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Abstract

We introduce a new variational numerical method which does not require any background mesh to compute the
scheme coefficients. Replacing the mesh by a point cloud endowed with connectivity, which we call a discretization
network, and following the virtual element framework we derive a consistent, coercive and stable numerical scheme.
We illustrate the good behavior of the method on several numerical examples.
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Introduction

The mimetic technology [1] has brought to the community extremely simple, efficient and elegant ways to handle
probably all classical partial differential equations, with general coefficients, even on very distorted or exotic meshes.
One of its most recent versions, the virtual element method (VEM, [2]) is in fact so well designed that it even leads
to much simpler proofs than its closest ancestor, the mimetic finite differences, letting us go back to the familiar
variational setting of the finite element framework. The mimetic technology has also given birth to useful alternative
methods such as the Hybrid-High-Order (HHO, [3, 4]) or the original VAG scheme [5] (see [6] for its formal equiv-
alence with a VEM approach), sharing consequently the same ability to cope with generic meshes. Starting from the
usual Poisson problem, all these methods have been extended to linear [7, 8] and non linear [9, 10] elasticity, parabolic
problems [11], multiphase flow problems [12], Stokes problem [13], etc. The literature based on those methods is in
fact already tremendous, reflecting the strong interest and enthusiasm of the mathematical community.

Those methods can handle meshes so general, it is so complex to design a mesh that will make them fail, that we
can wonder if we still really need a mesh, or more precisely, what are the quantities usually provided by a mesh that
are really needed to perform an accurate numerical simulation. This is the question that has led to the present work.
Looking at the virtual element and HHO methods from a purely algebraic point of view, we see that the key of their
success is the clear separation between consistency and stability (a property which they share with other approaches
for handling general meshes, like discontinuous Galerkin methods, see [14]). While consistency has to retain certain
properties of the original problem and its geometry, coercivity and thus stability can be obtained almost automatically
using the virtual element principles [15]. Thus, it is natural to focus on the geometric elements that are absolutely nec-
essary to ensure the consistency of a method. This approach naturally led us to the notion of discretization network,
which we can sum up as a mesh reduced to its most basic expression: a point cloud endowed with a connectivity. This
network and some weights computed on it that will correspond to a network geometry, allows to build a consistent
approximation of our model Poisson problem. Then, applying virtual element principles, stability of the discrete vari-
ational formulation will indeed prove to be easy to obtain.

Discretization networks are common objects underlying many meshless methods, even if they sometimes remain im-
plicit as in the case of partition of unity finite element methods (see [16]). The network geometry is a family of weights
satisfying conditions that allows to approximate differential operators and reproduce polynomials on point clouds, and
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are common objects for meshless methods not based on analytic partitions of unity (see [17, 18, 19, 20, 21, 22]). Gen-
erating a network geometry basically consists in generating weights allowing polynomial consistency using the chosen
degrees of freedom, up to a given order. However, if this is enough to obtain the consistency of a meshfree method,
as explained for instance in [20] this is not enough to obtain a compatible discretization like the one provided by the
VEM on meshes. The crucial missing ingredient is called the compatibility of the discretization scheme, or in other
words that Stokes’ formula must be satisfied in some sense at the discrete level. This is in fact the main difficulty
of generating network geometries. To circumvent it, for both technical and practical reasons in the present work we
have chosen to use a slightly more general notion of geometry than those based on exact polynomial consistency
and conservation property, by allowing those properties to be satisfied only approximately. Finally, contrary to the
aforementioned methods of [17, 18, 19, 20, 21, 22] which are roughly speaking finite volume methods, the scheme
presented here is based on the VEM approach and is thus variational by construction and, at least to the author’s
knowledge, it is completely original (we will call it the network element method). As a consequence, although it is
very natural to define the degrees of freedom of the scheme at the points defining the discretization network as in [17]
or [22], here as we are trying to mimic the VEM it will in fact be more natural to follow the lines of [18, 19, 20, 21] and
consider degrees of freedom located at the interfaces between points using the connectivity of the network. Compared
to other meshless approaches and in particular those based on analytic partitions of unity, it is delicate to claim that
the method is completely meshless. Indeed if no mesh is used, not even to compute quadratures, we replace it by a
discretization network and an associated geometry, whose practical computation is not as cheap as simply generating
a point cloud. We refer the reader to [23, 24, 25] for a review of the huge literature on classical meshless methods.

The paper will be organized as follows: in the first part of the paper (section 1), we will give a general definition of
discretization network and introduce our slightly generalized notion of network geometry. Then, in the second part of
the paper (section 2) we will explain how to approximate a model Poisson problem using the network element method
and study the consistency and stability properties of the corresponding scheme. Finally, in the last part of the paper
(section 3) we exhibit some numerical results to illustrate the good behavior of the method.

1. Discretization networks and network geometry

Let Ω be an open bounded connected subset of Rd, d P Nzt0u, assumed to be at least Lipschitz. For any x P Rd

and any r ą 0, we denote Bpx, rq the ball of radius r centered at x. We now define a discretization network as a
point cloud endowed with a connectivity (see figure 1 for an example of discretization network), which is basically a
reformulation of the networks underlying the methods of [18, 19, 20]:

Definition 1.1 (Discretization network). A discretization networkN of Ω is defined from two sets of points PT and
PF , by setting N “ tT ,F u, where:

• The set of cells T is a set of pairs K “ txK , rKu, with xK P PT strictly inside Ω and rK a strictly positive real
number, for any K P T . We denote hK “ 2rK .

• The set of interfaces, denoted F , is a set of pairs σ “ txσ,Tσu, with xσ P PF and Tσ a subset of T . It is
subdivided into two subsets, the set of boundary interfaces Fext and the set of interior interfaces Fint.

• The set of boundary interfaces Fext is such that for all K P Tσ, xσ is a point in YKPTσBpxK , rKq X BΩ.

• The set of interior interfaces Fint is such that for all K P Tσ, xσ is a point in YKPTσBpxK , rKq X Ω̊.

• For all pK1,K2q P N
2 such that K1 ‰ K2, xK1 ‰ xK2 . For all pσ1, σ2q P F

2 such that σ1 ‰ σ2, xσ1 ‰ xσ2 .

• Ω Ă
Ť

KPT BpxK , rKq. For any K P T such that BΩXBpxK , rKq ‰ H, then FKXFext ‰ H. For any pK, Lq P T 2

such that BpxK , rKq X BpxL, rLq ‰ H, then there exists σ P F such that pK, Lq Ă Tσ.

For any K P T , we also denote FK “ tσ P F | K P Tσu (the interfaces of K), which implies that for any σ P F , Tσ
obviously denotes the cells connected to the interface σ and satisfies Tσ “ tK P T | σ P FKu. The set of interfaces
F defines the connectivity of the network and clearly depends on the chosen norm ||x||mm “

řd
i“1 xm

i , 1 ď m ď `8
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Figure 1: Example of discretization network for a square domain (light red circles are interfaces, black circles are cells, large circle represents the
rK ’s, lines represent the connectivity)

for computing the balls and on the size distribution rK . In the following, we will only consider for simplicity the case
m “ 2. We denote BK “ BpxK , rKq, and for any x P Rd, and we also denote

TNx “ tK P T | x P BKu and ηN “ sup
xPRd

cardpTNx q

Finally, we denote h “ maxKPT hK and PkpRdq the set of polynomials of order k.

All our reasoning will be based on a direct analogy with a classical mesh. We will try to approximate functions around
xK for any K P T , as if we had subdivided Ω in cells centered at xK . The interfaces are intended to be the analogues
of the faces or vertices joining the cells, or a mixing of both. Remark that the following construction will be easier to
understand if the interfaces are considered as analogous to mesh faces. By analogy with meshes it seems very natural
to introduce the following admissibility condition on the discretization network:

For all K P T , cardpFKq ě d ` 1 and there exists σ P FK such that rankpVK,σq “ d (1)

where we have denoted for all K P T and all σ P FK

VK,σ “ pV j,σ,σ
1

K q1ď jďd,σ1PFK
with V j,σ,σ

1

K “ x j
σ
1 ´ x j

σ for all σ
1

P FK and all 1 ď j ď d (2)

Any network satisfying (1) is of course called an admissible network. Condition (1) can be easily interpreted geomet-
rically if we consider what would be its equivalent for a true mesh: it simply means that a cell must have at least d` 1
true interfaces, that is d ` 1 non colinear interfaces, and is thus non degenerate. Another consequence is that for any
K P T the set pxσqσPFK is unisolvent for first order polynomials.

1.1. Network geometry

By analogy with a classical mesh, to each cell K P T , we associate a strictly positive real number mK , which is
intended to be the analogue of the cell measure. To each K P T and each σ P FK , we associate a vector ηK,σ, intended
to be the analogues of the outgoing normal vector, weighted by the face measure. To circumvent some existence
issues, we define a network geometry as a set of coefficients:
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G “

´

pmKqKPT , pηK,σqKPT ,σPFK , pε
0,i
K qKPT ,1ďiďd, pε

1,i j
K qKPT ,1ďi, jďd, pε

i
σqσPFint ,1ďiďd, εΩ

¯

We introduce the approximate consistency properties

mK ą 0 for all K P T (3)

and
ÿ

σPFK

ηi
K,σ “ mKε

0,i
K for all K P T and all 1 ď i ď d (4)

and
ÿ

σPFK

ηi
K,σpx

j
σ ´ x j

Kq “ mKpδi j ` ε
1,i j
K q for all K P T and all 1 ď i, j ď d (5)

and the approximate conservation (or compatibility) properties
ÿ

KPT

mK “ p1` εΩq|Ω| (6)

and
ÿ

KPTσ

ηi
Kσ “ εi

σ for all σ P Fint and all 1 ď i ď d (7)

We say that a network geometry is consistent if and only if it satisfies (3)-(4)-(5), and in the same way we say that it
is conservative if and only if it satisfies (6)-(7). The underlying idea is very simple, the subset

εpGq “
´

pε0,i
K qKPT ,1ďiďd, pε

1,i j
K qKPT ,1ďi, jďd, pε

i
σqσPFint ,1ďiďd, εΩ

¯

is intended to represent the approximation error we tolerate on the exact geometrical constraints. Obviously we want
to have some control over it, this is why we need to introduce the constants θA ą 0 and p ě 1, both independent on
h, and such that

|ε0,i
K | ď θAhp

K for all K P T and all 1 ď i ď d (8)

and
|ε

1,i j
K | ď θAhp

K for all K P T and all 1 ď i, j ď d (9)

and
|εΩ| ď θAhp (10)

and
|εi
σ| ď θA min

KPTσ
mKhp

K for all σ P Fint and all 1 ď i ď d (11)

Finally, we say that an approximate network geometry is admissible if and only if it is consistent and conservative.
A conservative and consistent network geometry for which εpGq “ 0 will be called an exact geometry. Notice that
εpGq is the main difference between our notion of network geometry and those of [17, 18, 21, 22], while it also has
less elements that the ones of [19, 20]. In other words, our notion of network geometry differs from those of the
literature mainly by the fact that we allow it to only be approximate in terms of consistency and conservation property.
Those choices are made to allow the derivation of a numerical method with a compact stencil. Another interesting
consequence is the fact that contrary to most methods of the literature, the ηK,σ for K P Tσ do not necessarily share
the same norm or direction(as would their most natural mesh analogues |σ|nK,σ), even in the case of a face like
connectivity (i.e. cardpTσq ď 2) as it would be the case for exact geometries (see for instance [19, 20]).

