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A Time- and Energy-Optimal Routing Strategy for Electric Vehicles
with Charging Constraints

Giovanni De Nunzio, Ibtihel Ben Gharbia, Antonio Sciarretta

Abstract— Accurate long-distance route planners for electric
vehicles could help to alleviate driving range anxiety. A time-
and energy-optimal routing strategy with consideration of
battery charging constraints is presented here. The accuracy of
the approach is improved by modeling the impact of weather
and traffic conditions on the vehicle’s energy consumption,
as well as by considering realistic charging functions. The
routing problem is cast as a multi-objective optimization and
solved with different algorithms to assess the accuracy and the
tractability of each method. Results show that appealing trade-
offs in terms of trip time and energy consumption appear when
speed becomes a decision variable and is adjusted on some
portions of the route.

Index Terms— Electric vehicles, charge scheduling, driving
range, constrained shortest path, eco-routing.

I. INTRODUCTION

Studies show that a small-sized electric vehicle (EV) with
a roughly 100-mile range could meet the energy requirements
of about 90% of the driving days, in different cities across
the US [1]. The needs of most single-car households would
be met while requiring behavioral modification on no more
than 5% of days [2]. Yet, when considering EVs for per-
sonal use, driving range anxiety is arguably an inevitable
thought. To overcome this problem and to prevent such
a fear from slowing down EVs sales and diffusion, both
proprietary or manufacturers’ route planners (e.g. tesla.
com/trips) and third-party or enthusiasts’ platforms (e.g.
abetterrouteplanner.com) are nowadays spreading
rapidly. The objective of these services is to both reassure
the drivers about the dissemination of charging stations,
and suggest smart routes and charging sequences over long-
distance trips to reach the final destination with minimum
time waste. However, the accuracy of such route suggestions
is highly dependent on the modeling framework of the
system under analysis (i.e. road network, traffic and weather
conditions, expected driver’s behavior, vehicle dynamics,
charging functions, etc.). Furthermore, it is often limiting
to optimize only one performance criterion at a time, and
multi-objective optimization may suggest the existence of
interesting trade-offs for the final user.

In this work, the problem of finding a time- and energy-
optimal route for an EV requiring multiple battery charging
events to complete a long-distance trip is addressed. The
proposed routing strategy is capable of providing also the
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optimal sequence of charging events, as well as a speed rec-
ommendation on highway road stretches to reduce charging
needs. The approach consists in two computation stages. The
offline part is dedicated to the preprocessing and storage of
detailed topographical information of the considered routing
area of interest. The online stage is entitled of converting the
user input in terms of origin, destination, departure time and
initial battery state-of-charge (SoC) into a multi-objective
optimization problem on a weighted routing graph. Such an
optimization could be framed as a constrained shortest-path
(CSP) problem, which is known to be NP-hard [3]. To cope
with this intractability, heuristics and ε-approximations have
been proposed to achieve a solution, which may perform
well in certain scenarios but, in the most general case,
they cannot provide any performance guarantee and act
unpredictably [4]. Promising polynomial-time approximation
schemes for CSP algorithms have been proposed [5] by
performing costs rounding and scaling and listing only
Pareto-optimal sub-paths. This same idea has been applied
to the search of optimal paths in graphs for EVs [6], [7] with
SoC constraints and charging events consideration. These
approximation schemes consist in reducing the number of
sub-paths that the standard CSP algorithm would store at
each relaxation step by rounding the value of a cost (e.g.
time) on an ε-spaced grid and storing the cost only if it is not
dominated, in the sense of Pareto, by the previously stored
ones [6]. The same approximation could be also applied to
the value of a resource (e.g. energy) to further reduce the
number of retained sub-paths [7]. Evidently, such techniques
give approximate solutions, and the level of approximation,
as well as computational complexity, is determined by the
choice of the parameter ε, which is not intuitive to tune.
Other approaches, on the other hand, attempt to reduce
computational complexity by breaking down the general
problem in several cascaded simpler optimizations [8], [9],
or by reducing the algorithm search space by means of
heuristics [10], [11]. However, all these works fail to show
the accuracy and the attractiveness of the routing solution
for the final user.

The contributions of this work can be summarized as
follows. First, the accuracy of trip time and energy demand
prediction is increased by using realistic battery charging
functions, as well as traffic and weather dependent power-
train modeling. In particular, novel probabilistic features have
been integrated into a driver’s model in order to predict major
speed disruptions along the route. Second, a comparison be-
tween two CSP algorithms has been carried out to highlight
the accuracy of the routing solution. In particular, it is shown



that graph-expansion techniques offer enhanced accuracy and
robustness as compared to ε-approximation methods.

