem FG;

(iii) {{xk,i,t}k∈K,i∈[0,1], {Hk,t}k∈K, {Ek,t}k∈K} solve Problem IP under primary energy resource constraints
defined by Eq. (11) and (12);

(iv) {{px
k,t}k∈K,i∈[0,1]} solve Problem CG along with the free-entry condition of Problem R&D;

(v) {rt} and {wt} are such that the physical capital market, that is, Eq. (29), and the human capital market,
that is, Eq. (27), clear;

(vi) {{xk,i,t}k∈K,i∈[0,1]} are such that the capital resource constraint is satisfied, that is, Eq. (30) holds;

(vii) Physical capital follows the accumulation dynamics described in Eq. (28);

(viii) Population and human capital follow the endogenous dynamics described in Eq. (6) and (8);

(ix) GPTs are generated from a non-homogneous Poisson process of endogenous mean given by Eq. (14), and
evolve according to Eq. (18) and (20);

(x) Learning-by-doing technical changes endogenously evolve according to Eq. (21);

(xi) R&D-based technical changes endogenously evolve according to Eq. (24) and (25).

As will be shown in the following subsections, at each time period, given the endowments inher-
ited from the previous period (that is the amount of physical capital, technical levels and primary
energy resources), one can solve for general equilibrium of the current period, ultimately setting
the endowments for the next period. Thus, we adopt a dynamic recursive method to compute the
general equilibrium just defined. We assume general equilibrium and provide now some analytical
results about the theoretical model introduced in the previous section.

4.2 Preferences and Demography

At first, we focus on the households’ behavior that defines the first transition mechanism in this
paper: a demographic transition relying on a quantity-quality trade-off. To ensure a meaningful
problem, that is, with a positive population size and non-negative education expenditures, we make
the following assumption on preferences.

Assumption 3 Preferences are such that, η > ρ.

At each time period, given wt and ht (inherited from education during childhood), the first order
conditions from Problem HH define the optimal allocation of time and income between present
consumption, fertility, education expenditure and savings.

ct =
wtht

1 + χ + η
, st = χct, bt =

ηct

et + τwtht
. (31)

Provided that there is no minimum consumption constraint, adult households dedicate constant
shares of their income in present consumption and savings. Moreover, it is clear from Eq. (31) that
increasing education tends to reduce fertility. Turning now to child quality, there is an education
threshold, Q̃t, such that by monotonicity of AE(·), we have

et =

 0 if Qt < Q̃t,
[ρτAE(Qt)ht−ηh̄]wt

AE(Qt)(η−ρ)
if Qt ≥ Q̃t.

(32)
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The threshold Q̃t is defined as the solution of et(Q̃t) = 0, that is, Q̃t = A−1
E
(
ηh̄/ρτh

)
. For a given

level of human capital embodied during childhood, ht, the schooling technology must be efficient
enough for the adult planner to invest in it. It is interesting to denote that, by monotonicity and
invertibility of AE(·), we have ∂Q̃t/∂ht < 0, which means that the per capita level of human capital
tends to decrease the education threshold, Q̃t. Thus, in this setting, education has a positive effect on
the overall inclination of society toward schooling, more educated parents valuing more education.
Precisely, we can state the following theorem.

Theorem 1 (Human capital accumulation) Assuming that applied knowledge is initially insufficient for
education expenditures to be strictly positive, that is Qt ≤ Q̃t initially, whenever the education threshold,
Qt > Q̃t at some period t = T, is met, the economy accumulates human capital, that is ∀t ≥ T, ht+1 > ht.

Proof. See Appendix B.1.

This theorem is key for the demographic transition that results from a quantity-quality trade off.
More precisely, education expenditures, et, are initially null, because we assume that the stock of
total knowledge, Qt, is initially insufficient for the returns on education to be high enough to be
worth investing in it. Hence, human capital is initially stuck at its minimal level, h̄. At this point, the
education threshold only depends on structural parameters of the model, that is Q̃t = A−1

E (η/ρτ).
Then, due to the technical improvements introduced in Section 3.3, the cumulative total stock of
applied knowledge, Qt, gradually increases up to the point where Q̃t is crossed. From then on,
the representative adult starts to invest in education and human capital per capita begin to rise,
initiating the demographic transition. More precisely, we can state the following theorem.

Theorem 2 (Quantity-quality trade-off) The higher the desire for a large family, η (resp. for an educated
family, ρ), the higher (resp. the lower) fertility, bt, and the lower (resp. the higher) future levels of human
capital, ht+1. In addition, for an interior solution, the higher the wage rate, wt, or the level of human capital,
ht, the lower fertility, bt, and the higher education expenditures, et, and thus future levels of human capital,
ht+1.

Proof. See Appendix B.2.

Lastly, summarizing the previous results reveals two fertility paths. During the pre-modern
regime, the representative household does not invest in education, human capital per capita is stuck
at its lower value, ht = h̄, and fertility reaches an upper bound defined as

b̄ ≡ bht=h̄ =
η

τ(1 + χ + η)
.

In the modern growth regime, human capital per capita accumulates and is associated with a demo-
graphic transition. Fertility ultimately reaches a lower bound, defined as

lim
ht→∞

bt =
η − ρ

τ(1 + χ + η)
.

4.3 Innovation and Production

We now turn to the endogenous supply of technologies and goods. Combining the first order con-
ditions from Problem 3 and 4 allows to pin down the price of capital goods, as exposed in Appendix
C.1. Whenever innovation is unsuccessful, the price of capital goods equals the marginal cost of
production, that is pc

k,i,t = rt + δ, which corresponds to the rental rate of raw capital, Kt, supplied
by households. Whenever innovation is successful, the price of capital goods is pm

k,i,t = (rt + δ)/αk,
meaning that a mark-up 1/αk is applied by the monopolist on the competitive price. The resulting
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operational profit bears the incentive to perform R&D and is used to cover costs. It is worth not-
ing that capital goods prices only depend on the competition regime and the sector, and not on the
specific machine line. Then, we can show that the R&D success probability does not depend on the
specific machine line either.

Proposition 1 (Sector-specific R&D success probability) The R&D success probability only depends
on the corresponding sector, k ∈ K, and not on the specific machine lines, i ∈ (0, 1), that is

λk,t = λ̄k −
φkwt[pm

k,t]
αk

1−αk

Gv,tπ̄k,t
. (33)

Proof. See Appendix C.2.

The expression in Eq. (33) is (i) increasing with the level of current GPT, G(v, t), and with an
indicator of the value of innovation, π̄k,t, and is (ii) decreasing with the sectoral research cost, φk, the
wage level, wt, as well as the cost of producing machines, pm

k,t. As a result, human capital allocations,
HR,k,i,t, are uniformly distributed among all machines lines of a sector and do not depend on the
quality ladder level, κk,i,t. In each sector, one can thus use Eqs. (22) and (23) to derive the aggregate
amount of human capital dedicated to research as

HR,t = ∑
k∈K

φk

Gv,t

λk,t

λ̄k − λk,t
qkQk. (34)

In addition, the law of motion of the quality index, Qk,t, can be computed in each sector by using
the law of large numbers, ensuring that the probability of innovation success, λk,t, coincides with the
fraction of machine-lines that will experience a success in R&D. This leads to the following quality
dynamics

Qk,t+1 = λk,tqkQk,t + (1− λk,t)Qk,t, (35)

and thus the growth rate of innovation in each sector, gQk ,t, is

gQk ,t = [qk − 1] λk,t. (36)

Proposition 1 is also crucial for aggregation in each input sector. Indeed, as shown in Appendix
C.3, one can compute the aggregate raw physical capital demand, Kk,t =

∫ 1
0 xk,i,tdi, and thus the

aggregate production technology for each input k

Yk,t = Ak,t[Q̃k,tQk,t]
1−αk Kαk

k,tH
βk
k,tE

γk
k,t. (37)

Where Qk,t =
∫ 1

0 qk,i,tdi stands for an average quality index in sector k after innovation occurred
at the beginning of period t. This quality index captures the technical level of sector k achieved
through R&D, and thus shapes innovation and production decisions in period t + 1. Whereas Q̃1−αk

k,t
is a scaling parameter for the quality index that capture the hybrid nature of competition in the
production of intermediate capital goods. This scaling parameter depending on R&D decisions
(occuring prior to production) as the following expression,

Q̃1−αk
k,t =

[
α

αk
1−αk
k qkλk,t + (1− λk,t)

]
/
[

α
1

1−αk
k qkλk,t + (1− λk,t)

]αk

.
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4.4 Equilibrium Results

In this section, we derive some theoretical properties from our model, focusing on a two-sector case
that we will also consider for the numerical exercises of Section 5. The two sectors are respectively
labeled renewable (indexed by r) and exhaustible (indexed by e), that is K = {r, e}. In order to derive
tractable analytical results, we hereafter consider that Assumptions 1 and 2 hold in addition with
the following new assumptions.

First, we consider the particular case of symmetric technologies in final inputs production. This
assumption ensures that the endogenous directed technical change only results from the endoge-
nous changes in (i) energy input stocks, and (ii) their associated extraction technologies, and not
from ex-ante biases with regard to production technologies.

Assumption 4 (Symmetry in production) Production technologies of final inputs are assumed to be
symmetric, that is ∀k ∈ K, (αk, βk, γk) = (α, β, γ) and ∀k ∈ K, ϑk = ϑ.

Second, to simplify the analytical resolution without altering the driving forces of our frame-
work, we also assume for this section that extraction costs depend on current resource availability.

Assumption 5 Extraction costs depend on current resource levels, that is ∀k ∈ K, Ψk,t = Ψ(Rk,t, Qt).

Lastly, we assume final inputs to be gross substitutes to cope with historical facts and obvious
physical properties of energy carriers.

Assumption 6 Final inputs are gross substitutes, that is σ > 1.

We may now state some results regarding equilibrium relative prices and quantities before turn-
ing to the endogenous direction of technical change that is the key transition mechanism discussed
in this paper.