In practice we will use p “ 2 to ensure that the approximation error coming from the network geometry is smaller than
the polynomial approximation error, which will become obvious when deriving consistency results for the associated
numerical scheme. We keep the notation hp

K as an easy way to distinguish the contributions of εpGq to the scheme’s
error.
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Remark 1.2. Notice that if the above relations hold true then for any matrix M PMdpRq, we have

ÿ

σPFK

1
mK

ηT
K,σMpxσ ´ xKq “ trpMq `

d
ÿ

i“1

d
ÿ

j“1

ε
1,i j
K Mi j for all M PMdpRq

Applying it to a first order polynomial vector q “ cq ` Mx, we easily get that

div q`
d
ÿ

i“1

d
ÿ

j“1

ε
1,i j
K
Bqi

Bx j “
1

mK

ÿ

σPFK

ηT
K,σpqpxσq ´ qpxKqqq

which is an approximate consistency result on the divergence operator as well.

1.2. Existence of network geometries
Thanks to the presence of εpGq in our definition of network geometries, their existence is immediate. Indeed:

Proposition 1.3. Let N be an admissible network. Then there exists an admissible network geometry.

Proof. If G is an admissible geometry, we have for the ηK,σ’s, the ε1,i j
K ’s, the ε0

K and the εσ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

σPFK

ηi
K,σpx

j
σ ´ x j

Kq ´ mKε
1,i j
K “ δi jmK for all K P T and all 1 ď i, j ď d

ÿ

σPFK

ηi
K,σ ´ mKε

0,i
K “ 0 for all K P T and all 1 ď i ď d

ÿ

KPTσ

ηi
K,σ ´ εi

σ “ 0 for all σ P Fint and all 1 ď i ď d

Using the change of variable ε0,i
m,K “ mKε

0,i
K and ε1,i j

m,K “ mKε
1,i j
K ` ηi

K,σx j
K and denoting

X “

´

pηK,σqKPT ,σPFK , pε
0,i
m,KqKPT ,1ďiďd, pε

1,i j
m,KqKPT ,1ďi, jďd, pε

i
σqσPFint ,1ďiďd

¯

and m“ pmKqKPT , the above system can be rewritten AGX “ LG m. Now, let us take a vector µ in ImpAGq, with

µ “
´

pµ
1,i j
K qKPT ,1ďi, jďd, pµ

0,i
K qKPT ,1ďiďd, pµ

i
σqσPFint ,1ďiďd

¯

.

We have:
pAT

Gµq
TX “ µTAGX

“
ÿ

KPT

d
ÿ

i“1

d
ÿ

j“1

ÿ

σPFK

ηi
K,σx j

σµ
1,i j
K `

ÿ

KPT

d
ÿ

i“1

ÿ

σPFK

ηi
K,σµ

0,i
K `

d
ÿ

i“1

ÿ

σPFint

ÿ

KPTσ

ηi
K,σµ

i
σ

´
ÿ

KPT

d
ÿ

i“1

d
ÿ

j“1

ε
1,i j
m,Kµ

1,i j
K ´

ÿ

KPT

d
ÿ

i“1

ε0,i
m,Kµ

0,i
K ´

d
ÿ

i“1

ÿ

σPFint

εi
σµ

i
σ

“
ÿ

KPT

d
ÿ

i“1

ÿ

σPFKXFint

ηi
K,σ

˜

µi
σ ` µ0,i

K `

d
ÿ

j“1

µ
1,i j
K x j

σ

¸

`
ÿ

KPT

d
ÿ

i“1

ÿ

σPFKXFext

ηi
K,σ

˜

µ0,i
K `

d
ÿ

j“1

µ
1,i j
K x j

σ

¸

´
ÿ

KPT

d
ÿ

i“1

d
ÿ

j“1

ε
1,i j
m,Kµ

1,i j
K ´

ÿ

KPT

d
ÿ

i“1

ε0,i
m,Kµ

0,i
K ´

d
ÿ

i“1

ÿ

σPFint

εi
σµ

i
σ

As AT
Gµ “ 0 is equivalent to pAT

Gµq
TX “ 0 for all X we see, taking one element of X equal to one and all the others

equal to zero, that AT
Gµ “ 0 immediately implies for all 1 ď i, j ď d that µ1,i j

K “ 0 and µ0,i
K “ 0 for all K P T , as well

as µi
σ “ 0 for all σ P Fint. Thus AT

Gµ “ 0 implies µ “ 0. Existence is then a direct consequence of the fact that there
always exists pεΩ,mq such that mK ą 0 for any K P T and satisfying (6), which concludes the proof.
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The natural question that arises is whether such a result can be established for exact network geometries. In the above
proof, we were able to establish existence thanks to the fact that KerAT

G
“ t0u. In the case of exact geometries the

kernel of the transpose of the corresponding reduced matrix AG acting only on the ηK,σ’s will be characterized by
relations

0 “ µi
σ ` µ0,i

K `

d
ÿ

j“1

µ
1,i j
K x j

σ for all K P T and all σ P Fint X FK and 1 ď i ď d (12)

and

0 “ µ0,i
K `

d
ÿ

j“1

µ
1,i j
K x j

σ for all K P T and all σ P Fext X FK and 1 ď i ď d (13)

and existence of exact geometries with positive cell measures will be governed by Farkas’ lemma. Unfortunately, for
general networks the kernel of the reduced transpose matrix will not be reduced to zero: depending on the network’s
connectivity, there can exist oscillating non zero vectors satisfying both (12) and (13). The consequence is that
the cell measures of an exact network geometry must satisfy a potentially complex compatibility condition that can
be characterized using Farkas’ lemma. To ensure existence of geometries for every admissible network without
computing KerAT

G
was one of the main motivation for considering augmented geometries incorporating the geometric

approximation errors εpGq. Finally, numerical experiments reveal that even on networks generated from true meshes,
and thus for which existence is ensured, computing an exact geometry is a numerically difficult problem. As a slight
perturbation on the point cloud is potentially enough to ensure or prevent the existence of exact geometries, our guess
is that the underlying linear system remains most probably stiff even when its kernel is properly handled. The practical
consequence is that constructing an exact network geometry up to machine precision can be a very costly and time
consuming process. Reducing this computational cost was the second main motivation for adding εpGq to the usual
definition of network geometries.

2. The network element method

2.1. Model problem
In order to focus on the network element method itself and to ease the understanding of the presentation, we have

chosen to consider the simplest possible model problem, i.e. the Poisson problem, set on an open bounded domain Ω

subset of Rd, d P Nzt0u
´∆u “ f in Ω, (14)

For the sake of simplicity again, we complement it with homogeneous Dirichlet boundary conditions, i.e.

u “ 0 on BΩ, (15)

where BΩ “ ΩzΩ is the boundary of the domain Ω, that we have assumed to be at least Lipschitz continuous, and
f P L2pΩq. The weak solution associated to (14)-(15) is the unique u P H1

0pΩq such that
ż

Ω

∇u∇v “
ż

Ω

f v for all v in H1
0pΩq ô apu, vq “ lpvq for all v in H1

0pΩq (16)

2.2. Degrees of freedom and discrete variational formulation
Let us recall some key ideas underlying the virtual element method. Assume that we are given a mesh of Ω whose

set of cells is denoted T to make the analogy with networks more obvious, then we can write
ż

Ω

∇u∇v “
ÿ

KPT

ż

K
∇u∇v

Using the virtual element projector ΠVEM
K onto first order polynomial functions, which is exact when tested again first

order polynomial functions (see [2]) , one has
ż

Ω

∇u∇v “
ÿ

KPT

ż

K
∇ΠVEM

K puq∇ΠVEM
K pvq `

ÿ

KPT

ż

K
p∇u´ ∇ΠVEM

K puqqp∇v´ ∇ΠVEM
K pvqq

6



The first term in the sum is the consistency part, which is used under this form in practice, and is intended to account
for the polynomial part of the discrete approximation. For the second term, the idea of the virtual element method is
that it can be replaced by a generic stabilization bilinear form

sVEM
K pu´ ΠVEM

K puq, v´ ΠVEM
K pvqq

which only needs to scale with hK in the same way than the term it replaces, leading to the discrete variational
formulation for the first order virtual element method (denoting πk the L2 projection on polynomials of order k)

ÿ

KPT

ż

K
∇ΠVEM

K puq∇ΠVEM
K pvq `

ÿ

KPT

sVEM
K pu´ ΠVEM

K puq, v´ ΠVEM
K pvqq “

ÿ

KPT

ż

K
fπ0pvq

To construct the network element method, we will follow the principles of the virtual element method, but using
our discretization network rather than a mesh. It means that we will construct a discrete bilinear form based on the
discretization network and its associated network geometry that will handle the polynomial part, in some sense, of our
degrees of freedom. Doing so, we will need to relax some of the consistency requirements of the mimetic approach
to handle the fact that our network geometries are only approximate. Then, we complete it with a stabilization term
that, roughly speaking, just need to have the correct scaling and to approximately vanish for polynomial degrees of
freedom. As mentioned in the introduction, this clear separation between the consistency part acting on polynomials
and the stabilization part is also very reminiscent of discontinuous Galerkin methods ([14]).