The paper is structured as follows. Section II describes
the static and dynamic road network data used for system
modeling. The routing graph definition and expansion for
consideration of charging events and traveling speed as
additional decision variables are detailed in Section III. The
optimization problem is defined in Section IV. Section V
describes the two compared algorithms. Simulation results
and computation time analysis are presented in Section VI.

II. ROAD NETWORK DATA

A. Road topography

The topography of the considered road network, including
road grade, infrastructure and signalization, may be assumed
to be time-invariant, or varying over time with much slower
dynamics than the considered problem. Therefore, these
data can be stored offline on local databases for faster
online route calculation. In order to populate such an offline
database, REST (representational state transfer) web services
of popular mapping and location data providers are often
used. In this work HERE Maps was used. Let us introduce
the set of road topography data used throughout this work
as Tι, for all road segments ι in the considered network
X . The road network discretization is proper to each data
provider, and the length `ι of each road elementary unit can
vary from few meters to several hundreds of meters. Each
road segment ι is typically categorized by its importance,
with an associated “functional” class Cι ∈ [1, 5], ranging
from Cι = 1 for major highways, to Cι = 5, for secondary
urban streets. Furthermore, each road segment is defined by
a unique identifier Nι and by its geometry as an n-by-3
matrix Sι, where n ≥ 2 is the number of three-dimensional
coordinates available for segment ι (at least the coordinates
of the two ends of the segment are provided). Coordinates
are expressed in latitude, longitude and altitude above sea
level. Finally, the type of intersection and/or signalization at
the downstream end of the road segment can be retrieved
and denoted as a vector of booleans Iι ∈ Rk, where k is
the number of selected types of intersection. In this work,
k = 5 and Iι comprises traffic lights, stops signs, yield signs,
roundabouts and toll booths. Therefore, the road topography
information can be defined by the set

T =
⋃
ι∈X
Tι =

⋃
ι∈X
{`ι, Cι,Nι,Sι, Iι} . (1)

B. Charging infrastructure

The location and the available power of the charging
stations within the considered network X are key parameters
to schedule the optimal sequence of charging events. A
plethora of REST web services, either based on community
contributions or on OEMs data, provide this kind of informa-
tion. In this work, the REST API (Application Programming
Interface) of OpenChargeMap, a non-commercial crowd-
sourced service, was chosen for its completeness and clarity
of information. Considering the problem of long-distance
routing and charge planning for EVs, it is safe to assume

that a driver would only choose rapid charging points along
the route in compliance with his/her trade-off between trip
time and overall energy consumption. Therefore, the set of
only rapid DC (direct current) chargers ϕ, with information
about location coordinates Λϕ and available power Pϕ, is
defined as:

R =
⋃
ϕ∈X
Rϕ = {Λϕ, Pϕ} . (2)

The use of any “slower” charger would likely provide a trip-
time dominated (in the sense of Pareto) routing solution, thus
less appealing to the final user. Note that aging of the battery,
due to rapid charge, is neglected in this study. Also, all the
charging points in the offline database are assumed to be
available. An upper supervisory layer in charge of deter-
mining the available infrastructure and assuring the recharge
could come from an external provider and is absolutely
compatible with the proposed approach.

C. Dynamic traffic information

When the user specifies its desired origin and destination,
along with the desired departure time, any existing REST
routing API may be used to retrieve the time-optimal route
options, up to a specified number κ of alternatives, according
to the current traffic conditions. In this work, the HERE
Maps routing API was used, but it is important to notice
that the provided route alternatives are not considered by
the proposed approach as such. Only the suggested road
segments individually and the real-time road information
on the provided routes are employed to construct a routing
graph. In other words, the final route suggestion calculated
by the proposed approach can be different from the ones
obtained from the employed routing service. Clearly, this
choice of searching the optimal route among the available
road segments suggested by the routing API translates into
an approximated solution. The real optimum might be on
a different route, absent from the retrieved alternatives.
However, for long-distance trips, this is quite unlikely due
to the driver’s preference for faster routes and highways, as
also discussed in [7].
Furthermore, in order to correctly estimate the impact of
weather conditions and ambient temperature on vehicle’s
energy consumption (as discussed later in the paper), a
REST weather API is used to retrieve current conditions at
departure and forecast them along the route at fixed time (e.g.
every hour) or space (e.g. every 60 km) intervals. Interpola-
tion methods are then used to obtain weather information on
every road segment. The Dark Sky API was used here.