4.4.1 Equilibrium Prices and Quantities

In this section, we focus on relative prices and inputs quantities at equilibrium. We abstract from in-
novation decisions (extensively addressed after Section 4.4.2), provided they occur prior production
decisions. From the optimality conditions of Problem 2, we obtain the isoelastic demand schedules
for inputs, Yk = [pk/ϑk]

−σ Y. Combining these expressions yields the usual substitution effect be-
tween CES inputs, that is, an inverse relationship between equilibrium relative prices and quantities,

pr,t

pe,t
=

[
Yr,t

Ye,t

]− 1
σ

. (38)

Substituting the equilibrium demands for inputs allows to derive a second expression for relative
equilibrium input prices.

Proposition 2 (Relative Input Price) Under Assumption 4, 5 and 6, the higher (resp. the lower) the
relative level of learning and R&D knowledge (resp. the relative cost of extraction), the lower the relative price
of final inputs.

Proof. See Appendix D.1.

At the equilibrium, relative prices react in a very intuitive way and tend to be higher in the
sector having the greater extraction cost (cost-push effect) and lower in the sector technically more
advanced (efficiency effect). Then, we can derive an opposite result with regards to the equilibrium
relative demand for factors.
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Proposition 3 (Relative Factor Use) Under Assumption 4, 5 and 6, the higher (resp. the lower) the relative
level of learning and R&D knowledge (resp. the relative cost of extraction), the higher the relative allocation
of labor, physical capital, and energy resources.

Proof. See Appendix D.2.

Again, the interpretation of this property is standard, the sector that is technically more ad-
vanced or that exhibits a lower extraction cost are more efficient, and thus attracts relatively more
production factors at the equilibrium.

4.4.2 Endogenous Direction of Technical Change

We focus now on the endogenous direction of technical change, which is the transition mechanism
within our framework. It is obvious that whenever only one of the two sectors experiences R&D,
a case that will appear in our numerical simulation, technical change is biased against the other
sector. Here, we restrict to a situation where both sectors experience R&D to assess the dynamics of
the underlying forces that shape technical biases. The endogenous direction of technical change can
be assessed using the relative equilibrium growth rates of R&D knowledge that, according to Eq.
(36), writes

gQr ,t

gQe,t
=

qr − 1
qe − 1

λr,t

λe,t
. (39)

Sector-specific quality improvements, qk, and research success probabilities, λk, can be respec-
tively interpreted as the sector-specific magnitude and the scale (i.e. mass of successful innovators) of
R&D. Compared to the quite complex parametric form for the R&D success probability introduced
in Eq. (24), we restrict in this section to a simpler formulation to derive tractable results. We adopt
the following simplified functional form, which is usual in the Shumpeterian growth literature (e.g.,
see Aghion & Howitt, 2009)

λk,i,t = λ̄Gν,t

[
HR,k,i,t

qκk,i,t+1
k

]ε

, (40)

where λ̄ ∈ (0, 1) and ε ∈ (0, 1) are parameters capturing the efficiency and the convexity of R&D
efforts. Note that we assume these parameters to be identical for both sectors in the spirit of As-
sumption 4. The functional form of Eq. (40) is similar to the one introduced in Eq. (24), in the
sense that the R&D success probability (i) increases with R&D efforts, HR,k,i,t, (ii) exhibits decreasing
marginal returns in R&D efforts, and (iii) decreases with the complexity of the machine line, qκk,i,t

k .
Moreover, combined with the free-entry condition in R&D in Eq. (25), the R&D success probability
considered here also appears to be independent from the specific machine line as

λk,t = λ̄
1

1−ε

[
Gν,tπ̄k,t

wt[pm
k,t]

α
1−α

] ε
1−ε

. (41)

The comparative statics of the equilibrium R&D success probability is also similar for both paramet-
ric forms: the higher the sector-specific profit perspectives, π̄k,t, and the level of the current GPT,
Gν,t, (resp. the lower the production cost of machines, pm

k,t, and the cost of R&D, wt), the higher the
R&D efforts and consequently the higher the sector-specific R&D success probability.18

18It can also be shown that the calibration of the two parametric forms, proposed respectively in Eq. (24) and (40),
result in similar behaviors, in the sense of close numerical values for R&D success probability derived from the free-entry
condition, i.e., from the underlying innovation incentives.
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Substituting the previous equilibrium relations into innovator profits defined by Eq. (47) yields

gQ,r,t

gQ,e,t
=

qr − 1
qe − 1︸ ︷︷ ︸

R&D efficiency

×
[

pr,t

pe,t

] ε
(1−α)(1−ε)

︸ ︷︷ ︸
price effect

×
[

Hβ
r,tE

γ
r,t

Hβ
e,tE

γ
r,t

] ε
(β+γ)(1−ε)

︸ ︷︷ ︸
market-size effect

×
[

Ar,t

Ae,t

] ε
(1−α)(1−ε)

︸ ︷︷ ︸
productivity effect

. (42)

In a generalization of Acemoglu et al. (2012), the relative sectoral intensity in R&D then appears
to be driven by: (i) an R&D efficiency effect, (ii) a price effect favoring innovation toward the sector
with the higher price, that is the least advanced sector and/or the sector where the energy resource
is the most scarce according to Proposition 2, (iii) a market-size effect favoring innovation in the larger
sector in terms of employment and energy use (i.e., the larger potential market for complementary
machines), that is, the most advanced sector and/or the sector where the resource is the most abun-
dant according to Proposition 3, and (iv) a direct productivity effect favoring innovation in the more
advanced sector in terms of learning-by-doing. It is worth mentioning that there is now a direct
effect from the sector specific level of knowledge, Qk,t, which is due to the specific parametric form
of Eq. (40) where the normalization of R&D efforts by qκk,i,t+1

k exactly compensates for the effect from
the machine-specific quality level in π̄k,t. However, as already seen in Proposition 2 and 3, relative
R&D knowledge shapes equilibrium relative final input prices and factor use, indirectly featuring a
build-on-the-shoulders-of-giants effect in R&D. To demonstrate this result, we consider an additional
technical assumption regarding the competition regime for capital good provision.

Assumption 7 (CG production) Capital goods are produced within a monopolistic competition regime.

This assumption simplifies the analysis by ensuring that the scaling factor for the sector-specific
R&D knowledge is constant, that is Qk,t = α

α
1−α and Q̂k,t = α

1
1−α . However, it does not alter the

fundamental drivers of innovation. Indeed, the hybrid competition regime presented in Subsection
3.3.3, where only machines’ lines that experience successful R&D are supplied under monopolistic
competition while others are supplied competitively, was introduced to ensure zero aggregate prof-
its. Hence, labor is the only source of income for households, which result in bounded and tractable
fertility choices. Relaxing this assumption would only magnifies the impact of the pre-existing R&D
knowledge stocks Qk,t.

Substituting the ratios of equilibrium relative prices and quantities within Eq. (42) allows the
full characterization of the endogenous direction of technical change by

gQ,r,t

gQ,e,t
=

qr − 1
qe − 1

[
Ar,t

Ae,t

](σ−1) ε
1−ε
[

Ψr,t

Ψe,t

]−γ(σ−1) ε
1−ε
[

Qr,t

Qe,t

]((1−α)(σ−1)−1) ε
1−ε

. (43)

Theorem 3 (Direction of technical change) Under Assumption 4, 5, 6 and 7, and assuming that final
inputs are sufficiently substitutable (i.e., that (1− α)(σ− 1) ≥ 1), R&D technical change tends to be biased
against the least advanced sector, both in terms of learning-by-doing and R&D knowledge, and/or the sector
relaying on the energy resource that is the most scarce.

Proof. A direct interpretation of Eq. (43) yields this result.

This theorem illustrates the transition mechanism that is central within this paper. At first, the
renewable sector is technically more advanced thanks to learning-by-doing (Ar,0 > Ae,0), the corre-
sponding extraction cost is slightly less expensive or similar (Ψr,0 ≤ Ψe,0), and R&D (if any) is more
intense in this sector (Qr,0 ≥ Qe,0). Thus, the renewable resource is used at a larger scale than the
exhaustible one, according to the equilibrium consumption ratio

Er,t

Ee,t
=

[
Ar,t

Ae,t

]σ−1 [Qr,t

Qe,t

](1−α)(σ−1) [Ψr,t

Ψe,t

]−γ(σ−1)−1

.
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However, as the renewable resource flow gets closer its ultimate maximum potential, its corre-
sponding extraction cost, Ψr,t, increases. In the meantime the exhaustible extraction cost, Ψe,t, re-
mains steady as the corresponding stock is initially nearly untapped. Moreover, due to the decreas-
ing returns of learning-by-doing, the stock of knowledge in the renewable sector, Ar,t, ultimately
grows less than in the exhaustible sector, Ae,t. These conflicting forces ultimately reverse the incen-
tives to perform R&D, that becomes biased toward the exhaustible sector. Up until a certain point,
and provided extraction costs do not reverse due to the depletion of the exhaustible resource, the
direction of R&D toward the exhaustible sector become self-sustained (in the sense that a decrease
in the Qr,t/Qe,t ratio only triggers more R&D towards the exhaustible sector). This mechanism also
triggers a reversal in the use of energy input, that is in the Er,t/Ee,t ratio, which materializes in an
energy transition toward the exhaustible resource. In the next section, we illustrate this mechanism
through numerical trajectories of a calibrated version of our model.

5 Numerical Analysis of the Transition Dynamics

In this section, we present the results of our numerical simulations. First, we focus on the historical
experience of Great Britain for the period from 1700 to 1960. After introducing our baseline cali-
bration, we discuss several counterfactual simulations to assess the role of coal in the timing and
magnitude of the Industrial Revolution. We then turn to a comparison of "Western Europe" – i.e.,
the aggregation of Great Britain, Sweden, France, Germany, Italy, Spain, Portugal, and the Nether-
lands – and "Eastern Asia" – i.e., China–, two regions of the world that are roughly comparable in
terms of territory, population, and resources during the last three centuries.19 This exercise allows
us to assess the comparative development analysis of Pomeranz (2000), who argues that the greater
resource availability in Western Europe compared to Eastern Asia explains its earlier economic take
of. More broadly, these exercises allow us to identify the deep rooted factors that triggered and
sustained the transition from limited to sustained growth between these two regions of the world.
Before analyzing these simulation results, we briefly describe the strategy employed to calibrate the
model.