Let N be an admissible discretization network, endowed with an admissible network geometry G. We associate to N
the following space of degrees of freedom

XN “
 

puσqσPF | uσ P R for all σ P F
(

and denote U “ puσqσPF . The idea behind those degrees of freedom is simply to mimic the VEM, assigning degrees
of freedom to interfaces between cells which in the case of the first order VEM means assigning degrees of freedom to
mesh vertices. Notice that choice leads to a space of degrees of freedom very similar to those of the meshless methods
of [19, 20]: we want to compute an approximation around the points of T , but our degrees of freedom are located at
the interfaces between elements of T . To account for homogeneous Dirichlet boundary conditions, we also consider

XN ,0 “ tU P XN | uσ “ 0 for all σ P Fextu

and we define the local set of degrees of freedom associated to a cell by

XN ,K “
 

puσqσPFK
| uσ P R for all σ P FK

(

Of course, for any U P XN , we denote UK “ puσqσPFK
. Let us now describe the derivation of the counterpart of the

virtual element projector in our context. To any cell K P T , we associate a point xK and denote

xK “
ÿ

σPFK

γK,σxσ where
ÿ

σPFK

γK,σ “ 1

thus the pγK,σqσPFK forms a barycentric interpolation for xK from the interface points pxσqσPFK . Let us denote

MKpUKq “
ÿ

σPFK

γK,σuσ

To any cell K P T , we associate the local reconstruction operator ΠK defined by
ˇ

ˇ

ˇ

ˇ

ˇ

ΠK : XN ,K ÞÝÑ P1pRdq

UK ÝÑ ΠK pUKq “MKpUKq ` ∇K pUKq ¨ px´ xKq
(17)

where
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∇K : XN ,K ÞÝÑ P0pRdqd

UK ÝÑ ∇K pUKq “
1

mK

ÿ

σPFK

uσηK,σ
(18)

7



Notice that the above definition implies that

MK ppΠK pUKq pxσqqσPFK q ”
ÿ

σPFK

γK,σΠK pUKq pxσq “MKpUKq and ∇ΠK pUKq “ ∇K pUKq (19)

Finally, we extend the definition of ΠK to all XN by setting
ˇ

ˇ

ˇ

ˇ

ˇ

ΠK : XN ÞÝÑ P1pRdq

U ÝÑ ΠK pUKq
(20)

and we do the same forMK and ∇K . For any U P XN , if the geometry is exact then as its VEM equivalent ΠK pUKq

corresponds to the local polynomial part of U around xK . Indeed, an immediate consequence of (4)-(5) is that if
Uπ,K is the set of degrees of freedom of a polynomial πK P P1pRdq, then ΠK pUπ,Kq “ πK , while if Uπ,K is the set of
degrees of freedom of a polynomial πK P P0pRdq, thenMK pUπ,Kq “ πK . However in the more general case of an
approximate geometry, we only get an approximation of the polynomial part and the above formulae are only true up
to a term of magnitude hp

K . In other words, it means that our discrete reconstruction ΠK pUπ,Kq will not satisfy exactly
what engineers call the patch test. Numerical results will illustrate that this approximate consistency is nevertheless
enough to obtain convergence and that satisfying exactly the patch test is not mandatory.

For any ϕ P C0pRdq (and more generally for any function for which it makes sense), we denoteDKpϕq “ pϕpxσqqσPFK

the local set of degrees of freedom associated with ϕ, whileDpϕq “ pϕpxσqqσPF denotes the complete set of degrees
of freedom associated with ϕ.

We then define aK
h : XN ,K ˆ XN ,K ÞÝÑ R by

aK
h pUK ,VKq “ mK∇ΠK pUKq ¨ ∇ΠK pVKq ` sKpUK ´DK pΠK pUKqq ,VK ´DK pΠK pVKqqq (21)

where sK is a positive symmetric bilinear form on XN ,K ˆ XN ,K , such that

sKpUK ,VKq “ mKh´2
K

ÿ

σPFK

ÿ

σ
1
PFK

S K,σ,σ1 uσvσ1 (22)

where S K “ pS K,σ,σ1 qσ,σ1PFK
can be any symmetric positive definite matrix independent on the geometry G associated

to the network, for which we denote

S ˚ “ inf
KPT

inf
ξPRcardpFKq,||ξ||“1

ξT S Kξ and S ˚ “ sup
KPT

sup
ξPRcardpFKq,||ξ||“1

ξT S Kξ

Of course, we define a bilinear form ah : XN ˆ XN ÞÝÑ R by setting

ahpU,Vq “
ÿ

KPT

aK
h pUK ,VKq

For the right-hand side, assume that fK is an approximation of f at xK (for instance, one can use f pxKq if f is regular
enough for this quantity to make sense), then we define a linear form lh : XN ÞÝÑ R by setting

lhpVq “
ÿ

KPT

mK fKMKpVKq

Then, the discretization by the network element method consists in finding a solution U P XN ,0 of

ahpU,Vq “ lhpVq for all V P XN ,0 (23)
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2.3. Some practical remarks on the network element method

Let us make the above discrete variational formulation more explicit in terms of degrees of freedom. For any
pU,Vq P X2

N

aK
h pUK ,VKq “ mK∇ΠKpUq∇ΠKpVq ` mKh´2

K

ÿ

σPFK

ÿ

σ
1
PFK

S K,σ,σ1 puσ ´ ΠKpUqpxσqqpvσ1 ´ ΠKpVqpxσ1 qq

Notice that by definition of ΠK , we have

uσ ´ ΠKpUqpxσq “ uσ ´MKpUq ´ ∇KpUq ¨ pxσ ´ xKq

“ uσ ´
ÿ

σ
2
PFK

γK,σ2uσ2 ´
1

mK

ÿ

σ
2
PFK

uσ2ηK,σ2 ¨ pxσ ´ xKq

A straightforward computation leads to

aK
h pUK ,VKq “

ÿ

σPFK

ÿ

σ
1
PFK

Aσ,σ
1

K uσvσ1

where
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Aσ,σ
1

K “
1

mK
ΛKηK,σ ¨ ηK,σ1 ` mKh´2

K Sσ,σ
1

K ,

Sσ,σ
1

K “ yT
K,σ1

S KyK,σ,

yK,σ “ pyσ
2

K,σqσ2PFK
, yσ

2

K,σ “ δσ,σ2 ´ γK,σ ´
1

mK
ηK,σ ¨ pxσ2 ´ xKq

(24)

where δσ,σ2 is the Kronecker symbol. For the second member, we immediately get

lhpVq “
ÿ

KPT

ÿ

σPFK

Lσ
Kvσ with Lσ

K “ mK fKγK,σ

and thus (23) is equivalent to solving

ÿ

KPT

ÿ

σPFK

ÿ

σ
1
PFK

Aσ,σ
1

K uσvσ1 “
ÿ

KPT

ÿ

σPFK

Lσ
Kvσ (25)

complemented by the boundary conditions uσ “ 0 and vσ “ 0 for any σ P Fext. To get an even more familiar
version of this system, let us introduce the square matrix A of size cardpF q as well as F P XN such that and for any
σ,σ‘ P Fint

Aσ
1
,σ “

ÿ

KPTσXTσ1

Aσ,σ
1

K and fσ “
ÿ

KPTσ

Lσ
K

and for any σ,σ‘ P Fint

Aσ
1
,σ “ δσ1 ,σ and fσ “ 0

Problem (23) is then equivalent to solving the linear system

AU “ F

Then, assuming an ordering of the interfaces such that the elements of Fext are the last ones in the list, this rewrites
ˆ

AFint ,Fint 0
0 IFext

˙

U “
ˆ

FFint

0

˙

9



Algorithm 1 Pseudo code for assembling the network element method
Initialization:
All matrix and vector coefficients are set to zero.
Set one on the diagonal entries of the matrix corresponding to elements of Fext

Assembly loop:
for K P T do

Compute the barycentric weights γK,σ if necessary

Compute all the local terms Aσ,σ
1

K
for σ,σ‘ P FK do

if both σ and σ‘ P Fint, add Aσ,σ
1

K to the line σ‘ of the matrix A at column σ
end for
for σ P FK do

if σ P Fint, add Lσ
K to the line σ of the second member

end for
end for

where IFext is the identity matrix on RcardpFextq, which is the familiar form of a finite element matrix. The boundary
degrees of freedom can then be either eliminated or handled through Schur’s complement to reduce the size of the
final linear system. Also notice that the obtained matrix has the same kind of sparsity pattern than finite element
matrices, as given an interface σ its stencil is reduced to the interfaces sharing a common cell. The scheme can thus
be implemented in a finite element fashion, looping over all cells K P T and incrementally constructing the global
system. In other words, a possible implementation would be to follow the pseudo code described in algorithm 1.
Due to the fact the discretization network has a mesh-like structure and that we can resort to classical finite element
assembling procedures, the network element method can relatively easily be incorporated in existing codes already
dealing with unstructured meshes.

2.4. Basic properties of the network element method

Obviously for the above method to be of any practical interest, we must check existence, uniqueness and stability
of its solutions, as well as its consistency with the continuous problem. To this end, we introduce the first measures
of quality of the discretization network

θΠ “ sup
KPT

sup
σPFK

hK

ˇ

ˇ

ˇ

ˇ

ηK,σ

mK

ˇ

ˇ

ˇ

ˇ

and θM “ sup
KPT

sup
σPFK

|γK,σ|

It is clear that the smaller θΠ and θM are, the better the network is. Let us also denote

θF “ max
KPT

cardpFKq

We start by considering the consistency of the method with the original problem. Fortunately, it is an immediate
consequence of the consistency of the approximate network geometry.

Lemma 2.1 (Strong consistency). Let pN ,Gq be an admissible discretization network and an associated admissible
network geometry. For any ϕ P C1

cpRdq, there exists Cϕ ą 0 depending only on ϕ such that for any K P T and any
x P BpxK , ξKq where ξK ď κξrK with κξ ě 1

|ϕpxq ´MKpDKpϕqq| ď dκξθMθFCϕhK

while for any ϕ P C2
cpRdq, there exists another Cϕ ą 0 depending only on ϕ such that for any K P T and any

x P BpxK , ξKq

|∇ϕpxq ´ ∇KpDKpϕqq| ď θApd1{2 ` d3{2 ` dκξhKqCϕhp
K ` κξ

2θΠθFCϕhK
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and

|ϕpxq ´ ΠKpDKpϕqq| ď
1
2
κξθMθF θApd1{2 ` d3{2 ` dκξhKqCϕhp`1

K ` κξ
2θMθF p1`

1
2
κξθΠθF qCϕh2

K

For any Φ P C2
cpRdqd, there exists CΦ ą 0 depending only on Φ such that, for any K P T and any x P BpxK , ξKq

|div Φpxq ´DIVKpDKpΦqq| ď θApd ` d2 ` d3{2κξhKqCΦhp
K ` κξ

2θΠθFCΦhK

where
DIVKpDKpΦqq “

1
mK

ÿ

σPFK

ηT
K,σΦpxσq

Proof. Using Taylor’s expansion formula, we have for any σ P FK

ϕpxσq “ ϕpxq `
ÿ

|α|“1

pxσ ´ xqα
ż 1

0
Bαϕpx` tpxσ ´ xqq

and the first result follows by noticing that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

|α|“1

pxσ ´ xqα
ż 1

0
Bαϕpx` tpxσ ´ xqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď dκξhK sup
|α|“1

||Bαϕ||L8pΩq

as |xσ ´ x| ď rK ` ξK ď κξhK for any x P BpxK , ξKq, and using the fact that
ř

σPFK
γK,σ “ 1. For the second result,

using again Taylor’s expansion formula, we have for any σ P FK

ϕpxσq “ ϕpxq ` ∇ϕpxq ¨ pxσ ´ xq ` 2
ÿ

|α|“2

pxσ ´ xqα

α!