Therefore, in analogy with the road topography data, let
us introduce the set of dynamic traffic data Di, for all road
segments i in the set of suggested route alternatives X ⊂ X .
The traffic information is typically provided in terms of
average speed of traffic V̄i and average trip time T̄i to travel
on road segment i. The average travel speed on the next
segment V̄i+1 is also provided. The ambient temperature Θi

is obtained for each road segment i by interpolating the
temperature forecast obtained from the weather API. The
unique segment identifier Ni is used to retrieve the previously



stored topographical information Ti, since i ∈ X ⊂ X .
Finally, the type of intersection and/or signalization stored
in Ii ∈ Ti is used in the online stage to determine the prob-
ability of stopping (i.e. vehicle’s speed transition to zero) at
the corresponding infrastructure element. This probability of
stopping supersedes the average traffic speed V̄i and is used
in the driver model (as discussed later in the paper) to refine
the predicted driving behavior. Such a simple probabilistic
model can be obtained via a classification method relating the
stopping behavior with the type of intersection, the functional
class of the considered road segment, and the time of the day
to capture the impact of peak and off-peak traffic.

The features vector ξ used as an input of the prediction
model is defined for every training example m as:

ξ =
[
h
(m)
i , C(m)

i , I(m)
i,k

]
, (3)

where h
(m)
i denotes the time of day of example m on

segment i, C(m)
i denotes the functional class of segment i

for example m, I(m)
i,k with k = {1, 2, 3, 4} is a vector of

features indicating the presence of a traffic light, a stop sign,
a yield sign, or a roundabout, respectively. Note that the
toll booths were voluntarily kept out of the features vector
because of their limited presence in the training data-set. In
the following, the probability of stopping at a toll booth is
considered the same as the one of stopping at a stop sign.

The vector of output labels for every training example m
is defined as:

y = v
(m)
10,i , (4)

and it consists of a boolean variable indicating whether a
speed below 10 km/h was observed on each of the recorded
speed profiles in the second half of the road segment i.
Logistic regression was used for classification and the model
was trained on a data-set of real-world driving data (i.e.
floating car data, or FCD) recorded in the Greater Paris
and Lyon area (France), consisting of approximately 200
thousand road segments and over 2 million data samples,
or observations (i.e. driving profiles). This model achieved
a prediction accuracy of 86.6% on the used training data-
set (ξ, y), and is employed online to retrieve the discrete
probability density function pi of stopping or not (i.e. binary
random variable) at the end of segment i as a function of
the features ξ.

Finally, the dynamic traffic data can be defined as:

D =
⋃
i∈X

Di =
⋃
i∈X

{
T̄i, V̄i, V̄i+1,Θi, Ni, Ni+1, pi

}
. (5)

III. ROUTING GRAPH

The definition of the routing graph takes place in the online
stage of the proposed strategy because the considered road
network is solely composed by the segments of the retrieved
route alternatives i ∈ X ⊂ X . Such a road network can be
naturally modeled as a directed graph, and it is important
to notice that this graph is acyclic, thanks to the particular
structure of X. Let G = (V,A) be such a graph, where V
is the set of vertices (i.e. the ends of each road segment i),

and A is the set of arcs (i.e. road segments i connecting the
nodes of the graph).

In any route planning strategy, the underlying optimization
problem has an obvious decision variable, which is the
feasible (according to network connectivity) path to go from
a specified origin to a destination. In this work, since a long-
distance route planner for EVs with charging capabilities is
considered, additional decision variables should be included.
This is achieved by expanding graph G in a directed multi-
graph (or multidigraph), that is by creating additional arcs
where multiple decisions are possible.

A. Travel-speed multigraph expansion

The first additional decision variable allows the route
planner to choose the travel speed to adopt on certain road
segments along the route in order to find the right trade-off
between trip time and energy expenditure. In other words, on
certain high-speed portions of the route, it might be worth
traveling at a lower speed than the average traffic speed in
order to reduce energy consumption, and therefore reduce the
amount of energy required to complete the trip, which may
ultimately result in reducing the number of stops to charge
the battery. The high-speed road segments are identified by
V̄i being higher than a certain threshold, and thus denoted
as iv ∈ A. Speed as a decision variable is added in the
multidigraph G′ = (V,A′) by creating as many copies of the
arcs iv as the desired levels of travel speed below the actual
traffic speed V̄i. In this work, the allowed speed reduction is
defined as δv ∈ {0, 5, 10, 15} km/h below the actual speed.
Therefore, the arcs iv ∈ G become iv,δv ∈ G′, for all possible
predefined values of δv .