5.1 Calibration Strategy

Our numerical simulations begin in 1700 and follow a 20 years step. To ease the interpretation
of the results, we normalize to unity in 1700 the relevant time-series that will be fitted (i.e. GDP,
population, human capital per capita, total energy consumption).20 In the simulations, we rely on
Eq. (24) for the functional form for the probability of R&D success. This choice is motivated by
the numerical tractability of this functional form, which is intrinsically bounded by λ̄k and admits a
bounded derivative whenever R&D efforts tend toward zero (e.g., HR,k → 0).21 To account for the
stochastic nature of endogenous GPT generation, we adopt a Monte Carlo approach and perform

19Pomeranz (2000, pp. 7–10) has extensively argued that what must be compared to Great Britain is not China as a
whole, but only its most advanced development centre at the time of the Great Divergence, i.e. the Yangtze Delta. As a
corollary, if the entirety of China is chosen for reasons of data availability, it must be compared to Western Europe.

20Consequently, we introduce a level parameter, Y0, in the final good production technology, such that Yt =

Y0

[
∑k∈{r,e} Y

σ−1
σ

k,t

] σ
σ−1

under Assumption 4 (notably ∀k ∈ K, ϑk = ϑ). We consistently assume that initial stocks of learning-

by-doing (e.g., Ak), R&D (e.g., Qk), and general purpose (e.g., Gt) knowledge is normalized to unity. We also consistently
assume that the level of human capital per capita absent education, h̄, is normalized to unity.

21The alternative functional form, introduced in Eq. (40) to derive analytical results, would admit an infinite derivative,
such that an equilibrium without R&D would not be possible.
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10,000 runs for each of the scenarios presented below.22 We graphically present truncated average
and 90% [0.05; 0.95] probability intervals of the obtained Monte Carlo trajectories.23

Due to the high dimensionality of the calibration problem, we rely at first on several assump-
tions. As for the theoretical analysis, we only consider two final input sectors respectively exploiting
a renewable (indexed by r) and an exhaustible (indexed by e) energy resource. We chose the initial val-
ues of exhaustible energy and renewable stocks, Rr,0 and Re,0, so that both would be half depleted
by 2000 in the British and Western European cases; and in the case of Eastern Asia, we assume that
the remaining exhaustible stock and renewable potential in 2000 would equal the Western European
stock and potential for comparison purposes. To prevent any bias between final input sectors, we
generalize Assumption 4 and impose a symmetric calibration for both sectors, except for extraction
cost functions of primary energy and R&D productivity gains. More specifically, we assume that
the scale, Ψk, and the convexity, ψR,k, of the extraction cost functions may differ, and that one sec-
tor may generate greater quality improvements, qk, than the other (which could however be the
case provided coal is for instance more concentrated than wood). Thus, we do not expect one R&D
technology to be cheaper or to have a higher frontier success probability. In what follows, we conse-
quently drop the sectoral indexes k whenever there is no ambiguity due to this symmetry assump-
tion. These assumptions ensure that, apart from endogenous dynamics, directed technical change
and relative use of energy factors (i.e., the energy transition) will only result from clearly identified
structural differences in the extraction cost functions of the two sectors.

In addition, we borrow the identifiable parameters related to production technologies from the
literature. More precisely, α is set to its conventional 1/3 value to match the share of capital (e.g.,
Acemoglu et al., 2012), and γ to 1/6, which is an intermediate value between the modern and
preindustrial cost-share of energy in England (respectively approximately 5% and 25% according
to Gentvilaite et al. (2015)). This leaves a share of labor, β, set to 1/2. Due to our symmetry assump-
tion for final inputs, we assume ϑ = 1.24 We also set the elasticity of substitution between final
inputs, σ, to 4.4 as in Kander & Stern (2014). The usual assumption of a 5% annual depreciation rate
for physical capital translates to setting δ to 0.64. We also assume that young adults save 20% of
their revenue for an interior solution of Problem 1, that is st/zt = 0.2, which allows us to express η
as a function of χ according to Eq. (31).

At last, we use a best-fit calibration procedure to set the remaining parameters and initial val-
ues so as to replicate the historical times-series of energy resource flows, GDP, population, human
capital per capita, and frequency of GPTs. We rely on sampling methods (design experiments proto-
cols) to tackle the high dimensionality and computational intensity of our calibration problem. We
basically us Latin Hypercube Sampling design with a maximin criteria25 (Morris & Mitchell, 1995) to
discriminate a wide range of calibration values using scoring metric based on squared-fit error with
regards to historical time-series. The details of the calibration process are given in Appendix E.

5.2 The British Industrial Revolution

In our first numerical analysis, we focus on the British industrial revolution. Indeed, as presented
in Section 2, some historian economists have emphasized the key role of coal as the main, if not
sole, driver of the British early economic take-off (e.g. Allen, 2009; Pomeranz, 2000). To assess this

22We checked that the probability intervals do not significantly vary when increasing the number of simulations.
23We compute truncated averages, that is averages within the [0.05; 0.95] probability interval of each simulated period,

to rule out numerical errors that appear on a few runs at the upper tail of the probability distributions. In what follows,
we refer to "truncated mean" whenever we mention "mean".

24To be precise, ϑ is set to 0.5 but the level parameter Y0 that pre-multiplies the production technology in the final good
sector allows to set the distribution parameters to 1.

25The LHS feature ensures good projective properties in each dimension of the calibration set, and the maximin criteria
(maxmimizing the minimal distance across designs) ensures the diversity of the selected designs.
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claim, we contrast a baseline calibration – set to reproduce historical data – to four counterfactuals.
The latter are characterized by changes in the deep-rooted growth factors, namely energy extraction
costs and resource levels, learning-by-doing accumulation – which is tightly linked to human capital
accumulation as emphasized by Galor & Weil (2000) –, and GPTs diffusion speed. Our calibration
database includes time-series about energy consumption (Kander et al., 2013; Warde, 2007) 26, real
GDP per capita (Bolt et al., 2018; Broadberry et al., 2015), population (Fouquet, 2014), human capital
per capita (Lee & Lee, 2016), and GPTs’ frequency (Lipsey et al., 2005, p. 132). We show that once
accounting for additional growth mechanisms, notably human capital accumulation, the energy
transition towards coal appears much more as a catalyst than the root cause of the economic take-off
during the Industrial Revolution.

5.2.1 Scenarios

We restrict our simulations to the 1700-1960 period to focus on a period in which the British energy
consumption can reasonably be circumscribe to national resources (and does not depend too heavily
on oil imports for instance). We show in the next case study how the model behave with a larger
geographical area and longer time horizon. We distinguish the following scenarios:

– Baseline : follows the calibration procedure given above to fit the model to the British historical
data. The obtained calibration set is given in Appendix F.

– High cost: is a counterfactual simulation where the level parameter, Ψe, in the extraction cost
function of the exhaustible sector is ten times as large as in the baseline scenario. This second
scenario investigates the possible impact of a similar size but less concentrated exhaustible
energy stock on the timing of the British industrial revolution.

– Low diffusion: is a counterfactual simulation where the diffusion speed of GPT, ξ, is ten times
lower than in the baseline calibration. In this fourth scenario, we investigate the impact of
knowledge diffusion on demography and its ultimate consequences on the transition from
limited to sustained economic growth.

– Low learning: is a counterfactual simulation where the learning-by-doing productivity gains
common to each final input sector, Ω, are ten times lower than in the baseline calibration. In
this fifth scenario we assess the impacts on economic growth of lower efficiency of institutions
in gathering and accumulating knowledge before the advent of formal R&D.

Consistently with the analysis from Section 4, we retrieve in the baseline calibration the following
features: (i) for the same level of remaining resource and technology, it is relatively more costly to
exploit the exhaustible resource, that is Ψr < Ψe (e.g., cutting wood is ceteris paribus easier than
mining for coal), (ii) the exhaustible extraction cost is relatively more convex with respect to the
level of remaining stock, that is ψR,r ≤ ψR,e (e.g., mining for the last 10% of the remaining stock of
coal is more expensive than to cut the analogous last 10% of the remaining wood resource), (iii) the
overall extraction cost is higher in the exhaustible sector in the beginning of our simulations, that is
Ψe,1700 > Ψr,1700, and (iv) R&D quality improvements appear to be equivalent in both sectors, that is
qr ≈ qe (e.g., no ex ante technical bias for a sector).

26The renewable primary energy resource of our model aggregates food, fodder, woodfuel, water and wind flows,
whereas the exhaustible primary energy resource is an aggregate of coal, oil, gas, and nuclear.
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5.2.2 Discussion: Coal as a Growth Catalyst

Figure 3 presents the numerical results of our baseline scenario, that is the mean and the [0.05; 0.95]
probability interval of the 10,000 runs, against the British historical data. The model replicates the
time-series of GDP, population, GDP/capita, human capital per capita, and energy resource flows.
The Great Depression of 1929 and World War II (WWII) induce a drop in most time-series in 1940
and 1960. The model is of course not designed to replicate such exceptional events and overshoots
these historical points. For illustration purpose, we ’adjust’ the 1940 and 1960 points with (expo-
nential or quadratic) interpolations from 1900 to 2000, which are displayed in crosses. The fit of the
baseline scenario is consistent with these adjusted data, including the GPT’s frequency as displayed
in Figure 9 of Appendix I, suggesting the model is a good representation of an economy absent major
external shocks. One can notice that the model does not perfectly replicate the convexity of popula-
tion time-series. The fit cannot be improved in our setting insofar as fertility exhibits a monotonous
decreasing and bounded dynamics. However, introducing an additional survival consumption con-
straint within Problem HH, as in the seminal paper of Galor & Weil (2000), would solve this issue
by generating an initial purely Malthusian ramp-up period for fertility. However, this refinement
would significantly increase the computational intensity of the calibration procedure. Therefore,
and the focus of this paper is to assess the impact of the energy transition on the economic take-off,
we keep the population specification introduced so far.

