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Abstract

Fluid dispersion in small fixed bed reactors under single phase laminar flow conditions is
evaluated through accurate predictions of axial Péclet numbers Peyy using Direct Numerical
Simulations (DNS). The fixed bed packing is obtained through the Discrete Element Method
(DEM) code Grains3D. Pey numbers are computed from steady state simulations of the flow.
An additional set of equations solving the spatial distribution of the moments of the age
distribution is used. This gives access to local information on dead zones or bypasses.
Computations are realized with the OpenFOAM® open-source library. Results are close to the
experimental data. The DEM-OpenFOAM® workflow benefits from an accurate control of the
fluid physical properties and packing geometry, thus leading to a faster production of data than

an experimental approach.

We first explore the influence of the reactor-to-sphere diameter ratio o (6 < 4), fluid velocity and
molecular diffusivity on the Peax number. The behavior proves much more complex than any
previous report, and it can be qualitatively explained by looking at the packing structure. Then,

we use the DEM-OpenFOAM® workflow to quantify the uncertainty on the Pe, number when
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repeating the packing of a 0 = 4 fixed bed reactor, and we propose that the uncertainty on the

Peax number decreases as a function of the reactor length to the power of -0.5.

Key words (max 6): Computational Fluid Dynamics; small fixed beds of spheres; axial Péclet
number; Direct Numerical Simulations; laminar flow; moments of age

1 Introduction

1.1 Fixed bed downscaling
Over the decades, fixed bed reactors for catalyst testing have faced a reduction in size.

Nowadays they commonly have diameters below 1 cm, the limit being the catalyst pellet size
(~1-3 mm). The advantages of these small reactors are numerous: less catalyst used, less amount
of reactant used and of wastes produced, better temperature control, reduced safety risks and
easier implementation of parallel reactor systems [1]. Those reactors were designed for catalyst
screening, so that the hydrodynamics was not really an issue if the ranking and uncertainties
were correct. As these reactors produce a large amount of data, a new question arises: can we use
their results to build models for catalyst performance prediction? One of the limiting factors

might be the hydrodynamic quality of the flow.

Downscaling of fixed bed reactors is usually performed by keeping the ratio of flow rate (Q) to
the catalyst amount (V¢q) constant, usually denoted as Space Velocity or SV. This ratio can be
seen as the inverse of the contact time. When expressing the catalyst amount as a volume, the SV
is the ratio of the superficial velocity (u) to the reactor length (L) (Equation 1). Laboratory
reactors are typically 10-50 cm long so that the velocities are 20-100 times smaller than in

industrial reactors (~ 10 meters in length).



SV = Q _u Equation 1
Vcat L

For a wide range of reactions in biorefinery, biochemistry, petrochemistry, and refining, the
velocities in laboratory reactors are so low that the flow regime is often laminar with Reynolds
(Re) number lower than 10. For this reason, we focus on single-phase laminar flows in the rest of

the paper.

Currently, the reactors used in heterogeneous catalyst testing have diameter values smaller than 1
cm and lengths that usually do not exceed 20-30 cm. As the catalyst particles are on the order of
a few millimeters, these reactors are usually operated with values of 6 = D,/d, (reactor/sphere
diameter ratio) between 1 and 5, possibly 10, while traditional packed beds have often larger
values. In packed bed millireactors, the ratio 6 governs the disposition of the particles in the
reactor. For large values of ¢ there are few preferential paths and dead-zones due to the
stochastic position of the particles at the center of the bed and the higher packing density [2, 3],
while for the low ¢ values, occurring in packed bed millireactors, the global void fraction is
higher and radially non-uniform [4], and preferential paths near the walls are significant and

drive most of the flow.