B. EV-charging multigraph expansion

The second additional decision variable allows the opti-
mizer to choose at which charging point ϕ ∈ X to charge
along the route and how much energy to recover in the
battery during charge. All the charging points within a certain
radius r from the vertices of graph G are identified, thus
denoting the charging vertices uc ∈ V . Therefore, all the
outgoing arcs from the charging vertices are denoted as ic ∈
A. The multidigraph G′ is then further expanded to contain as
many copies of the arcs ic as the predefined levels of battery
energy recovery during charge. In this work, the allowed
levels of charge are defined as δc ∈ {0, 10, 20, . . . , 100}%,
with a step of 10%. Therefore, the arcs ic ∈ G become
ic,δc ∈ G′, for all possible predefined values of δc.

C. Line graph construction

Since the driving behavior on an arc depends on the
characteristics of the following arc, namely on the transition
between V̄i and V̄i+1, as discussed in the following, the
multidigraph G′ can be conveniently transformed in a line
graph L(G) [12]. Let us recall that the line graph L(G) =
(A′, A∗) of the directed graph G′ = (V,A′) has a vertex for
each arc in G′ and each arc represents a pair of adjacent arcs
in G′.



IV. ROUTING PROBLEM DEFINITION

The routing graph L(G) obtained with the previous ex-
pansions allows the route optimization problem to correctly
account for charging and travel speed options along the route.
In order for the route planner to be able to suggest the opti-
mal route in terms of trip time and energy consumption, the
graph needs to be weighted with accurate cost estimations. In
the following, let us present the models to compute time and
energy required to travel on each arc. Then, the constrained
optimization problem to find the optimal route is formulated
for the weighted routing graph.

A. Trip time

The time required to traverse a road segment depends on
the type of arc i ∈ A′. The travel time estimate on an arc i
where no additional decisions in terms of speed and charging
are possible is provided by the routing API according to the
current traffic conditions and available in T̄i ∈ Di. On the
arcs iv,δv where the speed is reduced with respect to the
traffic speed V̄i, the travel time increases with respect to T̄i
and can be calculated as follows:

T̄i,v,δv = T̄i + δv
`i

V̄i(V̄i − δv)
. (6)

Furthermore, on the arcs ic,δc where a charge event occurs,
the travel time estimate must take into account several
contributions as follows:

T̄i,c,δc =

{
T̄i, if δc = 0

T̄i + Td + Ts + Tc, if δc > 0.
(7)

The first term T̄i could be replaced by T̄i,v,δv if on the arc
there is a multiple-speed option, as discussed before. The
second term Td is the detour time required to reach the off-
route charger location, and it depends on the distance from
the closest vertex of the routing graph and on an assumed
average detour speed vd. The third term Ts is constant and
represents the time spent after stopping the vehicle to interact
with the charger and set-up the charge. Note that in (7), the
fourth term Tc corresponds to the actual charge time, which
depends on the battery SoC at the beginning of the charge,
the final SoC, the battery capacity and the charger power.
Since the SoC at which the vehicle begins the charge is
an output of the route optimization, this contribution to the
total travel time on the arc is added by the routing algorithm
during the problem solution, as discussed later. In order to
correctly estimate the charging time Tc, a simple model
inspired by the CC-CV (constant-current constant-voltage)
charging method, with a pre-charge phase when the battery
capacity is low, was used in this work [13]. As an illustrative
example, Figure 1 shows the charging time required for a
battery with a capacity of 30 kWh and an available charger
power ranging from 50 kW to 150 kW. It appears that the
charging function is nonlinear and the most time-convenient
charging operation arises when the battery SoC is between
roughly 30% and 70%, which corresponds to the constant-
current phase.
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Fig. 1: Rapid charging time profile for a battery with a
capacity of 30 kWh and different charger powers.