We now turn to the counterfactual analysis displayed in Figure 4 and Table 1 to 4. Considering
at first the high cost scenario, with regards to the baseline calibration, one can observe a 91% drop by
in nonrenewable energy consumption while renewable energy resource consumption is 9% higher
(substitution effect). As a result, the gradual transition towards exhaustible energy is delayed by al-
most a century. However, as the renewable resource flow reaches more rapidly its ultimate natural,
it is not abundant enough to fuel economic growth. Accordingly, by 1900, this alternative energy
transition dynamic results in an average 87% total energy consumption decrease and a 35% loss in
GDP per capita in the high cost scenario compared to the baseline scenario. However, once technical
change is advanced enough to compensate for the higher extraction cost of the exhaustible resource,
the latter consumption significantly increases concomitantly with GDP and GDP per capita. Thus,
a lower exhaustible resource quality only delays – and does not prevent – the industrial revolution
by about 45 years. Moreover, it is worth mentioning that the detrimental impacts of an alterna-
tive low stock scenario27 tend to be increasing and persistent, despite an initially lower magnitude
(consistently with an initially lower extraction cost compared to the high cost scenario). The lack of
available energy resources is indeed hindering economic growth, hence in 1960 a 35% decrease with
regards to the baseline calibration in GDP per capita in such a low stock scenario, rather than a 17%
decrease in the high cost scenario. However, one can still observe an acceleration of growth in the be-
ginning of the XXth century sustained by human capital accumulation. As a result, once additional
growth mechanisms such as human capital accumulation and technical changes are accounted for,
our counterfactual simulations suggest that the energy transition towards coal was much more a
catalyst than the root cause of the British economic take-off.

Next, the low diffusion scenario results in a lower consumption of both energy resources, which
is more significant for the exhaustible one. Thus, in 1900, total energy supply is 31% lower than in
the baseline calibration. In addition, the slower diffusion of GPTs implies a lower efficiency for both
the learning-by-doing and the R&D processes. The cumulative nature of these processes generates
a persisting and increasing gap. Moreover, the resulting hampered knowledge accumulation affects
the quantity-quality trade-off, hence in 1960 an average 3.2% higher population level and an average

27Such a scenario would for instance consider a 10 times lower stock of exhaustible resource rather than a higher ex-
traction cost (i.e., lower resource quality). The detailed results are available upon request.
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Fig. 3 Comparison of baseline calibration (solid lines are averages, shaded areas represent 90% probability intervals) with his-
torical data (diamonds) and extreme-events-adjusted data (crosses), 1700–1960.
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7.5% loss in human capital per capita. The combined impact results in an average GDP per capita
loss of 18% in 1900 and 22% in 1950 with regards to the baseline calibration.

Turning to the low learning scenario emphasizes the crucial role of knowledge for demogra-
phy, energy, and growth patterns. In this counterfactual, since learning-by-doing accumulate more
slowly, the returns on education are initially not sufficient to make the investment worthwhile, hence
a postponed children quantity-to-quality transition. The demographic transition is consequently
postponed, which results in a larger population (+9% in 1900 and +19% in 1960) with an average
lower human capital per capita (-17% in 1900 and -27% in 1960). The consequently lower supply
in human capital penalizes energy extraction processes and delays R&D technical change, which
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Fig. 4 Comparison of baseline calibration (black) with counterfactual simulations high cost (blue), low stock (green), and low
learning (red), 1700–1960 (solid lines are the averages, shaded areas represent 90% probability intervals).
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together generates a negative impact on economic growth. As a result, compared to the baseline
calibration, the energy transition is delayed by about 40 years as both renewable and exhaustible en-
ergy consumption experience an average decrease of 12% and 61% respectively in 1900. Among all
counterfactual simulations, the delayed energy transition of the low learning scenario generates the
strongest lag in economic take-off of about 60 years, with relative average GDP per capita losses of
45% and 51% in 1900 and 1950 respectively. Moreover, the gap in GDP and GDP per capita is increas-
ing over the period: despite a slight acceleration in the 1900-1950 period, there is no clear economic
take-off in this scenario. This counterfactual suggests that, in line with the previous findings from
Galor & Weil (2000), the interaction between technology and human capital through education is
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the key mechanism that drove the industrial revolution. As a corollary, the coal hypothesis does
not seem to hold in a strong interpretation (i.e., as the sole cause of growth) once accounting for
human capital, which was not the case in previous contributions to the literature (e.g. Otojanov,
2018; ?). However, energy use is likely to have shaped the timing of the industrial revolution and its
magnitude, acting as a catalyst of the previous mechanism.

Fig. 5 Phase diagram of the growth rate of R&D-based knowledge in the baseline (black), high cost (blue), low stock (green),
and low learning (red) calibrations (points are averages, dashed line represents the first bisector).
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We finally investigate more closely the direction of technical change toward the exhaustible re-
source sector, which is one of the central transition mechanisms explored in this paper. Figure 5
presents the phase diagram of the growth rate of R&D-based technical change in each sector, as
given by Eq. (36). The area above (resp. below) the first bisector characterizes R&D technical change
biased towards the exhaustible (resp. renewable) sector (that is a higher relative R&D growth).
First, R&D-based technical change only starts in the XIXth century (1820 in the baseline calibration).
Indeed, according to Eq. (33), R&D is initially not profitable enough – in terms of monopoly profits
– due to insufficiently mature GPTs and efficient learning-by-doing technical change. Second, in all
but the high-cost scenario, technical change is biased toward the exhaustible sector whenever R&D
starts. This event coincides with the acceleration of both the exhaustible resource consumption and
GDP growth. In particular, in the baseline, low diffusion and low learning cases, R&D even exclusively
occurs in the exhaustible sector until 1860, 1880, and 1860 respectively. This is in line with our an-
alytical results: rising extraction costs in the renewable sector, due to a shortage in the available
resource – in 1800, about 50% of the stock of the renewable resource is extracted in the baseline sce-
nario against a mere 2% of the exhaustible one –, (re)directs R&D-based technical change towards
the exhaustible sector. The high cost scenario also illustrates this mechanism. A higher extraction cost
in the exhaustible sector initially drives innovation toward the renewable sector. However, as 63%
of the renewable resource is extracted by 1880, the associated rising extraction cost reverses previous
R&D incentives towards the exhaustible sector, which coincides with a delay in the acceleration of
economic growth. Third, at the turn of the XXth century, R&D in the renewable sector gains mo-
mentum in the baseline, low diffusion, and low learning scenarios, resulting in a more balanced but
still biased technical change at the end of the simulation horizon (1960). Indeed, due to knowledge
accumulation, more frequent GPTs arrival and diffusion, and rising costs in the exhaustible sector
(about 30% of the exhaustible stock has been extracted by 1940 in the baseline scenario)), R&D also
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becomes competitive in the renewable sector, thus reducing (but not offsetting) the initial technical
bias towards the exhaustible sector.

Table 1 Percentage change in renewable (Er), exhaustible (Ed), and total (E = Er + Ee) energy consumption, between the
average trajectories of counterfactual scenarios and the baseline calibration.

Chg. w.r.t. ∆Er in % ∆Ee in % ∆E in %
Baseline 1800 1900 1960 1800 1900 1960 1800 1900 1960

High cost +3.8 +8.8 +7.6 -95.7 -91.1 -45.2 -75.0 -86.9 -43.5
Low diffusion -1.2 -2.5 -4.4 -7.4 -32.2 -12.6 -6.1 -31.0 -12.4
Low learning -7.1 -11.8 -11.8 -37.1 -61.0 -24.2 -30.8 -58.9 -23.8

Note: For any variable X ∈ {Er, Ee, E} of any counterfactual scenario (c), we denote the percentage change with respect to
(w.r.t.) the baseline (b) as ∆Xc, with ∆Xc = (Xc − Xb)/Xb.

Table 2 Percentage change in GDP (Y) and GDP per capita (Y/P), between the median trajectories of counterfactual
scenarios and the baseline calibration.

Chg. w.r.t. ∆Y in % ∆(Y/P) in %
Baseline 1800 1850 1900 1950 1800 1850 1900 1950

High cost -30.4 -32.9 -34.6 -21.3 -30.4 -32.9 -34.6 -21.2
Low diffusion -2.6 -6.3 -16.5 -19.8 -2.7 -6.7 -17.5 -21.8
Low learning -15.2 -26.0 -39.8 -43.0 -16.1 -28.7 -44.9 -51.3

Note: For any variable X ∈ {Y, Y/P} of any counterfactual scenario (c), we denote the percentage change with respect to
(w.r.t.) the baseline (b) as ∆Xc, with ∆Xc = (Xc − Xb)/Xb. Given that the time step of the model is 20 years, starting in
1700, the results for 1850 and 1950 are obtained through exponential interpolations of our simulated results.

Table 3 Percentage change in the compound annual growth rate of GDP (CAGRY/P) and exhaustible energy (CAGRE)
between the average trajectories of counterfactual scenarios and the baseline calibration.

Chg. w.r.t. CAGRY/P in p.p. CAGRE in p.p.
Baseline 1800-1850 1850-1900 1900-1950 1800-1850 1850-1900 1900-1950

High cost -0.08 -0.05 +0.38 -0.94 -0.37 +2.42
Low diffusion -0.08 -0.23 -0.08 -0.26 -0.37 +0.39
Low learning -0.28 -0.42 -0.11 -0.64 -0.41 1.03

Note: For any variable X ∈ {Y, Y/P} of any counterfactual scenario (c), we denote the percentage change with respect to
(w.r.t.) the baseline (b) as ∆Xc, with ∆Xc = (Xc − Xb)/Xb. Given that the time step of the model is 20 years, starting in
1700, the results for 1850 and 1950 are obtained through exponential interpolations of our simulated results.

5.3 Comparative Analysis of Western Europe and Eastern Asia

In our second numerical exercise, we turn to a comparative analysis of Western Europe (i.e., the
aggregation of Great Britain, Sweden, France, Germany, Italy, Spain, Portugal, and the Nether-
lands) against Eastern Asia (i.e., China), hereafter respectively labelled WE and EA. We aim to assess
whether energy resource quality (i.e., relative extraction costs) have shaped development patterns,
as advocated by Pomeranz (2000). We thus compare a baseline calibration for each geographical area
– set to replicate historical data –, and a counterfactual scenario for EA. Our calibration database in-
cludes time-series about energy consumption (Kander et al., 2013), real GDP per capita (Bolt et al.,
2018; Broadberry et al., 2018; Fouquet & Broadberry, 2015; Malanima, 2011), population (Kander
et al., 2013; Maddison, 2007; Malanima, 2009; World Bank, 2018), and human capital per capita (Lee
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Table 4 Delay (years) to reach the average levels of GDP per capita (Delayy) and total (E = Er + Ee) energy consumption
(DelayE) of the baseline scenario for the counterfactual scenarios.