ż 1

0
p1´ tqBαϕpx` tpxσ ´ xqq

and thus, by definition

∇KpDKpϕqq “
ÿ

σPFK

1
mK

ϕpxqηK,σ `
ÿ

σPFK

1
mK
∇ϕpxq ¨ pxK ´ xqηK,σ

`
ÿ

σPFK

1
mK
∇ϕpxq ¨ pxσ ´ xKqηK,σ `

2
mK

ÿ

σPFK

¨

˝

ÿ

|α|“2

pxσ ´ xqα

α!

ż 1

0
p1´ tqBαϕpx` tpxσ ´ xqq

˛

‚ηK,σ

Using the first order approximate consistency properties (4) and (5), this leads to

∇KpDKpϕqq “ ∇ϕpxq ` pϕpxq ` ∇ϕpxq ¨ pxK ´ xqqq ε0
K `

d
ÿ

i“1

d
ÿ

j“1

ε
1,i j
K Bx jϕpxqei

`
2

mK

ÿ

σPFK

¨

˝

ÿ

|α|“2

pxσ ´ xqα

α!

ż 1

0
p1´ tqBαϕpx` tpxσ ´ xqq

˛

‚ηK,σ

Noticing that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
ÿ

|α|“2

pxσ ´ xqα

α!

ż 1

0
p1´ tqBαϕpx` tpxσ ´ xqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

¨

˝2
ÿ

|α|“2

pxσ ´ xqα

α!

˛

‚ sup
|α|“2

||Bαϕ||L8pRdq

11



the multinomial theorem

2
ÿ

|α|“2

pxσ ´ xqα

α!
“ |xσ ´ x|2

and the fact that |xσ ´ x|2 ď κξ
2h2

K for any x P BpxK , ξKq, we immediately get

|∇ϕpxq ´ ∇KpDKpϕqq| ď θAhp
Kpd

1{2||ϕ||L8pRdq ` pd
3{2 ` dκξhKq sup

|α|“1
||Bαϕ||L8pRdqq

`κξ
2θΠθF hK sup

|α|“2
||Bαϕ||L8pRdq

Noticing that
ΠKpDKpϕqq “MKpDKpϕqq ` ∇KpDKpϕqq ¨ px´ xKq

and that the same Taylor’s expansion leads to

MKpDKpϕqq “ ϕpxq ` ∇ϕpxq ¨ pxK ´ xq ` 2
ÿ

σPFK

γK,σ

ÿ

|α|“2

pxσ ´ xqα

α!

ż 1

0
p1´ tqBαϕpx` tpxσ ´ xqq

Using the multinomial theorem as above, for any x P BpxK , ξKq the last term is easily bounded by
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
ÿ

σPFK

γK,σ

ÿ

|α|“2

pxσ ´ xqα

α!

ż 1

0
p1´ tqBαϕpx` tpxσ ´ xqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď θMθF |xσ ´ x|2 sup
|α|“2

||Bαϕ||L8pRdq

while by construction we have that for any x P BpxK , ξKq

|xK ´ x| ď

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

σPFK

γK,σpxσ ´ xq

ˇ

ˇ

ˇ

ˇ

ˇ

ď θM
ÿ

σPFK

|xσ ´ x| ď θMθF prK ` ξKq ď κξθMθF hK

as
ř

σPFK
γK,σ “ 1, which, combined with the previous result, gives for any x P BpxK , ξKq

|p∇ϕpxq ´ ∇KpDKpϕqqq ¨ pxK ´ xq| ď
1
2
κξθMθF θApd1{2 ` d3{2 ` dκξhKqCϕhp`1

K

`
1
2
κξ

3θMθΠθ
2
F

Cϕh2
K

Combining those two estimates immediately gives the third result. The last result on divergence operators can be
established proceeding the same way applying Taylor’s expansion formula on each component of Φ and the first order
approximate consistency properties.

Remark 2.2. In general, what we want to establish on a given numerical scheme is consistency at some hq approxi-
mation order, for any functions belonging to a given space V . To do so, in general one uses the fact that PqpRdq Ă V .
Then, if polynomials are exactly computed by the numerical scheme (i.e. if the method satisfies the patch test exactly),
combined with polynomial approximation results this is in general enough to establish the consistency of the scheme.
However, this approach gives a very specific role to polynomials. Indeed, if a method approximates polynomials with
the expected rate hq, then polynomial approximation results will also lead to the consistency of the method and exact-
ness on polynomials is not necessary. Thus, allowing approximate geometries is definitely not a major issue provided
we have the correct amount of control over the additional consistency errors, reflected in our consistency estimates by
some extra terms in hp

K with respect to what one could expect.
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Thanks to the variational nature of the network element method, its stability analysis can be conducted in a classical
Hilbertian setting. To do so, we naturally endow the space of degrees of freedom XN ,K with the bilinear forms

pU,Vq0,K “ mKMKpUKqMKpVKq `
ÿ

σPFK

mKpuσ ´MKpUKqqpvσ ´MKpVKqq

and
pU,Vq1,K “

ÿ

σPFK

mKh´2
K puσ ´MKpUKqqpvσ ´MKpVKqq

and the associated norm ||U||20,K “ pU,Uq0,K and semi-norm |U|21,K “ pU,Uq1,K , while we denote ||U||2X,K “ ||U||
2
0,K`

|U|21,K . We endow the space of degrees of freedom XN with the bilinear forms

pU,Vq0 “
ÿ

KPT

pU,Vq0,K and pU,Vq1 “
ÿ

KPT

pU,Vq1,K

and the associated norm ||U||20 “ pU,Uq0 and semi-norm |U|21 “ pU,Uq1. Then we define

pU,VqX “ pU,Vq0 ` pU,Vq1 and ||U||2X “ pU,UqX

which are obviously a scalar product and the associated norm on XN , making XN a Hilbert space. To conclude this
preliminary study of the network element method, it remains to study the stability properties of the bilinear and linear
forms defined above regarding those norms.

Lemma 2.3. For any UK P XN ,K:

mK |∇K pUKq|
2
ď 2θ2

ΠθF
ÿ

σPFK

mKh´2
K puσ ´MKpUKqq

2 ` 2dm2
Kθ

2
Ah2p

K |MKpUKq|
2

Proof. Using the conditions of (4)-(5), we can rewrite

∇K pUKq “
1

mK

ÿ

σPFK

puσ ´MKpUKqqηK,σ `MKpUKqε
0
K

Thus, we deduce that, using Cauchy-Schwarz inequality

mK |∇K pUKq|
2
ď

2
mK

˜

ÿ

σPFK

mKh´2
K puσ ´MKpUKqq

2

¸˜

ÿ

σPFK

h2
Km´1

K

ˇ

ˇηK,σ

ˇ

ˇ

2

¸

` 2m2
K |MKpUKq|

2|ε0
K |

2

ď 2

˜

ÿ

σPFK

mKh´2
K puσ ´MKpUKqq

2

¸˜

ÿ

σPFK

h2
K

ˇ

ˇ

ˇ

ˇ

ηK,σ

mK

ˇ

ˇ

ˇ

ˇ

2
¸

` 2dm2
Kθ

2
Ah2p

K |MKpUKq|
2

from which the result immediately follows.

We immediately deduce:

Lemma 2.4. For any pU,Vq P X2
N ,K

aK
h pU,Vq ď

`

p2θ2
ΠθF ` 2dθ2

Ah2pq ` S ˚p2` 4θ2
Πθ

2
M
θ4
F
` 4dθ2

Aθ
2
M
θ3
F

h2pq
˘

||U||X,K ||V||X,K (26)

while for any pU,Vq P X2
N

ahpU,Vq ď
`

p2θ2
ΠθF ` 2dθ2

Ah2pq ` S ˚p2` 4θ2
Πθ

2
M
θ4
F
` 4dθ2

Aθ
2
M
θ3
F

h2pq
˘

||U||X||V||X (27)
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For any U P XN ,K

aK
h pU,Uq ě

S ˚
1` θ2

M
θ3
F

S ˚
|U|21,K (28)

while for any U P XN :

ahpU,Uq ě
S ˚

1` θ2
M
θ3
F

S ˚
|U|21 (29)

Finally, for any V P XN

lhpVq ď C f |V|0 where C f “

˜

ÿ

KPT

mK | fK |
2

¸
1
2

(30)

Proof. Using Cauchy-Schwarz inequality, we immediately get

lhpVq ď

˜

ÿ

KPT

mK | fK |
2

¸
1
2
˜

ÿ

KPT

mK |MKpVKq|
2

¸
1
2

ď C f |V|0

Next, still using Cauchy-Schwarz inequality, we get
ÿ

KPT

sKpUK ´DK pΠK pUKqq ,VK ´DK pΠK pVKqqq

ď S ˚
˜

ÿ

KPT

mKh´2
K |UK ´DK pΠK pUKqq |

2

¸
1
2
˜

ÿ

KPT

mKh´2
K |VK ´DK pΠK pVKqq |

2

¸
1
2

Notice that
UK ´DK pΠKpUKqq “ UK ´MKpUKq ´DK p∇KpUKq ¨ px´ xKqq

and that for any pσ,σ
1

q P F 2
K , by construction we have |xσ ´ xσ1 | ď hK , so we have as

ř

σPFK
γK,σ “ 1:

|DK p∇KpUKq ¨ px´ xKqq | ď θMθF hK |∇KpUKq|

which implies
|UK ´DK pΠKpUKqq |

2 ď 2
ÿ

σPFK

|uσ ´MKpUKq|
2 ` 2h2

Kθ
2
M
θ3
F
|∇KpUKq|

2

Then, lemma 2.3 gives
ÿ

KPT

ÿ

σPFK

mKh´2
K |uσ ´MKpUKq|

2 ` mKθ
2
M
θ3
F
|∇KpUKq|

2 ď p1` 2θ2
Πθ

2
M
θ4
F
q|U|21 ` 2dθAθ2

M
θ3
F

h2p|U|20

and we deduce that
ÿ

KPT

sKpUK ´DK pΠK pUKqq ,VK ´DK pΠK pVKqqq ď 2S ˚p1` 2θ2
Πθ

2
M
θ4
F
q|U|1|V|1 ` 4dS ˚θAθ2

M
θ3
F

h2p|U|0|V|0

Thus, using again Cauchy-Schwarz inequality and lemma 2.3 leads to

ahpU,Vq ď
`

p2θ2
ΠθF ` 2dθ2

Ah2pq ` S ˚p2` 4θ2
Πθ

2
M
θ4
F
` 4dθ2

Aθ
2
M
θ3
F

h2pq
˘

||U||X||V||X

Finally, using the identity
pa´ bq2 ě

ρ

1` ρ
a2 ´ ρ b2 @ pa, bq P R2, @ ρ ą ´1 (31)
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proceeding as above we see that, for all ρ ą ´1

|UK ´DK pΠKpUKqq |
2 ě

ρ

1` ρ

ÿ

σPFK

|uσ ´MKpUKq|
2 ´ ρh2

Kθ
2
M
θ3
F
|∇KpUKq|

2

and thus:
ahpU,Uq ě

`

1´ ρθ2
M
θ3
F

S ˚
˘

ÿ

KPT

mK |∇KpUKq|
2
`

ρS ˚
1` ρ

|U|21

Taking ρ “ 1
θ2
M
θ3
F

S˚
gives the desired result. The proofs of the local versions are exactly the same, simply omitting the

sums over K P T .