To resume, let us define a generic trip-time weight for
each arc of the routing graph L(G) as:

ωi,t =


T̄i,v,δv , if i ∈ iv,δv
T̄i,c,δc , if i ∈ ic,δc
T̄i,v,δv + Td + Ts + Tc, if i ∈ iv,δv ∩ ic,δc , δc > 0

T̄i, otherwise.
(8)

B. Energy consumption

1) Driver’s model: In order to accurately estimate the
energy consumption required for traveling on an arc of
the routing graph, the first step consists in predicting the
driver’s behavior on the road segment, so to predict the
vehicle’s traction power demand. In this work, the Intelligent
Driver Model (IDM) [14] is used to generate expected
synthetic speed profiles on each arc of the routing graph
L(G), depending on the dynamic traffic data Di. Note that
the IDM is a car-following model describing the position
x(t) and velocity v(t) dynamics of vehicles interacting with
preceding vehicles. In a route planning framework, it is
not possible to precisely know the behavior of the vehicles
preceding the ego-vehicle (i.e. the vehicle for which the
route is optimized). Therefore, the original IDM was slightly
adapted to be used for a vehicle without interaction with real
preceding vehicles. When a road infrastructure element Ii is
present on road segment i, and the realization of the random
variable whose probability density is given by pi is such that
the vehicle is supposed to stop at the end of the segment,
then a virtual leading vehicle appears to perturb the ego-
vehicle’s speed and forces a speed transition to zero. On the
contrary, when no stopping behavior arises, the ego-vehicle
targets unperturbed the next segment’s average speed. Let
us now introduce the IDM equations used in this work. The
position dynamics of the ego-vehicle is simply written as:

ẋ(t) = v(t). (9)

The speed dynamics depends on the boundary conditions on
the considered road segment, and in particular on the pres-
ence of a stopping event at the upstream and/or downstream
end of the segment. If no stopping event is predicted at the
downstream end of the segment, only the free-road term of
the IDM appears in the speed dynamics:

v̇(t) = a

(
1−

(
v(t)

VT

)γ)
= v̇free. (10)
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Fig. 2: Example of speed profile prediction via the modified
IDM and the probabilistic stopping behavior model as com-
pared to the HERE API traffic information and the real-world
recorded speed profiles.

where a is the maximum vehicle acceleration, γ can be seen
as a driver’s responsiveness parameter (γ = 3 in this work),
and VT is the target speed of the ego-vehicle. In this work,
the target speed is set depending on the length of the road
segment and the position of the ego-vehicle as follows:

VT =

{
V̄i, if x(t) < max {0, `i − dh}
V̄i+1, if x(t) ≥ max {0, `i − dh} .

(11)

where dh is the length of the driver’s prediction horizon, a
tunable parameter, which denotes the distance from which
the driver starts to target the following segment’s speed.
Furthermore, the initial speed v(0) can be set equal to 0
if the there is a stopping event at the end of the upstream
segment, and equal to V̄i otherwise.

On the other hand, if a stopping event is predicted at the
downstream end of the segment, the speed dynamics includes
also an interaction term and a virtual leader is supposed to
influence the behavior of the ego-vehicle, as follows:

v̇(t) = v̇free − a
(
d0 + v(t)Th

x(t)
+
v(t)(v(t)− vl)

2
√
ab x(t)

)2

(12)

where d0 is the minimum inter-distance from the virtual
leader, Th is the minimum time headway from the leader,
and b is a comfortable braking acceleration. The leader’s
speed vl is calculated as follows:

vl =

{
V̄i+1, if x(t) < max {0, `i − dh}
0, if x(t) ≥ max {0, `i − dh} .

(13)

If the leader is stopped (i.e. vl = 0), its stop location is at
the end of the segment plus the extra distance due to d0 and
the length of the vehicle itself, so that the ego-vehicle can
stop exactly at the end of the segment.

An illustrative example of the speed profile prediction
obtained with the modified IDM is shown in Figure 2. Note
that the proposed probabilistic IDM-inspired model allows
the vehicle to come to a full stop at the locations where it is
likely that infrastructure and signalization would significantly
perturb the speed profile. This is in contrast with other
models that provide only average traffic speed, or an average
synthetic profile out of a pool of recorded speed profiles.