Chg. w.r.t. Delayy in yr. DelayE in yr.
Baseline 1800 1850 1900 1800 1850 1900

High cost +72 +44 +26 +104 +79 n.r.
Low diffusion +8 +13 +17 +4 +12 +25
Low learning +80 +60 +53 +36 +42 +46

Note: “n.r.” means “not reached within the simulated horizon (1700-1960)”. The top-left square reads "in the high-cost
scenario, it take 23.1 more years to reach the GDP level of the baseline scenario in 1850 ". Given that the time step of the
model is 20 years, starting in 1700, the results for 1850 and 1950 are obtained through exponential interpolations of our
simulated results.

& Lee, 2016).28 Our counterfactual analysis reveals that energy resource quality help to explain the
timing differential in the economic take-off in these two world regions, which again supports the
coal-hypothesis in a weak sense.

5.3.1 Scenarios

We adopt a 1700-2000 simulation period to encompass the take-off periods of both WE and EA. We
distinguish the following scenarios:

– Baseline WE : follows the calibration procedure given in Section 5.1 to fit the model to WE
Western European historical data. The obtained calibration set is given in Appendix G.

– Baseline EA : follows the general calibration procedure given in Section 5.1 to fit the model to
EA historical data. The obtained calibration set is given in Appendix H.

– Alternative EA : is a counterfactual simulation for Eastern Asia in which we set the values of
the main pre-industrial deep-rooted growth factors to an order of magnitude similar to their
WE counterparts. More precisely, (i) the renewable resource extraction cost parameters, Ψr
and ψR,r, are multiplied by 3 and 1.5 respectively, (ii) the learning-by-doing technical change,
Ω, is multiplied by 10, and (iii) the general productivity, Y0, is multiplied by 1.3. The other
parameters and initial values, such as the initial levels of energy resources,Rk,0, are maintained
to their baseline EA levels.

5.3.2 Discussion: Energy Quality as a Meaningful Mechanism for Comparative Development Analysis

Figure 6 presents the numerical results of our three scenarios, that is the mean and the [0.05; 0.95]
probability interval of the 10,000 runs, against historical data. The overall fit is satisfactory for both
baseline WE and baseline EA, except for the later population and human capital time-series. As al-
ready mentioned, this is a drawback from the monotonic fertility pattern arising in our framework,
while the Eastern Asian case clearly exhibits a ramp-up period for fertility. Again, introducing a
survival consumption threshold as in Galor & Weil (2000) would solve this issue but make the cali-
bration process more complex, which we refrain from doing in this paper. Moreover, in both baseline
WE and EA calibrations, the model tends to over-fit historical data during the extreme events of
WWI and WWII, obviously not modelled within our framework. The resulting additional depletion
of the exhaustible resource with regards to historical data, coupled with a strengthening globaliza-
tion since the 1970s – associated with increasingly intense international oil flows –, might explain

28Exponential or polynomial interpolations were performed to reconstruct missing occurrences in the time-series that
were not given at a year-by-year basis.
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why the model tends to then under-fit the historical exhaustible energy consumption in the last
period of simulation. For illustration purposes, we again ’adjust’ the 1940, 1960 and 1980 points
with interpolations from 1900 to 2000, which are displayed with crosses. The fit of the two baseline
scenarios is consistent with these adjusted data points, which suggests the model is again a good
representation of an economy in the absence of major external shocks.

Fig. 6 Comparison of baseline WE calibration (blue) with baseline EA calibration (red) and alternative EA calibration (purple),
1700–2000, (solid lines are averages, shaded areas are 90% probability intervals, diamonds are historical data and crosses are extreme-
event-adjusted data).
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A comparison between the baselines calibration reveals three main pre-industrial differences be-
tween the two world regions.29 First, renewable energy appears to be relatively easier to access (i.e.,
relatively lower extraction cost, that is relatively better quality) in EA than in WE. Second, the effi-
ciency of learning-by-doing technical change is about one order of magnitude lower in EA compared
to WE (-93% difference in the Ω parameter).Third, this significant difference in technical efficiency
is magnified by the initial general productivity, Y0, that is about 30% higher in WE compared to EA.
When parameters are changed accordingly in the alternative EA scenario, the pattern of the simu-
lation becomes much more similar to the baseline WE scenario. This is mostly visible in terms of
the timing of the real GDP take-off and trajectories of exhaustible energy consumption flows, and
confirmed in the pattern of R&D-bias as displayed in Figure 7. This phase diagram shows that in
the baseline EA scenario, only the renewable sector experiences significant R&D until the end of the
XIXth century. Thus, in line with the above-mentioned lower accumulation of learning-by-doing
technical change and more concentrated energy in the renewable resource, R&D is initially strongly
biased against the exhaustible sector. It only become profitable enough to initiate by the middle of
the XXth century, concomitantly to the observed economic take-off. By contrast, in the alternative
EA scenario, directed technical change is more rapidly biased toward the exhaustible sector, notably
because knowledge accumulation is more efficient – which also implies that GPTs become more fre-
quent and diffuse more widely – and because the renewable resource is more costly. Again, the shift
towards a strong exhaustible sector R&D-bias in both the baseline WE and alternative EA scenarios
coincides with the large-scale use of the exhaustible resource and the beginning of the economic
take-off. Thus, resources quality endowments discrepancies are relevant to explain the comparative
dynamics of Western Europe and Eastern Asia, as suggested by Pomeranz (2000). However, it is
worth highlighting again that once accounting for the interaction between technologies and human
capital, as emphasized by Galor (2005), energy use does not appear any more as the root-cause of
the economic take-off.

Fig. 7 Phase diagram of the growth rate of R&D-based knowledge in the baseline WE (blue), baseline EA (red) and alterna-
tive EA (purple) calibrations (points are averages, dashed line represents the first bisector).

Growth rate of innovation in the renewable sector

G
ro

w
th

 r
at

e 
of

 in
no

va
tio

n 
in

 th
e 

ex
ha

us
tib

le
 s

ec
to

r

0.00 0.05 0.10 0.15

0.
0

0.
1

0.
2

0.
3

0.
4

1820

1840

1860

1880

1900

1920

1940
1960 1980

2000

1880 1900 1920

1940

1960

1980

2000

1860 1880

1900

1920

1940

1960

1980

2000Baseline WE
Baseline EA
Alternate AE

29This comparison is relevant provided historical time-series have been normalized to unity in the first simulation
period (i.e., 1700), and the general calibration procedure was applied separately for WE and EA.
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6 Conclusion

In this article, we assess the role of energy in long-term growth also accounting for more conven-
tional transition mechanisms extensively documented in the literature, namely the accumulation of
human capital and its interaction with technologies. To do so, we develop an endogenous growth
model of a closed economy featuring fertility choices, energy extraction and knowledge accumula-
tion. We analytically show that a shortage in renewable energy, such as wood, can be effective at
triggering biased technical change towards a more abundant resource, such as coal. We then take
the model to the data and investigate the transition from limited to sustained economic growth for
two historical episodes: the British Industrial Revolution and the comparative dynamics of Western
Europe and Eastern Asia.

Regarding the British case, our counterfactual analyses suggest that the energy transition to-
wards coal in the XIXth century does not appear as the root-cause of the economic take-off, but rather
acts as a catalyst required to observe contemporary levels of economic developments. Our numerical
simulations indeed suggest that raising the extraction cost of coal by one order of magnitude – that
is degrading fossil energy accessibility – delays the industrial revolution by about 45 years. More-
over, the interaction between technology and human capital accumulation is central in unlocking
the industrial potential of the exhaustible energy resource and triggering the demographic transi-
tion. Lowering learning-by-doing technical change by one order of magnitude has the consequence
of dividing the exhaustible energy consumption by a factor of more than two in 1900, resulting in
a 45% drop in output per capita. In this case, the resulting delayed demographic transition magni-
fies the downside impact of knowledge accumulation, hindering human capital accumulation, R&D
technical change, and exhaustible energy extraction. Regarding the comparative development of
Western Europe and Eastern Asia, our numerical analyses suggest that discrepancies in fossil en-
ergy accessibility and learning-by-doing technical change, relatively higher in Western Europe, can
explain the observed timing and magnitude differentials in the economic take-off.

The analysis of the knowledge-energy-demography nexus of this article thus sheds some light on
both the timing and the magnitude of the industrial revolution. It thus supports a coal hypothesis of
economic growth in a weak sens, meaning that energy resource endowments cannot by themselves
account for the timing and magnitude of economic development trajectories and need to be analysed
in interaction with human capital and technical change. However, these findings call for a better
consideration of energy in the analysis of future long-term growth patterns due to its significant role
as a catalyst, in particular regarding the energy shift towards modern renewable technologies that
is needed to tackle global climate change.

Appendix A Detailed Evidences on Drivers of Economic Development

A.1 The controversial child quantity-quality trade-off

If some studies, such as Cáceres-Delphiano (2006) for the USA, Li et al. (2008) for China, and Becker
et al. (2010) for Prussia, find the expected negative family-size/child-quality relationship, other em-
pirical studies, such as Angrist et al. (2010) for Israel, Black et al. (2005) for Norway, and Clark &
Cummins (2016) for England, find no evidence of such a quantity-quality trade-off. Regarding the
emblematic case of Britain on the period 1780–1880, Clark & Cummins (2016) find that family size
did not affect education, occupation, longevity, or even wealth. On the wider 1580–1830 period,
Wrigley et al. (1997, p. 461) suggest that natural fertility was the norm in England, so that small
groups may have been practising family limitation, but the reconstitution evidence suggests that
such behavior was restricted to a small minority of the population, if present at all.

Clark & Cummins (2016) conclude that modern growth consequently cannot be explained by a
switch to smaller family sizes accompanied by more investment in child quality. Modern growth
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in England had begun 100 years before there were significant reductions in average family sizes.
This one hundred year delay between the ignition of the accelerated economic growth and the on-
set of the demographic transition in England suggests that alternative mechanisms should be called
on to better relate the initiation of the transition towards sustained economic growth to the appar-
ently subsequent (and not simultaneous) demographic transition. However, a more recent study
performed by Klemp & Weisdorf (2018) finds that parental fecundity positively affected the number
of siblings and that children of parents with lower fecundity were more likely to become literate and
employed in skilled and high-income professions. In summary, there is no systematic evidence that
the child quantity-quality trade-off exist.