1.2 Plug flow behavior
To perform kinetic studies, the results of the experiments must express the kinetic behavior of

the catalyst rather than the hydrodynamics of the reactor. In a fixed bed, the ideal flow is plug
flow with high heat and mass transfer coefficients. If these conditions are not met, the usual
approach is to characterize those features building a reactor model that accounts for them and
then optimize a kinetic model coupled with the reactor model. An example of this process can be

found in [5]. In this paper, we focus on the plug flow behavior of the fixed bed reactors that is



very well described by a classical convection equation augmented with an axial dispersion term

(Equation 2) [6]:

dc 9*c u ac
a9t Daxzz =7 3 Equation 2

in which z is the axial coordinate along the bed, c is the concentration of the species, Dax the
axial dispersion coefficient, u the superficial gas velocity, ¢ the void fraction of the reactor and t
the time. If the axial dispersion coefficient, Day, is sufficiently small, the axial dispersion can be
neglected, which greatly simplifies the models. At this point, it is worth introducing the Pea

number (Equation 3) that compares dispersion time scales to the axial convective time scales:

u-L
&D,y

Peyy = Equation 3

in which L is the reactor length. The higher the Pes number, the closer the reactor is to ideal
plug flow. In kinetic studies, it is very interesting to operate reactors with Pes number “large
enough” so that they can be considered as ideal. The “large enough” term depends on the

conversion level of the reaction as proposed by Mears [7].

1.3 Experimental literature
To experimentally evaluate the dispersion in the reactors, transient experiments are required.

Usually a tracer is injected, and its concentration temporal evolution is recorded at the reactor
outlet. When the inlet is a Dirac function, the outlet curve is the residence time distribution
(RTD) curve, denoted as E(t). This is the reason why these types of experiments are often called
RTD measurements. In practice, the inlet is never an exact Dirac function so that a measurement

of the reactor inlet is recommended.



The axial dispersion coefficient can be deduced from the reactor outlet (and inlet) temporal tracer

concentration profiles by solving the axial dispersion model equation [8-12].

Plug flow behavior studies in packed bed millireactors are scarce. A common rule-of-thumb [6]
in chemical engineering recommends values of ¢ higher than ~15, so that the radial porosity
fluctuations near the walls have less impact on the average flow and the packing can be
considered uniform in the radial direction. In this case, variations of the fluid velocity, reactor
porosity and axial dispersion coefficient in the radial direction can be neglected. Packed bed

millireactors do not follow this rule of thumb and another design criterion is required.

Studies from Solcova and Schneider [10], Scott et al. [13] and Hsiang and Haynes [14] showed
that, in terms of plug flow behavior, similar results to those observed in larger packed beds are
achieved when ¢ is below 2. A previous study of our work group [15] investigated the effect of 0
on the Pea number, concluding that the behavior is not monotonic, but the experimental limits
on the control of the fluid physical properties and the packing geometrical parameters did not

allow us for a more detailed understanding.

Good control of the experimental setup is necessary to achieve a good accuracy on the axial
dispersion measurements, which is time consuming [15]. Besides that, not all experimental
conditions can be tested: spherical beads are only available in limited number of diameters, same

for the reactor diameters. Fluid and tracer choice are limited by the analyzer’s capabilities.

1.4 CFD in fixed beds
Direct Numerical Simulation (DNS) of reactive flows in fixed beds has progressed enormously

in the last decade with velocity, concentration and temperature 3D profiles [16-18]. Many papers

present workflows to solve CFD problems in random packed beds of complex shapes, some of



them using open source solvers like OpenFOAM® [19-21]. The computational resources are
now sufficient to successfully perform DNS of packed bed High Throughput Experimentation

reactors for non-reactive single-phase flows.

However, transient CFD simulations are still expensive and few works focused on fluid
dispersion in small-sized fixed bed reactors. Among them, a CFD study simulating residence
time curves from Midiller et al. [22] on a Single Pellet String Reactor (cylindrical reactor and
spherical particles, 6 = 1.2 and L = 0.1 m) concluded plug flow behavior for all the conditions
tested, ranging from laminar to turbulent flow. Then, Fernengel et al. [23] performed a similar
study for ¢ value ranging between 1.125 and 1.75. Non-diffusive numerical tracer simulations
revealed that the reactors have plug flow behavior. They also simulated a heterogeneously
catalyzed isothermal and isomolar gas-phase reaction with no change in gas density that showed

conversions deviating less than 5% from plug flow.