Notice that as XN ,0 has finite dimension, uniqueness is sufficient to get existence, then the above results gives existence
and uniqueness of the discrete solution. Indeed, all norms being equivalent in the finite dimensional setting, as |.|1 is
obviously a norm on XN ,0 estimate (29) is thus a coercivity estimate for this norm . This means that at this step we
already know that it makes sense to consider the solution given by the network element method. However a discrete
Poincaré’s inequality is still missing if we wish to establish the stability of the method in the || ¨ ||X normwith network
independent constants. We recall the following definition: a domain Ω of Rd is said to satisfy the cone condition with
angle τ and radius r if for any x P Ω, there exists ξ P Rd with |ξ| “ 1 such that Cpx, ξ, τ, rq Ă Ω where Cpx, ξ, τ, rq
denotes the cone

Cpx, ξ, τ, rq “ Bpx, rq X
 

y P Rd | py´ xqTξ ą |y´ x|cos τ
(

(32)

and we recall the well known result that if Ω is Lipschitz then it satisfies the cone condition for some τ and r (see
[27, 28]). Introducing the last measure of quality of the discretization network, we set

θT “ sup
KPT

max
ˆ

|BK XΩ|

mK
,

mK

|BK XΩ|

˙

and we denote S d
1 “ |Bp0, 1q| the volume of the unit ball in dimension d. Then, we have

Lemma 2.5. Assume that Ω satisfies the cone condition with angle τ and radius r, and denote δ ą 0 the smallest real
number such that for any K P T

δ´1rK ď minpr, rKq ď δrK (33)

Then there exists CP,XN ą 0 depending on τ, δ, ηN , θT , and Ω such that, for any U P XN ,0

||U||20 ď CP,XN |U|
2
1

Proof. This proof is an adaptation of the proof of the discrete Poincaré’s inequality of [29] in the case of finite volume
meshes.

Let ν P Rd such that ||ν|| “ 1. For any x P Ω, we denote Lνx the half-line with origin x and direction ν. Let ypxq be
the point of Lνx X BΩ such that rx, ypxqs Ă Ω and the length of rx, ypxqs is minimal (i.e. ypxq is the first point of BΩ
along Lνx).

Then, by construction of the network, there exists an integer p ă cardpT q, a family pKiq0ďiďp of elements of T and
a family pσi,i`1q0ďiďp´1 of elements of F such that for any 0 ď i ď p´ 1, tKi,Ki`1u Ă Tσi,i`1 , and such that x P K0
and Lνx then goes through each of the BKi ’s once until reaching BKp , with ypxq P BKp and Fext X FKp ‰ H. Thus, we
have

MKpUq “
p´1
ÿ

i“0

pMKipUq ´ uσi,i`1q `

p´1
ÿ

i“0

puσi,i`1 ´MKi`1pUqq `MKppUq

As there exists σp,p`1 P FKp X Fext, for any U P XN ,0 as uσp,p`1 “ 0, we have

MKppUq “MKppUq ´ uσp,p`1
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Denoting TLνx the family pKiq0ďiďp, and F ν
L,x “ FL X pσi,i`1q0ďiďp for any L P T , it is consequently obvious that for

a.e. x P BK

|MKpUq| ď
ÿ

LPTLνx

ÿ

σPF ν
L,x

|uσ ´MLpUq|

Using the orientation defined by ν, we denote xνL,0 the first intersection point of BL with Lνx and xνL,1 the last one,
and, we denote IνL the subpart of Lνx delimited by the intersection of Lνx with BL, i.e. the interval delimited by σνL,´
and σνL,`. As Lνx goes through the BKi ’s only once, then σi´1,i and σi,i`1 are each either on the xνL,0 or xνL,1 side of
Lνx, and each on opposite sides. In general, we will have σi´1,i on the xνL,0 side and σi,i`1 on the xνL,1 side, but for
very specific configurations on coarse networks the other case might nevertheless occur. We denote xνL,σ the point xνL,k
corresponding to any σ P F ν

L,x.

Denoting F ν
x “ YLPTLνx

F ν
L,x, for any σ P F ν

x , let PLσ be the projection of BL X Ω onto the plane containing xνL,σ and
orthogonal to xL ´ xνL,σ. Defining χLσ on Rd ˆ Rd by setting χLσpx, yq “ 1 if PLσ X rx, ys ‰ H and χLσpx, yq “ 0
otherwise, we get

|MKpUq| ď
ÿ

LPTLνx

ÿ

σPF ν
L,x

|uσ ´MLpUq|χLσpx, ypxqq

Denoting cLσ “

ˇ

ˇ

ˇ
pxL ´ xνL,σq ¨ ν

ˇ

ˇ

ˇ
, as ν is fixed it is clear that we can find for any K P T a x P BK such that cLσ ‰ 0

for all L P TLνx and all σ P F ν
L,x, thus using Cauchy-Schwarz inequality we get

|MKpUq|2 ď

¨

˝

ÿ

LPTLνx

ÿ

σPF ν
L,x

|uσ ´MLpUq|2

cLσ
χLσpx, ypxqq

˛

‚

¨

˝

ÿ

LPTLνx

ÿ

σPF ν
L,x

cLσχLσpx, ypxqq

˛

‚

However, we have
ÿ

LPTLνx

ÿ

σPF ν
L,x

cLσχLσpx, ypxqq ď
ÿ

LPTLνx

ÿ

σPF ν
L,x

cLσ “
ÿ

LPTLνx

ÿ

σPF ν
L,x

ˇ

ˇpxL ´ xνL,σq ¨ ν
ˇ

ˇ

By construction, we have (see figure 2)
ÿ

σPF ν
L,x

ˇ

ˇpxL ´ xνL,σq ¨ ν
ˇ

ˇ ď |IνL|

Next, observe that each part of Lνx is covered by at most ηN by intervals IνL when summing over L, i.e.
ÿ

LPTLνx

|IνL| ď ηNdiampΩq

Thus:

|MKpUq|2 ď ηN diampΩq

˜

ÿ

LPT

ÿ

σPFL

|uσ ´MLpUq|2

cLσ
χLσpx, ypxqq

¸

Then, multiplying by mK and summing over K P T leads to

ÿ

KPT

mK |MKpUq|2 “
ÿ

KPT

mK

|BK XΩ|

ż

BKXΩ

|MKpUq|2

ď ηNθT diampΩq

˜

ÿ

LPT

ÿ

σPFL

|uσ ´MLpUq|2

cLσ

ż

Ω

ÿ

KPT

χBKχLσpx, ypxqq

¸

ď η2
NθT diampΩq

˜

ÿ

LPT

ÿ

σPFL

|uσ ´MLpUq|2

cLσ

ż

Ω

χLσpx, ypxqq

¸
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Figure 2: Illustration in dimension 2 for the bound on
ř

LPTLνx

ř

σPF νL,x

ˇ

ˇ

ˇ
pxL ´ xνL,σq ¨ ν

ˇ

ˇ

ˇ

The set of x P Ω such that χLσpx, ypxqq ‰ 0 corresponds to

ΩX
 

x P Rd | x “ yLσ ´ ξν, with yLσ P PLσ and ξ ą 0
(

Thus, we have
ż

Ω

χLσpx, ypxqq ď
|PLσ|cLσ

||xL ´ xνL,σ||
diampΩq

and consequently

ÿ

KPT

mK |MKpUq|2 ď η2
NθT diampΩq2

˜

ÿ

LPT

ÿ

σPFL

|uσ ´MLpUq|2
|PLσ|

||xL ´ xνL,σ||

¸

ď η2
NθT diampΩq2

˜

ÿ

LPT

ÿ

σPFL

|uσ ´MLpUq|2
|PLσ|

rL

¸

as ||xL ´ xνL,σ|| “ rL by construction. Notice that |PLσ| ď S d´1
1 rd´1

L . As Ω satisfies the cone condition, notice then
that for any L P T , there exists ξ P Rd such that

|BL XΩ| ě |CpxL, ξ, τ,minpr, rLqq| “ |Cp0, ξ, τ, 1q|minpr, rLq
d

Noticing that as |Cp0, ξ, τ, 1q| is in fact independent on ξ, we can denote|Cp0, ξ, τ, 1q| “ |Cp0, τ, 1q| this common
value and get

|BL XΩ| ě |Cp0, τ, 1q|minpr, rLq
d

Then, we get

|PLσ| “ mL
|PLσ|

mL
“ mL

|BL XΩ|

mL

|PLσ|

|BL XΩ|
ď mLθT

S d´1
1 rd´1

L

|Cp0, τ, 1q|minpr, rLq
d ď 2mLh´1

L θT δ
d S d´1

1

|Cp0, τ, 1q|
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and thus
ÿ

KPT

mK |MKpUq|2 ď 4η2
N diampΩq2θ2

T δ
d S d´1

1

|Cp0, τ, 1q|

˜

ÿ

LPT

ÿ

σPFL

mLh´2
L |uσ ´MLpUq|2

¸

and the result follows with

CP,XN “ 4η2
N diampΩq2θ2

T δ
d S d´1

1

|Cp0, τ, 1q|

Remark 2.6. Immediately, we notice that when h goes to zero, as r is a fixed property of Ω we can take δ “ 1,
implying that the dependency in δ of the discrete Poincaré’s constant will never be a major issue.