Moreover, there is also no consensus on the idea that the quantity-quality trade-off, if it exists, is
the main driver of the demographic transition. Different social scientists have suggested that social
norms, the large declines in mortality starting in the nineteenth century, and the reduced need for
child labor are potential factors contributing to the demographic transition. Becker (1981) was the
first to formalize a theory relating the quantity-quality trade-off of households to the rise in demand
for human capital. But twenty years before, Becker (1960) advanced the much simpler argument that
the decline in fertility was a by-product of the increase in income and the associated rise in the op-
portunity cost of raising children. This theory hinges on the supposition that individual preferences
reflect an innate bias against child quantity beyond a certain level of income. This mechanism was
recently modeled by Strulik et al. (2013). Before them, Jones (2001) used a simplified version of the
same approach with a formal representation of the mortality rate, which allowed him to reproduce
the fact that mortality rates decrease before fertility rates in countries experiencing a demographic
transition.

A.2 The exaggerated role of human capital for take-off

One can cast some doubts on the central role that unified growth models accord to human capital
of the general population in fostering economic take-off. Indeed, Mokyr (2011, p. 232), notices the
weak accomplishment of schooling to build human capital that would be useful to reach a mod-
ern regime. According to him, even in the eighteenth-century, public education in Britain was pri-
marily destined to educate gentlemen in the traditional sense of the word, that is, men without a
well-defined occupation whose curricula consisted of the classics, languages, and other humanities.
Besides, Mokyr (2011, p. 239) shows that adult literacy rates in Britain circa 1800 were equivalent to
those of France and Belgium, and were even lower than those of the Netherlands. Moreover, Mokyr
(2011, p. 239) asserts that even if Britain rapidly became richer than other countries thanks to its
early economic take-off, its ability or willingness to educate its young did not appreciably improve
during the first phase of the Industrial Revolution. At the end of the nineteenth century, school
enrollment was indeed not higher in Britain relative to countries that experienced delayed takeoffs
such as Prussia or France.

Finally, as an unequivocal criticism of the crucial role that most unified growth models assign to
general human capital, Mokyr (2011, p. 240) adds that, at the time of the British economic take-off,
human capital was surely not the result of an investment process in which the human capital rate of
return on the margin would be equal to the interest rate. Rather, for Mokyr, it might well be that the
causal direction was reversed and that many people decided for non-economic reasons to educate
their children and then discovered that this education imparted economically useful capabilities. He
then concludes that in any event, to the extent that the available data allow to make inferences, the
notion that the Industrial Revolution depended a great deal on human capital as customarily defined
is not sustained. On the contrary, Mokyr (2011, p. 233) asserts that the great English engineers of the
Industrial Revolution learned their skills by being apprenticed to able masters, and otherwise were
largely self-taught. The latter observation suggests that learning-by-doing used to play a prominent
role in the pre-modern growth regime.
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A.3 The misguided reasons for the omission of energy

Assigning a modest importance to energy in explaining growth is conventionally justified by its
small share in national income. Indeed, the so-called ‘cost share theorem’ implies that, if the aggre-
gate production function is homogeneous of degree one, the output elasticities of production factors
equal their income allocation in total GDP. Consequently, GDP elasticities with respect to labor and
capital are generally set to 0.7 and 0.3 according to their respective empirical shares of GDP, while
energy is usually neglected because its cost usually represents around 5% of the national income.
Even when it is considered as a production factor, the output elasticity of energy is set to 0.05, such
that labor and capital remain the most important production factors (Denison, 1979). However, it
can be argued that this ‘cost share theorem’ is fallacious for several reasons.

First of all, the cost share theorem results from a Lagrange optimization assuming that all per-
fectly competitive markets are at equilibrium for an economy only composed of small price-taking
firms. Consequently, the cost share theorem is only true at the margin (for a fictive economy), such
that output elasticities with respect to a given input follow the income cost share of those inputs
only for small shocks. Moreover, by construction, GDP is allocated exclusively to capital and labor
payments. Accordingly, energy expenditure is itself only made of capital and labor payments (plus
temporary market powers).30 But the fact that energy expenditures are relatively low in developed
economies does not imply that energy per se is of no importance for economic growth. This fact
was well illustrated by the first energy crisis of 1973, during which a 5% decrease in oil availability
induced a 3% loss of GDP in the US, which is much higher than the mere 0.25% that the cost-share
theorem predicted. In a review on how energy price shocks affect the US economy, Kilian (2008)
asserts that rising energy prices cause both a reduction in aggregate demand, and a shift in con-
sumer expenditures, which in turn create a ripple effect throughout the economy. The effects of
energy price shocks on economic output are hence larger than the share of energy in income would
suggest. This means, that the output elasticity of energy of 0.05 generally presupposed in standard
macroeconomics is underestimated, whereas the output elasticities of capital and labor of 0.3 and
0.7 respectively, are overestimated.

Furthermore, energy expenditures used to account for up to 70% of national income in pre-
industrial, low-growth economies It is likely only the use of previously untapped concentrated, and
consequently cheap, fossil fuels that this value gradually declined below 10% (Fizaine & Court,
2016). Kander et al. (2013, p. 7) assert that the decrease in the cost of energy, concurrent with an
increase in supply, allowed vast reserves of capital to be employed, delivering other kinds of goods
and services rather than covering only basic energetic needs as was the case during pre-modern
times. Hence, the small cost share of energy in modern economies is not a sign of its worthlessness,
but on the contrary, it might indicate the crucial importance that concentrated fossil energy has on
modern economic growth.

Finally, the ground-breaking work of Kümmel & Lindenberger (2014) shows that, whenever hard
technical constraints – corresponding to ‘limits to automation’ and ‘limits to capacity utilization’ –
are taken into account, shadow prices add up to usual factor costs, implying that the cost share the-
orem simply no longer holds.31 In summary, pure financial expenditure accounting downplays the
role of energy because it does not take into account the interrelation between energy and specific
technical developments that have been crucial to generating an expansion of many sectors of the
economy. For instance, the design of modern transport systems and the associated suburban habitat

30For instance, the price of gasoline is constituted of capital interest, labor payments, and various taxes that are required
to extract and refine the crude oil provided free-of-charge by nature.

31Besides, Ayres et al. (2013) argue that there are also some soft constraints – corresponding to social, financial, organi-
zational, or legal restrictions – that determine additional limits to substitution between inputs over time.
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have been wholly dependent on the Internal Combustion Engine (ICE) fueled by gasoline (and sim-
ilarly, electric or gas-fired heating and cooling systems have made domestic and office life bearable
in a variety of climates).

A.4 Distinguishing several ‘kinds’ of energy

In order to understand the importance of energy for the economic process, it is crucial to distinguish
between primary, final, and useful energy.32

Primary energy is present on earth in the form of natural stocks (coal, oil, gas, and fissil atoms
such as uranium) or flows (from the sun, water, wind, geothermal, waves and tides) that must be
converted into secondary energy carriers in order to be usable. Such final energy vectors consist of
heat flows, electricity, and solid, liquid or gaseous refined products. Then, end-use devices allow
the conversion of final carriers into useful energy in the form of motion (i.e., mechanical drive),
electricity, heat, and light. Energy services (transportation, heating, etc.) are the outcomes of the
interaction of useful energies with capital and labor.

Because technical change impacts each conversion step of energy systems – from primary to final
to useful stages – with different magnitudes, the prices of primary, final, and useful energies do not
evolve similarly. An example of such difference is given in Figure 8, where the average price of
primary energy is compared to the average price of energy services in Great Britain from 1700 to
2000. As Fouquet (2011) argues, focusing on the price of primary energy rather than the price of
energy services (or useful energy) can lead to flawed reasoning because the former ignore major
technical improvements developed to provide the latter.
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Fig. 8 Average prices of primary energy (dashed line) and energy services (solid line) in the United Kingdom, 1700–2008
Data source: Fouquet (2011).

In this paper, we accordingly distinguish: (i) primary energy exhaustible stocks and renewable
potentials (i.e., flows), (ii) energy carriers that enter production processes and are combined with

32As repeatedly stressed by scholars such as Ayres & Warr (2009) and Kümmel (2011), what is commonly called energy
in economic studies and models is in fact exergy. Exergy (measured in joules similarly to energy) is the maximum amount
of work – in the mechanical sense – that can theoretically be recovered from a system as it approaches equilibrium with
its surroundings reversibly, that is, infinitely slowly. According to the first law of thermodynamics, energy is conserved
in the economic process; while, according to the second law of thermodynamics, exergy is dissipated through irreversible
transformations that imply entropy creation. Energy enters the economy as a high quality (high exergy content) input
in the forms of concentrated solar energy (biomass and water/wind flows), geothermal and tidal potential, fossils fuels,
and nuclear energy. These energy forms are ultimately dissipated into a lower-quality (lower exergy content) heat output
that potentially contains zero exergy (and thus zero ability to generate useful work) if its temperature is the same as the
broader environment. Hence, it is the exergy content of energy that constitutes a production factor and not energy per se.
In this article we stick to the familiar term of energy, even if, strictly speaking, we refer to exergy.
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capital, labor, and knowledge, and (iii) energy services ultimately combined in final goods’ produc-
tion. We thus account for the technical improvement, and increases in non-energy factor supply, that
explain the fall in the price of energy services illustrated in Figure 8.

Appendix B Preferences and Demography

B.1 Proof of Theorem 1: Human Capital Accumulation

Assuming that the total stock of applied knowledge is initially insufficient for education expendi-
tures to be strictly positive, that is Qt ≤ Q̃t initially, let us prove by complete induction that, when-
ever the education threshold is met, human capital accumulate. Let us denote by Pt the following
property: Pt : ht > ht−1.

Base case: assume that the total stock of knowledge is initially insufficient to meet the education
threshold, and that there exist a period at which it is met.

Without loss of generality, let us rename the time index such that t = 0 is the period at which
the education threshold is crossed (which corresponds to t = T in theorem), that is Q0 > Q̃0 with
Q̃0 = A−1

E (η/ρτ). For t < 0, education expenditure are null and the level of human capital is
constant at its minimum level, h̄, as set by Eq. (4). Thus, h0 = h̄.

Besides, by definition of the education threshold, e0 > 0 and then h1 > h̄ according to Eq. (4). As
a result, P1 is true.