2) Vehicle model: The energy consumption of the electric
vehicle is calculated in this study by means of its longitudinal
dynamics and powertrain modeling for correct approximation
of the electric drive losses and auxiliary power absorption.
The traction force at the wheels for a given speed v(t) (i.e.
the speed provided by the modified IDM) is defined as [15]:

Fw(t) = mv̇(t) + c2v(t)2 + c1v(t) + c0 +mg sin(α), (14)

where m is the vehicle mass, g is the gravitational acceler-
ation, α is the road slope varying along the road segment
as given by Si, and the coefficients c0, c1 and c2 are
identified for a considered vehicle. The wheel force (14) can
be converted in the mechanical power requested from the
propulsion system:

Pm(t) = Fw(t)v(t) · η− sign (Fw(t))
t , (15)

where ηt is the transmission efficiency. Finally, the battery
energy consumption is defined as:

Eb =

∫ tf

0

Pm(t) · η− sign (Pm(t))
b + Paux(t), dt (16)

where ηb represents the electric-drive efficiency, tf is the
time to traverse the road segment, and Paux is the auxiliary
power absorption along the segment. In this work, the
auxiliary power demand is assumed to come primarily from
cabin thermal conditioning, or driver’s comfort needs, and is
a convex function of temperature Θi, available on each road
segment i, as in [16], [7].

To resume, let us define a generic energy consumption
weight for each arc of the routing graph L(G) as:

ωi,e =

{
Eb − δcC, if i ∈ ic,δc , δc > 0

Eb, otherwise,
(17)

where C denotes the battery capacity.

C. Problem formulation

In the following, the route planning problem is formulated
as a bi-objective optimization aiming to find the best trade-
off between trip time and energy consumption. Let us denote
with ζ the arcs of the routing graph L(G), with i+ the set of
arcs ζ entering i ∈ A′, and with i− the set of arcs ζ leaving
i ∈ A′. Let also io be the origin arc and id the destination
arc. Finally, let us denote with Pi the sub-path composed
by all the arcs ζ connecting the origin io to i. The route
optimization problem can be formulated as follows:

min
xζ

∑
ζ∈A∗

(λωi,t + (1− λ)ωi,e) · xζ (18a)

s.t.
∑
ζ∈i+

xζ −
∑
ζ∈i−

xζ =


1, if i = io

−1, if i = id

0, otherwise

(18b)

Cmin ≤
∑
ζ∈Pi

ωi,e ≤ C, ∀i ∈ A′ (18c)

xζ ∈ {0, 1}, (18d)

where the objective function (18a) is written as a weighted
sum of the time and energy costs on each arc of the routing



graph, with λ being the trade-off weight. The decision
variable xζ takes on binary values as imposed by (18d)
depending on whether the arc ζ belongs to the path or not.
Constraints (18b) are classical flow conservation constraints.
Constraint (18c) enforces every possible sub-path to verify
the physical bounds of battery capacity. Note that, in order
to reduce range anxiety, the minimum battery state-of-charge
Cmin can be greater than zero.

V. ROUTING ALGORITHM

The objective function in (18a) can take on negative
values because of the presence of the energy term, therefore
two variations of the known Bellman-Ford (BF) shortest-
path algorithm are proposed to solve the defined dynamic
program.

A. BF algorithm on the lexicographic product of graphs

The first approach consists in resolving the constraint
(18c) by enforcing it directly in the construction of the
routing graph. This method, also known in the literature of
routing for EVs as “battery graph expansion” [6], performs
the lexicographic product of the routing graph and a fully-
disconnected graph representing the feasible battery levels
that can be used in the optimization. In particular, let such
a graph be B = (Vb, Ab), where Vb = {0, δb, 2δb, . . . , C}
represents the battery discretization capacity from 0 to max-
imum capacity with a step of δb, and Ab = ∅. Then, the
new routing graph Gb integrating the battery constraint is
the result of the lexicographic product L(G) · B, where the
vertex set of Gb is given by the cartesian product A′ × Vb,
and any two vertices (u, ub) and (w,wb) are adjacent if the
vertices u,w ∈ A′ are adjacent, with ub, wb ∈ Vb indicating
the initial and final SoC on the arc. Note that at this point,
during the lexicographic product, it is possible to correctly
calculate the charging time Tc on each arc knowing ub and
wb. It is evident that the size of the new routing graph Gb can
increase significantly if the battery discretization step δb is
small, which is generally a requirement for solution accuracy.
This reduces the scalability of the approach to larger road
networks. However, while the price to pay in graph memory
occupancy is high, the advantage of this approach is that
a polynomial-time algorithm, such as the unconstrained BF,
can be used to find the optimal solution. In the following,
we simply denote with LBF the Bellman-Ford algorithm with
early termination condition (i.e. the iteration on the nodes is
stopped when no new relaxation on the arcs is performed)
presented in [17], [12] and applied here to the lexicographic
product of graphs.