This discrete Poincaré’s inequality immediately implies that the norm | ¨ |1 on XN ,0 is equivalent to the || ¨ ||X on
XN ,0, which now makes existence, uniqueness and stability of the discrete solution an obvious consequence of Lax-
Milgram’s lemma

Proposition 2.7. Assume that Ω satisfies the cone condition with angle τ and radius r. Let N be a discretization
network andG an associated admissible network geometry. Then there exists a unique solution to the discrete problem

ˇ

ˇ

ˇ

ˇ

ˇ

Find Uh P XN ,0 such that

ahpUh,Vhq “ lhpVhq for all Vh P XN ,0

and a constant C ą 0 depending on τ, δ, ηN , θF , θT , θA and Ω but not on h such that:

||Uh||X ď C||F||0

where δ is defined by (33) and F “ p fKqKPT .

Let us conclude this preliminary analysis by some comments on the quality measures of the discretization network
and its geometry. While θF is clearly a bound on its connectivity, as one would naturally require on a mesh. Next,
a closer look to θΠ reveals that it behaves like a local measure of the network deformation and combined with θM
and θF it corresponds to the usual control over shape regularity or, from a classical finite element perspective, one
could say that it corresponds to the control over the number of shapes for reference elements. At first the quantity
θT seems to have no direct equivalent for classical meshes, as it quantifies in some sense the coherence between the
covering diameter and the prescribed local measure mK . However, as we will explain in the following section, it can
bounded by an equivalent of the usual chunkiness parameter, and can thus be considered as its equivalent. However,
θA measuring the quality of geometric consistency and conservation approximations, it cannot have an equivalent for
true meshes.

3. Numerical exploration

3.1. Practical construction of the network geometry

Assume that we are given an admissible discretization network N . Ideally, together with the generation of the
network the geometry generation step should remain competitive with the usual meshing and geometrical computation
steps. Thus, in the worst case it should not require more computational time than a meshing algorithm (of course,
we have in mind relatively complex algorithms like Delaunay or Voronoı̈ mesh generation, or complex 3d mesh
generation, as we cannot hope to be competitive with very simple and instantaneous algorithms such as pure Cartesian
mesh generation without any kind of cut-cells). As our intention is to focus the present paper on the network element
method itself rather than on the network and geometry generation, we will consider a quite generic approach, which
is nevertheless far from being optimal in this regard. Possible paths for improving the performance of the geometry
generation procedure will be briefly discussed at the end of this section.
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To construct an admissible geometry, the most general procedure is to solve an optimization problem of the form

G “ arg min
ĜPAG

JpĜq (34)

where AG is the set of admissible geometries, i.e. satisfying (6)-(4)-(5)-(7). Obviously, to reduce the computational
effort we will not require a global minimum to our minimization problem. Moreover the cost function J must remain
relatively simple, so we can control the computational cost of those minimization problems to a large extent. Strictly
speaking any cost function JpĜq could be used, however it seems relevant to choose one that allows some control
over the quality of the generated geometry i.e. on the geometry dependent constants appearing in our stability and
error estimates, while keeping a correct trade-off between the optimality of those constants and the computational cost
of the above minimization problems. In the present paper we restrict ourselves to the simplest cost function given by

JpĜq “
δm
J

2

ÿ

KPT

m̂2
K `

δ
η
J

2

ÿ

KPT

ÿ

σPFK

|η̂K,σ|
2 `

1
2

ÿ

KPT

ω0
J ,K |ε̂

0
m,K |

2 `
1
2

ÿ

KPT

d
ÿ

i“1

d
ÿ

j“1

ω1
J ,K

ˇ

ˇ

ˇ
ε̂

1,i j
m,K

ˇ

ˇ

ˇ

2

`
1
2

ÿ

σPFint

ωJ ,σ|ε̂σ|
2 `

1
2
ωJ ,Ω|ε̂Ω|

2 (35)

where δm
J

and δ
η
J

are penalization parameters and where we have used the change of variable ε̂0
m,K “ mK ε̂

0
K and

ε̂
1,i j
m,K “ mK ε̂

1,i j
K . This change of variable leads to a quadratic optimization problem with linear equality and inequality

constraints, and is very similar to the one of [22].

Let us explain how to choose the weights involved in formula (35). The Lagrangian associated with the minimization
problem (34) is given by

LpĜ, λ̂q “ JpĜq `
ÿ

KPT

d
ÿ

i“1

˜

ÿ

σPFK

η̂i
K,σ ´ ε̂0,i

K

¸

λ̂0,i
K `

ÿ

KPT

d
ÿ

i“1

d
ÿ

j“1

´

η̂i
K,σpx

j
σ ´ x j

Kq ´ m̂Kδi j ´ ε̂
1,i j
K

¯

λ̂
1,i j
K

`
ÿ

σPFint

˜

ÿ

KPTσ

η̂i
K,σ ´ ε̂i

σ

¸

λ̂i
σ `

˜

ÿ

KPT

m̂K ´ |Ω| ´ ε̂Ω

¸

λ̂Ω `
ÿ

KPT

m̂Kpλ̂
max
K ´ λ̂min

K q

where:
λ̂ “

´

pλ̂KqKPT , pλ̂
0,i
K qKPT ,1ďiďd, pλ̂

1,i j
K qKPT ,1ďi, jďd, pλ̂

i
σqσPFint ,1ďiďd, λ̂Ω

¯

denotes the set of Lagrange multipliers. The Karush-Kuhn-Tucker first order optimality conditions associated with
the system are given by (setting λ̂i

σ “ 0 for any σ P Fext and any 1 ď i ď d)

Bε̂i
σ
LpĜ, λ̂q “ ωJ ,σε̂

i
σ ´ λ̂i

σ “ 0 (36)

Bε̂0,i
K
LpĜ, λ̂q “ ω0

J ,K ε̂
0,i
K ´ λ̂0,i

K “ 0 (37)

Bε̂1,i j
K
LpĜ, λ̂q “ ω1

J ,K ε̂
1,i j
K ´ λ̂

1,i j
K “ 0 (38)

Bη̂i
K,σ
LpĜ, λ̂q “ δ

η
J
η̂i

K,σ `

d
ÿ

j“1

λ̂
1,i j
K px j

σ ´ x j
Kq ` λ̂0,i

K ` λ̂i
σ “ 0 (39)

Bm̂KLpĜ, λ̂q “ δm
J

m̂K ´

d
ÿ

i“1

λ̂1,ii
K ` λ̂max

K ´ λ̂min
K ` λ̂Ω “ 0 (40)

Bε̂Ω
LpĜ, λ̂q “ ωJ ,Ωε̂Ω ´ λ̂Ω “ 0 (41)

complemented by the constraints (4)-(5), (6)-(7) and the complementarity conditions

Υcomppm̂K , λ̂
min
K q “ 0 and Υcomppτ|BK | ´ m̂K , λ̂

max
K q “ 0
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where Υcomp can be any complementarity function, such the minimum function or Fischer-Burmeister function, and
τ ą 1 a fixed parameter. The upper bound constraint on the measures is introduced for reasons that will immediately
become clear. Indeed, using our analogy between network geometries and mesh geometries, let us denote

ĥK “
1
2

max
σPFK

|xσ ´ xK |

and assume that m̂K behaves as ĥd
K and ηi

K,σ as ĥd´1
K and the penalization parameters as constants independent on ĥK .

The upper bound constraint on the measures is a practical way to ensure that it will effectively be the case. Then, in
the worst case, we have that

λ̂
1,i j
K „ ĥd´2

K and λ̂0,i
K „ ĥd´1

K and λ̂i
σ „ ĥd´1

K and λ̂Ω „ ĥd´2
K

Thus, to enforce that the approximation errors will be related to the local radii, in other words that hK will behave like
ĥK , it seems relevant to choose

ω0
J ,K “

1

ĥp`1
K

ω1
J ,K “

1

ĥp`2
K

ωJ ,σ “
1

minKPTσ ĥp`1
K

ωJ ,Ω “
1

minKPT ĥp`2
K

Numerical experiments confirm that the above choice indeed gives the expected behavior, the practical choice for the
remaining weights being δm

J
“ 0.1 and δη

J
“ 0.01. The minimization problem (34) with cost function (35) is solved

in practice by applying Newton-Raphson’s algorithm to the corresponding system of Karush-Kuhn-Tucker first order
optimality conditions.

Even if our intention in the present paper is not to describe the most efficient way to compute a network geometry, let
us make some comments on the way we solve this optimization problem in practice. As noticed in [22], efficiently
solving this problem requires to take its specific structure into account. Indeed, it is extremely important to notice that
once linearized, most unknowns can be eliminated through static condensation (i.e. Schur’s complement), reducing
the linear system to the face Lagrange multipliers λ̂i

σ and the global Lagrange multiplier λ̂Ω, i.e. a system of size
1 ` d cardpFintq. Several linear solvers have been tested to invert the involved linear systems, the best choices for
our set of experiments seem to be GMRES and LSQR as they can handle efficiently linear systems with a non empty
kernel or close to ones possessing a non empty kernel. Finally, let us mention that a good initial point for the quadratic
optimization is obtained by solving the same system without the conservation constraint (7). In this case, all the cell
unknowns can be eliminated by static condensation in the resulting linear system, leaving only λ̂Ω as a global variable.
This initialization routine thus only involves small matrix inversion in each cell to perform static condensation, and in
general a single Newton iteration of the overall optimization procedure.

As the minimization problem can only be approximately solved in practice, if G˚ denotes the approximate solution of
the minimization problem at the end of the process we need to recompute the exact errors εpG˚q directly from (4)-(5),
(6)-(7) applied to G˚. In other words, we set

ε0,i
K “

1
m˚K

ÿ

σPFK

ηi˚
K,σ @K P T , @ 1 ď i ď d

and
ε

1,i j
K “

1
m˚K

ÿ

σPFK

ηi,˚
K,σpx

j
σ ´ x j

Kq ´ δi j @K P T , @ 1 ď i, j ď d

and
εΩ “

ÿ

KPT

m˚K ´ |Ω| and εi
σ “

ÿ

KPTσ

ηi,˚
Kσ @ σ P Fint, @ 1 ď i ď d

This allows to take into account the solver error accurately. Finally, let us mention that if θA and θΠ are directly
computable from the network’s geometry, parameter θT is more delicate to obtain. However, it can easily be bounded
by considering for any K P T the inradius

ρ̂K “ min
σPFK

|xσ ´ xK |
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and then computing:

θ
sup
T
“ max

KPT
max

ˆ

mK

|BpxK , ρ̂Kq|
,
|BK |

mK

˙

For polygonal domains provided all points defining the boundary of Ω are included in the set of interface points, we
clearly have θT ď θ

sup
T

. For domains with curved boundaries, the above θsup
T

will only be an approximation of an upper
bound for θT if the discretization is too coarse, that will become more and more precise as we refine the discretization
network. Nevertheless, as it is anyway a very strong upper bound even for polygonal domains, the true θT being in
general much smaller, in the following we will mostly use the easily computable θsup

T
to assess the behavior of θT for

the studied geometries.