Induction: assume ∀k ≥ 0, k ≤ t,Pk is true.
The stock of total knowledge defined by Eq. (16) is strictly increasing because of learning-by-

doing technical change defined by Eq. (21). Thus, we have

Qt > Qt−1 > ... > Q1 > Q0.

Moreover, by induction, we know that ht > ht−1 > ... > h1 > h0 and h0 = h̄. Hence, ηh̄/ρτht <
ηh̄/ρτht−1 < ... < ηh̄/ρτh1 < η/ρτ and, by monotonicity and invertibility of AE(·), we finally have

Q̃t < Q̃t−1 < ... < Q̃1 < Q̃0.

Moreover, as recalled in the base case, we know that Q0 > Q̃0. Consequently,

∀k ≥ 0, k ≤ t, Qk > Q̃k.

Then, provided the education threshold is met at each period k ∈ [[0; t]], the stock of total knowl-
edge Qt is cumulative, AE(·) is increasing, and by induction we have

ht+1 − ht = AE(Qt)
et

wt
− AE(Qt−1)

et−1

wt−1

=
ρτ

η − ρ
[AE(Qt)ht − AE(Qt−1)ht−1]

>
ρτAE(Qt−1

η − ρ
[ht − ht−1]

> 0.

Hence, Pt+1 is true.
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B.2 Proof of Theorem 2: Quantity-Quality Trade-off

For an interior solution, combining the equilibrium allocations of time and income as given by Eqs.
(31) and (32), we obtain the following fertility and education expenditures

bt =
(η − ρ)AE(Qt)ht

(1 + χ + η)(AE(Qt)htτ − h0)
, et =

[
ρτAE(Qt)ht − ηh̄

]
wt

AE(Qt)(η − ρ)
.

Taking the partial derivatives with regards to η, ρ, wt and ht, one can check that ∂bt/∂η > 0,
∂bt/∂ρ < 0, ∂et/∂η < 0, ∂et/∂ρ > 0, ∂bt/∂wt = 0, ∂bt/∂ht < 0, ∂et/∂wt > 0, and ∂et/∂ht > 0, which
completes the proof.

Appendix C Innovation and Production

C.1 Price of Capital Goods

The first order conditions from Problem FI yield the optimal demand schedules in each sector k ∈ K
for capital goods, human capital and energy flows, according to

px
k,i,t

pk,t
= αk Ak,tH

βk
k,tE

γk
k,t

[
qk,i,t

xk,i,t

]1−αk

, (44)

wt

pk,t
= βk

Yk,t

Hk,t
, (45)

Ψk

pk,t
= γk

Yk,t

Ek,t
. (46)

These conditions will be useful to derive further analytical results below. For now, we turn to
Problem FI and distinguish the production regime according to the success of R&D, as exposed in
Section 3.2.3. Whenever innovation is unsuccessful, the production is competitive and capital goods
are thus priced at their marginal cost of production, that is px

k,i,t = rt + δ (hereafter denoted pc
k,i,t).

Whenever innovation is successful, the production of capital goods is monopolistic. Substituting Eq.
(44) within the operating profit, πk,i,t, one can easily compute the monopolistic price charged by the
successful innovator, px

k,i,t = (rt + δ)/αk (hereafter denoted pm
k,i,t).

C.2 Proof of Proposition 1: Sector-specific R&D Success Probability

Innovation decisions are driven by the one-period success monopoly profit arising from the im-
provement of a sector-specific machine line. Provided the monopolistic price of capital goods only
depends on the related sector, one can write the success monopoly profit as

πs
k,i,t = π̄k,t

[
1

pm
k,t

] αk
1−αk

qκk,i,t+1
k , (47)

where π̄k,t = (1− αk)
[

pk,tαk Ak,tH
βk
k,tE

γk
k,t

] 1
1−αk .

Substituting Eqs (47) and (24) into the free-entry condition of Problem R&D and isolating λk,i,t
immediately yields the result. The machine line index, i, can be dropped as the R&D success proba-
bility only depends on the corresponding sector.



41 E. Bovari, V. Court / Working paper

C.3 Aggregation of Input Production

In this section, we derive the aggregation for final input sectors, k ∈ K. First, remember that the
production technology equation writes

Yk,t = Ak,t

[∫ 1

0
q1−αk

k,i,t xαk
k,i,tdi

]
Hβk

k,tE
γk
k,t.

For each machine line i ∈ [0, 1], the optimal demand schedule is given by the first order condition
of Eq. (44) with px

k,i,t the price of the machine. As discussed in Subsection 3.2.3, this price depends
on the status under which the machine is supplied. Whenever R&D was successful in the beginning
of the period for the machine line, the machine is supplied under monopolistic competition at pm

k,t =
(rt + δ)/αk and the corresponding optimal demand schedule equation then writes

xm
k,i,t =

 pk,tα
2
k Ak,tH

βk
k,tE

γk
k,t

rt + δ

 1
1−αk

qk,i,t.

In the opposite case, the machine is supplied competitively and its price set at the marginal produc-
tion cost, that is pc

k,i,t = rt + δ. The corresponding optimal demand schedule equation then writes

xc
k,i,t =

 pk,tαk Ak,tH
βk
k,tE

γk
k,t

rt + δ

 1
1−αk

qk,i,t.

As demonstrated in Subsection 3.3.3, R&D activity is uniformly distributed over machines lines
with a probability of success λk,t. Thus, at the beginning of each period, a fraction λk,t of firms
experience a successful innovation, gain one additional rung of size qk in their corresponding quality
ladder, and are produced under monopolistic competition. For the remaining firms, the quality
remains constant and the production is perfectly competitive. Discriminating firms accordingly and
introducing the average quality index Qk,t (defined at the beginning of the period) yields

Yk,t = Ak,t

[∫ λk,t

0
q1−αk

k,i,t (xm
k,i,t)

αk di +
∫ 1

λk,t

q1−αk
k,i,t (xc

k,i,t)
αk di

]
Hβk

k,tE
γk
k,t,

=
[

Ak,tH
βk
k,tE

γk
k,t

] 1
1−αk

[
pk,tαk

rt + δ

] αk
1−αk

[
qkαk

αk
1−αk

∫ λk,t

0
qk,i,t−1di +

∫ 1

λk,t

qk,i,t−1di
]

,

=
[

Ak,tH
βk
k,tE

γk
k,t

] 1
1−αk

[
pk,tαk

rt + δ

] αk
1−αk

[
αk

αk
1−αk qkλk,t + (1− λk,t)

]
Qk,t. (48)

Turning now to the stock of capital ultimately dedicated to the raw capital demand in each final
input sector, defined by Kk,t =

∫ 1
0 xk,i,tdi, one can distinguish between machines that are produced

under monopolistic and perfect competition to write

Kk,t =

 pk,tαk Ak,tH
βk
k,tE

γu
k,t

rt + δ

 1
1−αk [

α
1

1−αk qkλk,t + (1− λk,t)
]

Qk,t−1, (49)

Inserting Eq (49) into Eq (48) and rearranging gives a final expression for the aggregate produc-
tion function in the final good sector

Yk,t = Ak,tQ
1−αk
k,t

α
αk

1−αk
k qkλk,t + (1− λk,t)[

α
1

1−αk
k qkλk,t + (1− λk,t)

]αk
Kαk

k,tH
βk
k,tE

γk
k,t.
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Appendix D Equilibrium Results

D.1 Proof of Proposition 2: Relative Input Price

Combining Eqs (44) and (46) allows to isolate resource flows as

Ek,t =

[
α

rt + δ

] α
β

[
γQk,tQk,t

Ψk,t

] 1−α
β

[Ak,t pk,t]
1
β Hk,t. (50)

Substituting this expression and the equilibrium demand of the capital good (Eq. (44)) in Eq. (10)
then yields the following expression for the equilibrium input production

Yk,t =

[
α

rt + δ

] α
β [

Qk,tQk,t

] 1−α
β

[
γ

Ψk,t

] γ
β

A
1
β

k,t p
1−β

β

k,t Hk,t.

Equalizing the marginal product of labor across sectors, that is Eq. (45) taken for each sector, and
using the previous relations then leads to

pr,t

pe,t
=

[
Ar,t

Ae,t

]−1
[

Qr,tQr,t

Qe,tQe,t

]−(1−α) [
Ψr,t

Ψe,t

]γ

, (51)

where Qk,t = 1+λk,t(α
α

1−α qk− 1) is a scaling factor for the corresponding sector-specific R&D knowl-
edge. The proof then results in a direct interpretation of Eq. (51) abstracting from innovation deci-
sions.

D.2 Proof of Proposition 3: Relative Factor Use

Substituting the equilibrium input production, Eq. (37) into Eq. (38), and combining the latter with
(51), allows the isolate the equilibrium relative human capital allocation in input sectors as

Hr,t

He,t
=

[
Ar,t

Ae,t

]σ−1
[

Qr,tQr,t

Qe,tQe,t

](1−α)(σ−1) [
Ψr,t

Ψe,t

]−γ(σ−1)

. (52)

A similar expression can be obtained for the equilibrium relative energy resource use by com-
bining Eqs. (45) and (46) and substituting Eq. (52),

Er,t

Ee,t
=

[
Ar,t

Ae,t

]σ−1
[

Qr,tQr,t

Qe,tQe,t

](1−α)(σ−1) [
Ψr,t

Ψe,t

]−γ(σ−1)−1

.

At last, substituting Eq. (44) into the sector-specific market clearing conditions for capital goods,
Eq. (30), gives the following expression for the demand for physical capital,

Kk,t =

[
α

rt + δ

] α+β
β

Q
γ
β

k,tQ̂k,tQ
1−α

β

k,t

[
γ

Ψk,t

] γ
β

[Ak,t pk,t]
1
β Hk,t,

with Q̂k,t = 1 + λk,t(α
1

1−α qk − 1). Taking the ratio of this expression finally yields

Kr,t

Ke,t
=

[
Ar,t

Ae,t

]σ−1
[

Q̂r,t

Q̂e,t

] [
Qr,t

Qe,t

](1−α)(σ−1)−1 [
Qr,t

Qe,t

](1−α)(σ−1) [Ψr,t

Ψe,t

]−γ(σ−1)

.