B. ε-approximation constrained BF algorithm

The ε-approximation idea for the constrained Bellman-
Ford (CBF) algorithm proposed here was inspired by [6],
[7], and is denoted in the following as ε-ACBF. In particular,
the strict Pareto-optimality condition for the acceptance of a
new sub-path is dropped because, in presence of charging
capabilities, a sub-path can still be globally optimal even
though it is dominated in terms of time or energy by another

sub-path at an intermediate charging location. In other words,
when the vehicle reaches a charging location along the route,
its trip time or energy consumption can be higher than
another possible sub-path (e.g. charge already performed at
an earlier location), and still be a candidate for the global
optimal route up to destination. Therefore, let us recall that
the ε-ACBF can be run on the routing graph L(G), and let
us define the conditions for acceptance of candidate sub-path
P∗u, reaching u ∈ A′, in the set of already stored sub-paths
Pu, ∀u ∈ A′.

The first condition aims to verify sub-path feasibility,
that is the sub-path cumulated energy consumption does not
exceed the physical battery boundaries:

Pu = Pu ∪ P∗u, ⇐⇒
∑
P∗
u

ωi,e ∈ [0, C] . (19)

The second condition implements the ε-approximation to
reduce the time-complexity of the algorithm:

Pu = Pu ∪ P∗u, ⇐⇒

∣∣∣∣∣∣
∑
P∗
u

ωi,e −
∑
Pu,β

ωi,e

∣∣∣∣∣∣ ≥ εe ∧
∧

∣∣∣∣∣∣
∑
P∗
u

ωi,t −
∑
Pu,β

ωi,t

∣∣∣∣∣∣ ≥ εt, ∀ Pu,β ∈ Pu 6= P∗u,

(20)

where the positive parameters εe and εt denote the minimum
cost difference in terms of energy and time, respectively, for
the candidate sub-path P∗u to be added to the list Pu. Note
that in this case, while the graph memory occupancy is low,
the algorithm is non-polynomial and the size of the stored
paths can grow exponentially.

VI. SIMULATION RESULTS

The first set of simulation results aims to show the higher
accuracy of the LBF algorithm as compared to the ε-ACBF
algorithm. To do so, we considered an example of trip
from Paris to Dijon (France) with at least one charging
event necessary to complete the trip (the assumed battery
capacity is 30 kWh). The two algorithms were used to find
the approximated optimal solution of problem (18a-18d), and
compared to a reference algorithm able to find the exact
solution. Such a reference is represented by a variation of
the classical (CBF) algorithm [18], which was modified to
store all the battery-feasible intermediate paths and not only
the ones improving the cost. For λ = 1, the three algorithms
calculate the same route. However, while LBF was able to
calculate exactly the same sequence of charging events as
CBF, ε-ACBF obtained a different solution, as summarized
in Table I. The ε-ACBF, for a choice of εt = 10 s and εe =
10 Wh, gives a solution with a lower energy consumption,
a lower number of charging stops and a higher trip time.
However, this solution is inaccurate because there actually
exists a solution with a lower trip time. Note that the average
CPU time of LBF is composed by the BF run time plus
the additional time required to perform the lexicographic
product of graphs (i.e. 0.08 seconds in this case). The CBF
algorithm was used here as a reference thanks to the reduced



CBF ε-ACBF LBF
Graph size (arcs) 140 140 397 609
Avg. CPU Time 3.22 [h] 0.03 [s] 0.01+0.08 [s]

Recharged energy [kWh] 48 48 48
Energy consumption [kWh] 74.78 74.53 74.78

Trip time [h] 3.53 3.86 3.53
Number of charging stops 3 2 3

TABLE I: Solution accuracy of LBF and ε-ACBF algorithms

graph size, but it clearly shows very poor scalability and its
time complexity grows exponentially. The algorithms were
implemented in MATLAB on a computer with CPU Intel(R)
Core(TM) i7-8850H CPU at 2.6 GHz and 16 GB of RAM.

The second set of simulations aims to analyze the optimal
solution on a long-distance route, and in particular the impact
of traveling speed as a decision variable on the solution, as
well as the trade-off between energy consumption and trip
time. In the following, we indicate with “speed” the case
in which we use δv ∈ {0, 5, 10, 15} km/h, as discussed in
Section III-A. We indicate with “no-speed” the case in which
speed is not a decision variable, that is δv = 0. The CBF can
no longer be used as a reference because the routing graph
size is already too large for this algorithm. We consider a
trip from Stuttgart (Germany) to Nice (France), with traffic
information on the road network provided by HERE Maps
for the day of February 25, 2020, at off-peak hours.