3.2. Mesh based networks

To conduct a first numerical study of the network element method (NEM), we start by considering some classical
numerical test cases and the associated meshes. Although it can seem surprising to consider meshes as we have done
all that we could to derive a completely meshless method, the interest of doing so is two fold: first, it will allow an
easy comparison with the first order virtual element method (VEM) as we can use VEMs on the underlying meshes,
and also using classical difficult and distorted meshes, we will have a first glance at the robustness of the NEM on
distorted networks. By convention, we will set θA “ 1 for true mesh geometries.

Let us mention that although in the present paper we build discretization networks out of meshes mainly for com-
parison purposes, such networks can be of practical interest. Indeed, it is not uncommon to encounter in practice
workflows that start from badly shaped meshes only intended for data representation and that nevertheless keep those
meshes for simulation. The reason for doing so is that generating a new mesh that has a sufficient numerical quality
while retaining the main features from such data-oriented meshes can prove to be very difficult. Resorting to the
network element method could be a good alternative in such situations, as it is not directly constrained by mesh cells
quality.

We consider two ways of generating a network and its associated geometry starting from a mesh. Both will use the
cell barycenters and diameters to define the point cloud and its connectivity. The first way of getting a network and
its associated approximate geometry is very simple: it consists in choosing the interfaces to be the faces of the mesh,
and to define the approximate geometry by perturbing the exact mesh geometry, i.e.

mK “ |K| `
θrand
A
|K|

|Ω|
diampKqpωK @ K P T

and
ηi

K,σ “ |σ|n
i
K,σ ` θrand

A diampKqpωi
K,σ @ K P T , @ σ P FK , @ 1 ď i ď d

where the ωK’s and ωi
K,σ’s are randomly generated numbers taking values ins ´ 1, 1r, and θrand

A
a fixed amplitude

parameter, set to θrand
A

“ 1 in the following experiments. This will allow to study the impact on convergence of the
approximation errors in a very simple way. This perturbed geometry approach will be denoted NEM-GPG (for “grid
perturbed geometry”) in the following tests.

The second way consists in constructing the discretization network by choosing the interfaces to be either the vertices
of the mesh or some random perturbations of the vertices and then of course solving the minimization problem (34)
with cost function (35). Those two approaches, vertex based and perturbed vertex based, will be denoted NEM-GV
and NEM-GPV (for “grid vertices” and “grid perturbed vertices”) in the following tests.

Finally, let us mention that to study the L2 convergence of solutions, we will consider

˜

ÿ

KPT

mK |upxKq ´MKpUq|2
¸1{2
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which, if the exact solution u is regular enough as in our tests cases, will be in principle a h2 approximation of the true
L2 error. Notice that all the numerical tests in the following where performed with p “ 2 and xK “ xK .

To assess the behavior of the method when the network is generated from a distorted mesh of Ω “s0, 1rˆs0, 1r, we
consider the test case

upx, yq “ sinpπxqsinpπyq (42)

which will be named Sinusoidal2D. We consider four types of mesh sequences, from which we generate the dis-
cretization networks. The first one (2dDualDelaunay) is obtained by considering the dual meshes (the cell formed
by joining the centers of the cell of the primal mesh) of a sequence of Delaunay meshes, while the second one
(2dVoronoi) is obtained by considering the Voronoı̈ meshes associated to the same sequence of Delaunay meshes.
These two approaches generate polygonal meshes with quite generic cells. The third sequence (2dKershawBox) of
meshes is a sequence of Kershaw meshes of the unit square, while the fourth one (2dCheckerBoardBox) is a sequence
of checkerboard meshes of the unit square. These two sequences have only quadrangular cells which are distorted for
the sequence 2dKershawBox and non-conforming for the sequence 2dCheckerBoardBox.

Figure 3: Example of meshes for the 2dDualDelaunay and 2dVoronoi mesh sequences

Figure 4: Example of meshes for the 2dKershawBox and 2dCheckerBoardBox mesh sequences

We display the convergence curves for each mesh sequence on figures 5 and 6, as well as the approximate convergence
rates in table 1. We see that we recover the expected L2 superconvergence, i.e. a convergence at rate h2. Moreover, the
different network geometries lead to schemes that have roughly the same behavior than the first order virtual element
method (VEM) solved on the original mesh. Thus, the method is a reasonable alternative for those first tests cases.
On figures 7-8, 9-10 and 11-12, we display the quality parameters θsup

T
, θΠ and θA corresponding to the generated

networks and also to the mesh itself.
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Figure 5: Convergence curves for Sinusoidal2D for the 2dDualDelaunay and 2dVoronoi mesh sequences
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Figure 6: Convergence curves for Sinusoidal2D on the 2dKershawBox and 2dCheckerBoardBox mesh sequences

Table 1: Approximate orders of convergence for Sinusoidal2D

2dDualDelaunay 2dVoronoi 2dKershawBox 2dCheckerBoardBox

VEM 2.065 2.024 1.973 1.999
NEM perturbed geometry 2.077 2.000 1.997 1.993
NEM vertex based 2.077 1.946 2.137 1.983
NEM perturbed vertex based 2.081 1.948 2.140 1.990
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Figure 7: Quality parameter θsup
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for the 2dDualDelaunay and 2dVoronoi mesh sequences
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Figure 8: Quality parameter θsup
T

for the 2dKershawBox and 2dCheckerBoardBox mesh sequences

The first remark is that we indeed control those parameters for all the considered mesh sequences, as they do not blow
up when h goes to zero. Next, we see that roughly speaking they more or less follow the behavior of their equivalent
for the underlying mesh, revealing in particular that the network geometry generation procedure through optimization
do not lead to unreasonable quality. Moreover, we see that the three sequences 2dDualDelaunay, 2dVoronoi and
2dCheckerBoardBox are indeed perfectly regular sequences regarding those parameters. The situation is different for
sequence 2dKershawBox as expected: even if they remain under control, the three quality parameters θsup

T
, θΠ and θA

noticeably increase when we refine h for the Kershaw meshes. Interestingly, it is also the case for the mesh itself. Thus
this slight degeneracy does not come from the fact that we have generated a network geometry, but rather from the
spatial distribution of cells and interface, reflecting Kershaw meshes distortion. In fact, the Kershaw mesh sequence
has been precisely devised for this purpose: it is not a completely regular mesh sequence, the usual mesh parameters
such as the chunkiness parameter do degenerate when h diminishes. All in all, those first results validate both the
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Figure 9: Quality parameter θΠ for the 2dDualDelaunay and 2dVoronoi mesh sequences
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Figure 10: Quality parameter θΠ for the 2dKershawBox and 2dCheckerBoardBox mesh sequences

geometry generation procedure though optimization as well as the network element method itself.

To conclude our mesh-based experiments, we consider two configurations in dimension 3. We consider the test case
Sinusoidal3D:

upx, yq “ sinpπxqsinpπyqsinpπzq (43)

We test this solution on a randomized box mesh sequence 3dRandomBox, as well as on the distorted mesh sequence
3dSweep displayed on figure 13. Meshes of this last sequence are obtained by mapping a polygonal mesh of the unit
square in the xy plane to a non planar surface. In order to do so, we need to relax the constraint that u should vanish on
the boundary and allow non-homogeneous Dirichlet boundary conditions, by simply taking the values of the function
at interfaces belonging to Fext, i.e. setting uσ “ upxσq @ σ P Fext. Of course this is clearly out of the scope of
the theory developed in the present paper, however as both u and its trace are smooth, the extension to such cases is
relatively straightforward. We hope that the treatment of general boundary conditions with minimal regularity could
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Figure 11: Quality parameter θA for the 2dDualDelaunay and 2dVoronoi mesh sequences
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Figure 12: Quality parameter θA for the 2dKershawBox and 2dCheckerBoardBox mesh sequences

be the subject of a future paper.

Convergence curves are displayed on figure 14 and approximate convergence orders on table 2. Exactly as in di-
mension 2, all the mesh-based geometries lead to network element schemes with L2 superconvergence and a behavior
similar to the first order VEM. Notice that in this context, it is not surprising that the face-based NEM-GPG is no-
ticeably more precise than the vertex based VEM and NEM variants: indeed, those 3d mesh sequences have much
more faces than vertices, thus it is only legitimate that a considerably larger number of unknowns provide an increased
precision. The quality parameters for those 3d mesh-based test cases are displayed on figures 15, 16 and 17. We see
that as in dimension 2, they remain under control and in fact follow once again their equivalent on the underlying grid,
further validating the network geometry validation procedure.
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Figure 13: Example of meshes for the 3dBoxRandom and 3dSweep mesh sequences
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Figure 14: Convergence curves for Sinusoidal3D on the 3dRandomBox and 3dSweep mesh sequences

Table 2: Approximate orders of convergence for Sinusoidal3D

3dRandomBox 3dSweep

VEM 2.302 2.016
NEM perturbed geometry 1.923 2.114
NEM vertex based 2.253 1.944
NEM perturbed vertex based 2.251 1.942

3.3. Generic networks
Let us consider the sectorial domain Ω of R2 displayed on figure 18, that is centered on the origin, of aperture

angle ω and radius R, i.e. in polar coordinates

Ω “ tpr, θq | 0 ď r ď R and 0 ď θ ď ωu
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Figure 15: Quality parameter θsup
T

for the 3dRandomBox and 3dSweep mesh sequences
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Figure 16: Quality parameter θΠ for the 3dRandomBox and 3dSweep mesh sequences

On this domain, we define in polar coordinates the following test (named ConvTest5)

upr, θq “ pr ´ Rqr
π
ω sinp

πθ

ω
q with ∆upr, θq “

ˆ

1`
2π
ω

˙

r
π
ω´1sinp

πθ

ω
q

This test has two main interests: it will illustrate the ability of the network element method to cope with domains with
curved boundaries, and allow to study its behavior when the solution regularity diminishes. Indeed, if a straightfor-
ward computation reveals that, at the origin, the first derivatives behave in r

π
ω´1, a more tedious computation reveals

that the second derivatives behave in r
π
ω´2. Thus, while the gradient will be square integrable as soon as π

ω
ě 0

which is always satisfied, for the second derivatives to be square integrable we need that π
ω
ě 1. By interpolation

one could then establish that for upr, θq to belong to H1`spΩq, we need that s ď π
ω

, while always satisfying u P H1
0pΩq.