Abstracting from innovation decisions, a direct assessment of these expressions finally yields the
discussed property.
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Appendix E Best-fit Calibration Process

In this section, we provide some technical information about our numerical simulation process and
its calibration on historical data.

E.1 Simulation Process

We use the formal calculation software Maple (2017 version) to perform the numerical simulation of
our model. As we cannot provide a closed form solution for the general version of our model, we
use optimization commands (Optimization package) to solve for prices and quantities, accounting for
market clearing and physical constraint conditions, as well as optimal (and closed-form) responses
of the representative household. Our Monte-Carlo simulations are also performed on this software
using the Statistics and RandomTools packages. For our numerical results, we performed a total of
10,000 runs on each scenario analyzed in Section 5. All the presented figures are realized with the
RStudio software.

Provided that fertility, savings, and educational choices are endogenous in our model accord-
ing to Problem HH (and thus depend on the clearing wage rate), we allow for two shimming pe-
riods (1660 and 1680) before starting the numerical simulations. These shimming periods ensure
that household’s decisions, population’s allocation (between young and retired adults) and capi-
tal accumulation (resulting from previous savings) consistently adjust prior to the formal start of
the simulation process. We preclude any knowledge accumulation during this shimming time, so
knowledge stocks remain consistent with their normalization to unity in the first simulation period.
It is worth mentioning that the current stock of capital only depends on savings from the previous
period according to Eq. (5), therefore, the initial value chosen for the stock of capital does not matter
for capital accumulation after these shimming periods.

E.2 Calibration Process

Due to the high dimensionality of our calibration problem and the complexity of the general equi-
librium interactions in the full version of our model, we adopt a three-step calibration process:

– Preferences calibration problem: for given series of wage rate and total applied knowledge stock,
the closed form solution of Problem HH allows us to obtain the partial equilibrium solution
of the full model for population and human capital per capita. In a first calibration step, we
thus optimize for household preferences and the initial population stock to fit these two time
series, that is, we set {χ, ρ, σ, τ, AE, N0} to minimize the squared error between the simulated
model and historical data.33

– Deterministic calibration problem: for a given series of GPT arrivals (determined according to his-
torical data), solving numerically for Problem GE allows us to obtain a deterministic solution of
our model. In a second calibration step, we thus optimize for all parameters except GPT related
parameters to fit our historical times series of interest. That is, we set {Y0, Ω, ωH, ωG, φ, qc, qd, λ̄, Ψr,
Ψe, ψR,r, ψR,e, ψQ} to minimize various squared error metrics between the simulated model
and historical data on GDP, population, energy consumption flows and human capital per

33We use a direct method algorithm from the DirectSearch package to cover the whole compact calibration set. We give
10 times greater weight to population than to human capital per capita (squared-error) scores, and use a Hodrick-Prescott
(HP) filter to smooth historical time series so as to downplay the extreme values of the Great Depression and World
War (I and II). N0 denotes the population stock that will be applied to the shimming periods. To account for this slight
approximation (the population however being initially low) we perform the preference calibration problem in the 1660-2000
period to account for the two shimming periods.
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capita.34 For each assessed design, we also optimize for AE to minimize the squared error
in regards to population and human capital per capita (with a 10 times lower weight for the
second) to ease the coupling between the preferences and deterministic calibration problems.

– Stochastic GPT calibration problem: for a given calibration design (chosen as the best candi-
date from the deterministic calibration problem), repeatedly solving for Problem GE allows us
to obtain a Monte-Carlo solution for our full model. In practice, due to computational con-
straints, we performed 100 runs for each calibration design assessed in this step. This number
is gauged to be a good approximation for Monte-Carlo convergence. We tested the designs
that score best on a higher number of steps (1,000 for the calibration process, 10,000 for the nu-
merical results). In this last calibration step, we thus optimize for GTP related parameters only
to fit the historical sequence of GPT arrival, that is, we set {µ0, Ḡ, ζ, ξ} to minimize the squared
errors between the simulated and historical GDP frequency.35 In this calibration step, given
that we assess the relationship between total applied knowledge accumulation, Qt, and GPT’s
frequency and diffusion, we only performed this step for the British calibration and maintain
the obtained parameters for the Western European and Eastern Asian cases. As illustrated in
additional Figure 9, we observe that the frequency of GPTs in the baseline calibration of Western
Europe closely follows the one obtained for Great Britain, while it is lower for Eastern Asia, as
one would logically expect.

If necessary (i.e., whenever a significant difference is observed), these three steps are cyclically
repeated until the calibration converged within an increasing series of compact sets for LHS pro-
cedures (at each repeated step, we removed ranges of parameters that yielded the poorest results
based on the best 2 to 3 runs on each dimension of interest).

Appendix F Baseline Calibration for Great Britain

Table 5 and 6 respectively present the initial variables and parameters (rounded to the nearest 10−3)
obtained for the baseline calibration of the model to the British data. If no index k ∈ {r, e} is provided
(e.g., A), the initial condition or parameter concerns both sectors.

Table 5 Initial values of variables for the baseline calibration of the model on British data.

Variable A0 G0 h̄ K0 N0 Q0 Rr,0 Re,0
Initial value 1 1 1 0.002 0.094 1 1.073 463.097

34We use a Latin Hypercube Sampling (LHS) with a maximin criteria to test different sets with up to 3200 samples
from a compact calibration set. The sampling is performed using the lhs package used on the RStudio software. We
computed various squared-errors metrics between the simulated model and historical data, that are smoothed with a
HP-filter to downplay the extreme values of the Great Depression and World War (I and II). More precisely, each variable
in {Er, Ee, Er/Ee,Rr,Re, Y, h, P, Y/P} is mapped to a constructed and normalized historical time series, from which we
compute a squared-error and weighted squared-error (allowing for a 10 times greater weight for periods prior 1900). For
the British case, we then pick designs that perform well favoring (i) the weighted Y score (fit on GDP during the economic
take-off), and (ii) the sum of squared-error differences for the score of variables in {Er/Ee,Rr,Re, Y, h, P, Y/P} (fit on the
main time-series of interest on the whole simulation horizon). For both Western Europe and Eastern Asia calibrations,
we pick designs that perform well according to the weighed sum of squared-error differences for the score of variables
in {Ee, Er, Y, h, P, Y/P}. In the Western European case, we emphasize the pre-WWII period, provided the industrial take-
off and transition towards fossil fuels occurred in the XIXth century. For this reason we ascribe 10 times more weight
to the squared-error differences prior 1940. In the Eastern Asian case, we emphasize the post-1900 period provided the
industrial take-off and transition towards fossil energy occurred in the XXth century. This is why we ascribe 10 times more
weight to the squared-error differences after 1900.

35We use a LHS procedure with a maximin criteria to test different sets with up to 1600 samples from a compact calibra-
tion set. The sampling is performed using the lhs package used on the RStudio software.
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Table 6 Parameters for the baseline calibration of the model on British data.

Parameter α β γ ϑk Y0 Ω ωH ωG φ
Value 1/3 1/2 1/6 1 3.3 0.012 0.027 0.445 0.183

Parameter q λ̄ Ψr Ψe ψR,r ψR,e ψQ η χ
Value 1.26 0.377 0.016 0.106 −4.506 −7.296 −7.993 0.202 0.3

Parameter ρ τ AE h̄ µ0 Ḡ ζ ξ
Value 0.048 0.102 51.74 1 0.1 1.69 0.179 0.244

Appendix G Baseline Calibration for Western Europe

Table 7 and 8 respectively present the initial variables and parameters (rounded to the nearest 10−3)
obtained for the baseline calibration of the model for Western Europe. If no index k ∈ {r, e} is
provided (e.g., A), the initial condition or parameter concerns both sectors.

Table 7 Initial values of variables for the baseline WE calibration

Variable A0 G0 h̄ K0 N0 Q0 Rr,0 Re,0
Initial value 1 1 1 0.04 0.018 1 5.76 227.19

Table 8 Parameters for the baseline WE calibration

Parameter α β γ ϑk Y0 Ω ωH ωG φ
Value 1/3 1/2 1/6 1 3.145 0.014 0.059 0.492 0.179

Parameter qr qe λ̄ Ψr Ψe ψR,r ψR,e ψQ η
Value 1.361 1.371 0.686 0.03 0.192 −8 −4.209 −4.14 0.479

Parameter χ ρ τ AE µ0 Ḡ ζ ξ
Value 0.37 0.037 0.224 73.696 0.1 1.69 0.179 0.244

Appendix H Baseline Calibration for Eastern Asia

Table 9 and 10 respectively present the initial variables and parameters (rounded to the nearest
10−3) obtained for the baseline calibration of the model to the Eastern Asia. If no index k ∈ {r, e} is
provided (e.g., A), the initial condition or parameter concerns both sectors.

Table 9 Initial values of variables for the baseline EA calibration

Variable A0 G0 h̄ K0 N0 Q0 Rr,0 Re,0
Initial value 1 1 1 0.005 0.022 1 20.43 72.57

Table 10 Parameters for the baseline EA calibration

Parameter α β γ ϑk Y0 Ω ωH ωG φ
Value 1/3 1/2 1/6 1 2.294 0.001 0.044 0.335 0.184

Parameter qr qe λ̄ Ψr Ψe ψR,r ψR,e ψQ η
Value 1.179 1.55 0.789 0.01 0.222 −5.221 −3.182 −5.278 0.431

Parameter χ ρ τ AE µ0 Ḡ ζ ξ
Value 0.358 0.052 0.179 58.626 0.1 1.69 0.179 0.244
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Appendix I GPT Frequency in Baseline Calibrations

GPTs are calibrated on the British case. The values obtained for the parameters {µ0, Ḡ, ξ, ζ} are
assumed to reflect the relationship between total applied knowledge, Qt, and the arrival and diffu-
sion time of GPTs. These values are consequently maintained for both Western Europe and Eastern
Asia. In Figure 9, one can observe that GPT frequency closely followed the British case for Western
Europe, but are consistently lower for Eastern Asia, as one would logically expect.

Fig. 9 GPT frequency in the baseline calibration (10,000 simulations) for Great Britain (black), Western Europe (blue) and
Eastern Asia (red), 1700-1960 (solid, dashed and dotted lines are medians, color shades are 90% probability intervals, diamonds are
historical data). Data source: Lipsey et al. (2005, p. 132)
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