In Figure 3, the optimal solution provided by the LBF
algorithm is shown in the case where the traveling speed
is used as a decision variable and in the case where the
vehicle is always supposed to travel at the speed of traffic.
Both cases are analyzed for λ = 1, that is only the fastest
route is shown. As illustrated in Figure 3a, the possibility to
choose a traveling speed lower than the one of traffic does not
have an impact on the fastest route itself, which remains the
same in the two cases, but reduces the number of charging
events necessary to complete the trip. In Figure 3b the SoC
profile shows that the second charging stop was delayed
thanks to a different choice of traveling speed, namely from
an average speed of 120 km/h to 115 km/h between about
100 km and 200 km. This was sufficient to reduce the overall
number of stops and reduce the total trip time by about
half an hour, as shown in Figure 3c. The nominal travel
time curve indicates the time necessary to complete the trip
without any stops, which would be potentially the case with
a conventional vehicle with a large enough driving range. A
more detailed comparison of the results of the LBF and the ε-
ACBF algorithm is given in Table II. The ε-ACBF algorithm
is run now with a choice of εt = 60 s and εe = 10 Wh, given
the larger size of the graph. The LBF algorithm required
additional CPU time for the lexicographic product of about
0.5 s in the case without additional speeds and 17 s in the
case with additional speeds. The ε-ACBF algorithm seems
much faster, but it shows memory occupancy problems due
to the sub-paths storage during runtime, thus reaching its
scalability limits. Also, the choice of the ε parameters is such
that the accuracy is very poor and the algorithm fails to show
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Fig. 3: Time-optimal routing solutions for a trip from
Stuttgart (Germany) to Nice (France) with and without using
traveling speed as a decision variable.

No-speed Speed
ε-ACBF LBF ε-ACBF LBF

Graph size (arcs) 1 088 3 167 837 40 868 217 617 481
Avg. CPU Time [s] 1 0.2+0.5 37 87+17

Recharged energy [kWh] 153 153 156 123
Energy consumption [kWh] 181.5 181.5 182.7 152

Trip time [h] 11.1 10.7 12.1 10.3
Number of charging stops 9 9 14 6

TABLE II: Performance of the routing algorithms and sen-
sitivity to the traveling speed as a decision variable.

the appealing solution in terms of energy consumption and
travel time obtained with the LBF algorithm.

Secondly, we studied the effect of the trade-off weight λ on
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Fig. 4: Routing solution sensitivity to different values of λ.

λ = 1

(min time)
λ = 0.9

(trade-off)
λ = 0

(min energy)
Recharged energy [kWh] 123 117 117

Energy consumption [kWh] 152 145.9 145.6
Trip time [h] 10.29 10.34 11.44

Number of charging stops 6 6 5

TABLE III: Performance sensitivity to different values of λ.

the routing solution calculated with the LBF algorithm. Table
III summarizes the different results obtained for λ = 0, 0.9
and 1, while Figure 4 shows the battery SoC and trip time
profiles of the different solutions. We can notice that λ = 0.9
represents a good trade-off between total energy consumption
and trip time. The trip time is almost the same as the one of
the fastest route (i.e. λ = 1), while the energy consumption
approaches the one estimated for the eco-route (i.e. λ = 0).

VII. CONCLUSIONS

This work addresses the problem of long-distance route
planning for electric vehicles with consideration of battery
charging constraints, and proposes a practical implementa-
tion which aims to increase user’s acceptance by combining
solution accuracy and low computation time. Probabilis-
tic features have been integrated into a driver’s model in
order to predict major speed disruptions along the route
and improve energy consumption estimation. Two different
solution algorithms are compared in order to identify the best
approach to calculate the time- and energy-optimal route.
The first approach (LBF) makes use of an unconstrained
shortest-path algorithm on a graph expanded to integrate the
battery constraints. The second approach (ε-ACBF) adopts
an approximated constrained shortest-path algorithm. It is

shown that the LBF algorithm offers enhanced accuracy and
robustness as compared to the ε-ACBF, with comparable
scalability. Finally, results show that reducing travel speed
along the route may give rise to appealing solutions in terms
of trip time and energy expenditure.
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