28



0.2 0.4 0.6 0.8
0

5

10

15

20

h

P
ar

am
et

er
T

he
ta

A
3dRandomBox mesh

Net-GPG

Net-GV

Net-GPV

Grid

0.2 0.3 0.4 0.5

1

2

3

4

5

6

h
P

ar
am

et
er

T
he

ta
A

3dSweep mesh

Net-GPG

Net-GV

Net-GPV

Grid

Figure 17: Quality parameter θA for the 3dRandomBox and 3dSweep mesh sequences

ω

Figure 18: Sectorial domain and example of associated network (orange triangles are interfaces, blue circles are cells, lines represent the connec-
tivity)

Table 3: Approximate orders of convergence for AngularSector2D

ω 120˝ 180˝ 240˝

NEM 1.906 1.949 1.794

We consider three values for the aperture angle ω: 120˝, 180˝ and 240˝. The discretization networks used were
generated using a cartesian matrix as basis complemented by the intersection points between the cartesian cells and
the sectorial domain boundaries, as displayed on figure 18. The cartesian cells are refined in an AMR fashion near
the boundaries to improve the quality parameters of the network and generated geometries. Convergence curves
are displayed on figure 19 while approximate convergence rates are given on table 3. As for mesh-based networks,
the measured convergence rates are coherent with L2 superconvergence, i.e. maxp2, 2sq for solutions belonging to
H1`spΩq. The case ω “ 240 is as expected the one with lowest convergence order, with an approximate rate of 1.794
coherent with the theoretical rate of 1.5 and the fact that our network generation procedure automatically refines the
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Figure 19: Convergence curves for AngularSector2D and parameter θsup
T

for aperture angles 120˝, 180˝ and 240˝
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Figure 20: Quality parameters θΠ and θA for the AngularSector2D network sequences with aperture angles 120˝, 180˝ and 240˝

network near the boundary where the singularity of the solution is located. The evolution of the quality parameters
with the size h is displayed on figures 19 and 20, and we see that as for mesh-based networks, no blow up is observed
and they remain under control during the refinement process. In fact, most of their observed deterioration comes from
the very basic handling of the boundary of the domain. Indeed, intersecting an arc with cartesian cells can lead to sets
FK of interfaces where all the interfaces are quite close to each other, creating a very small cell. A very basic network
regularization procedure consisting in discarding the degenerate cell and agglomerating those interfaces to the closest
correct cell was applied, but there most certainly remains room for improvement. In any case, we see that the results
are already satisfactory for this curved domain with some non smooth analytic solutions, as we were able to generate
networks and geometries with controlled quality parameters and to obtain convergent numerical solutions, resorting
only to a very basic network generation procedure.

To conclude this section devoted to numerical exploration, we consider again the function

upx, yq “ sinpπxqsinpπyqsinpπzq (44)
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on a set of relatively complex 3d domains, relaxing again the constraint that u should vanish on the boundary. We
consider the 3d polygonal objects displayed on figures 21 and 22, rescaled to fit inside a unitary cubic box. The
corresponding .obj files were downloaded from [30] where their author has released them into the public domain. The
discretization networks used were again generated using a cartesian matrix as basis complemented by the intersection
points between the cartesian cells and the polygonal objects boundaries and the same regularization process was
applied. The main point here is not to exhibit a generic network generation procedure, but rather to assess if even at
such an early stage of the network element method and such a crude network generation procedure, we are already able
to cope with domains that otherwise require quite complex meshing algorithms. Convergence curves are displayed on
figure 23 while approximate convergence rates are given on table 4 and the evolution of the quality parameters with
the size h is displayed on figures 23 and 24. As our network generation procedure is very simple, it generates cells for
which ρ̂K is quite small and the estimate θsup

T
becomes too coarse to remain relevant for those test cases. This is the

reason why we replace it by

ĂθT “ max
KPT

max
ˆ

mK

|BK XΩ|approx
,
|BK |

mK

˙

ă θ
sup
T

where |BK X Ω|approx is an easily computable approximation of |BK X Ω|approx. In our experiments, we have used a
basic approximation of BK XΩ, computed by using a cartesian discretization of the cube included in BK and defining
|BK XΩ|approx as the sum of the volume of the cartesian sub-boxes whose center is inside Ω.

Figure 21: First and second 3d polygonal objects: fish and buoy

Figure 22: Third and fourth 3d polygonal objects : cow and pig

Roughly speaking, we obtain the expected L2 superconvergence in all cases. However, the convergence curves are
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Figure 23: Convergence curves and parameter ĂθT for the polygonal objects network sequences

Table 4: Approximate orders of convergence for 3d polygonal objects

f ish buoy cow pig

NEM 2.046 1.748 2.529 2.405
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Figure 24: Quality parameters θΠ and θA for the polygonal objects network sequences

much less regular than in all our previous experiments, which is the clear sign that our very basic network genera-
tion procedure has generated quite irregular network sequences. Nevertheless, the network element method remains
convergent, thus assessing once again its robustness to network shapes. Those experiments also emphasize the need
for a more advanced network generator for complex 3d objects. However, as our very naive generator already gave
acceptable results, there is hope that network generators competitive with meshing algorithms could be developed.
Along with a competitive geometry computation algorithm, elaborating such a network generator is in our opinion the
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key to make the network element method more than a mathematical curiosity.

3.4. Enhancing geometry generation performance

Although our main intention is to describe the network element method, let us now make some comments on the
performance of geometry generation procedures in general. Solving the quadratic minimization problem (34)-(35)
is a quite involved and computational time consuming process, that in general one will want to avoid. Alternative
approaches exist in the literature, probably one of the most efficient in our context being the one presented in [20].
Reformulated with our notations, the idea is to prescribe the cell measures mK through some analytic formulaes,
satisfying (3) and (6) with in general no geometric error εΩ. Then, the cost function is reduced to

JpĜq “

d
ÿ

i“1

JipĜq

with JipĜq “
δ
η
J

2

ÿ

KPT

ÿ

σPFK

|η̂i
K,σ|

2 `
1
2

ÿ

KPT

ω0
J ,K |ε̂

i,0
m,K |

2 `
1
2

ÿ

KPT

d
ÿ

j“1

ω1
J ,K

ˇ

ˇ

ˇ
ε̂

1,i j
m,K

ˇ

ˇ

ˇ

2
`

1
2

ÿ

σPFint

ωJ ,σ|ε̂
i
σ|

2

Each of the JipĜq involving only the i-th component of each element of the network geometry, we have in fact d
independent minimization problems. Moreover, as they are quadratic minimization problems with linear equality
constraints, solving them finally amounts to solve d independent linear systems, corresponding to the system of
Karush-Kuhn-Tucker first order optimality conditions (4)-(5)-(7) and (36)-(37)-(38)-(39) of the system corresponding
to each direction i. As static condensation can once again be applied, the d resulting linear systems are of size
cardpFintq. This does improve computational efficiency, however one has to quite arbitrarily choose the cell measures
mK . Numerical experiments reveal that the overall precision of the method is indeed impacted if one resorts to this
simplified version of the geometry generation procedure, as we will briefly illustrate now. To this end, let us now
consider the following choices for the cell measures

mK “
S d

1

2d pρ̂K ` r̂Kq
d

with ĥK “ 2r̂K . We normalize them afterwards such that their sum is equal to |Ω|. Let us consider again the case
Sinusoidal2D on the mesh based networks 2dDualDelaunay and 2dKershawBox, generated from the mesh vertices.
We display the results on figures 25 and 26 as well as the approximate convergence rates in table 5. The results for
the quadratic generation procedure are labeled NEM-quad, while the case where we prescribe the cell measures and
only solve d independent linear problems is labeled NEM-lin (using δη

J
“ 1).

Table 5: Approximate orders of convergence for different geometry generation procedures

2dDualDelaunay 2dKershawBox

NEM-quad 2.077 2.137
NEM-lin 2.333 0.630

Immediately, we see that on the 2dDualDelaunay sequence, the results are of similar quality, and the convergence
rate is roughly speaking preserved, although the convergence curve is less regular for NEM-lin. The situation is
very different for the sequence 2dKershaw, for which the approximation error is much worse with NEM-lin, and
the convergence rate fails to even reach 1. This can be explained by looking the quality parameters : if both θT
and θΠ, which we do not reproduce here, remain of similar quality for both approaches, this is not the case for θA.
Indeed, it explodes when h goes to 0 for the 2dKershaw sequence, and is most certainly the reason why we fail to
reach convergence on this mesh-based sequence. Reproducing the same experiment on all our test cases, roughly
speaking we obtain results similar to 2dDualDelaunay for all other mesh based networks, i.e. we maintain second
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Figure 25: Convergence curves and parameter θA for different geometry generation procedures
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Figure 26: Convergence curves and parameter θA for different geometry generation procedures

order convergence with the fast geometry generation procedure. However we have problems in maintaining second
order convergence for our generic networks, with θA diverging again. The impact on the approximation error is
nevertheless less severe than for the case of the 2dKershaw sequence , an order between 1 and 2 being obtained.

Some numerical exploration reveals that with the fast linear geometry generation procedure, both the choice of cost
function and of the cell measures mK have a huge impact on the quality parameter θA. It is thus obvious that our
simple choice is far from being optimal, and that it might be feasible to always obtain second order accuracy even on
the problematic 2dKershaw sequence with the fast geometry generation procedure inspired by [20]. We have at this
point no clear explanation to the fact that the quadratic optimization procedure is so efficient to control θA on all our
test cases. Understanding this is probably the key to derive a good cost function and a good guess for cell measures
for the fast linear version. Our main objective here being to assess the potential efficiency of the network element
method, we have chosen to use the quadratic minimization procedure in an attempt to obtain the best possible results
for a given network configuration. Of course, as our geometry has less elements compared to the equivalent notion
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of [19, 20], while having to cope with the same consistency and conservation properties, it is not surprising that its
practical computation is more difficult.

4. Conclusion and perspectives

On the simplest possible model problem, we presented the principles of a network element method, a variational
method on discretization networks. Based on the VEM/mimetic technologies, it reproduces their key ideas replacing
the mesh by a discretization network and an associated network geometry. Numerical results in dimension 2 and 3
illustrate the good behavior and robustness of the method. The natural extension to heterogeneous and anisotropic
diffusion tensors and reaction coefficients will be the subject of a future paper. The method seems fairly general and
on going work concerns its extension to more complex classical problems, such as linear elasticity, Stokes flow or
Maxwell’s equations. An important issue that has not been considered here is also the subject of active research: the
development of an automated and efficient network generation algorithm, both in dimension 2 and 3. Indeed, as the
error estimates and numerical experiments reveal, the properties of the point cloud and the connectivity underlying
the network strongly influences solution quality. This is not surprising as it is simply the equivalent of mesh quality
in the context of discretization networks. Thus if the method is to be more than a mathematical curiosity, along with
an efficient geometry computation algorithm it is essential to find a competitive network generation algorithm which
could control the quality parameters of the resulting network, in particular in the long term prospect of performing
adaptive refinement.
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