1.4.1 Theory of moments of age distribution

A very interesting advance comes from the work of Liu and Tilton [24] that showed that the
moments of age spatial distribution could be computed using steady-state simulations. Let us
first introduce the notion of age distribution. At any point of the reactor, the age of the molecules
a(x,t) since the reactor entrance follows a distribution, which is generally unknown but can be

characterized by its moments (Equation 4).

+00
Jo t"-alxtdt Equation 4
f0+°° a(x, t)dt

Mn(x) =



Following the works of Spalding [25], Danckwerts [26] and Zwietering [27], Liu and Tilton [24]
demonstrated that the n-th moment of the age distribution follows a steady state

convection/diffusion equation similar to momentum, energy or species:

V.(vM,) = V.(D,,VM,) +1 Equation 5

V.(VvM,) = V.(D,,VM,) + nMy,_4, n>1 Equation 6

in which v is the velocity vector and D, the molecular diffusion coefficient. The boundary
conditions are: M; = 0 at inlet, null fluxes at the reactor walls and outlet. The equation for the
first moment is quite easy to understand. The first moment of age follows a classical convection
diffusion equation and its rate of change is unity. Those equations are valid for any open reactor,
i.e. with an inlet and an outlet, and are easy to implement and solve in steady-state CFD solvers.
Liu and Tilton also demonstrated that a mass flux weighted integration of the M; and M fields
over the inlet and outlet (Equation 7) yields Mix and M;x. The Pes number can be then

calculated using Equation 8.

_J, wMpds . .
M;, = W, i=1 or 2, x = inlet or outlet Equation 7

_ ) -

Pe,, =2 e =2 (M toutlet — M 1,inlet) Equation 8
ax — 5 —

0'2 (‘ ’2,outlet -M ioutlet ) - (MZ,inlet — M%,inlet)

in which ¢ is the mean residence time, o2 is the variance and My and M, are the first and second

order moments of spatial distribution of age.

Another dimensionless number widely used in literature for the quantification of fluid dispersion
is the Bodenstein number (Bo). The difference between the Bo and Pey numbers consists only in
the characteristic length, which is the particle diameter (d,) for the Bo number. The Bo number

can thus be calculated from the Pe,, number using Equation 9:



Pe,,-d i
Bo = ai p Equation 9

The integrals of the moments (Equation 7) can also be easily computed in cross-sections of the
reactor located at various axial position z (z = 0 at the bed inlet, z = L at outlet). In this way,
considering the first and second order moments integrals, it is possible to obtain the profile of the

Peax or Bo number along the bed axis.

1.5 Aim of the present work

The novelty of the present work is in the application of the Liu and Tilton moments of the age
distribution theory [24] for steady state simulations of the hydrodynamics of small-sized fixed
beds with low reactor-to-sphere diameter ratio 6. We focus on the area 6 < 4, not yet fully

explored in the literature.

We calculate the Pe,x and Bo numbers as a post-treatment of a combined open-source workflow
(DEM packing & CFD). We will study the effects of different physical, process and geometrical
parameters and the uncertainty on the Pe,x number induced by randomly repeating the packing.
The CFD is simple: laminar flow (Navier-Stokes equations) augmented with two convection —
diffusion equations for the moments of age. In the following sections, we will present the

workflow in detail as well as its validation.

2 Numerical methods

2.1 Detailed simulation workflow

The simulation workflow starts with the reproduction of the particle’s arrangement using a
Discrete Element Method (DEM). The DEM method [28] is a Lagrangian particle tracking
method which computes the velocity, trajectory and orientation of each individual particle in the

system. The simulation accounts for the collisions of each particle with other particles and with



the system walls. A key feature of any DEM tool is its ability to detect collisions, determine the
contact point(s) and compute the resulting contact forces. Our DEM code Grains3D is based on
the Gilbert-Johnson-Keerthi algorithm for collision detections [29]. Detailed information about
our code Grains3D, its DEM and parallel computing features including the contact force model
and the extension to non-convex shapes, can be found in the publication of Wachs et al. [30]. In
the present work, we used Grains3D to compute packings of spheres in cylindrical reactors.

Simulations for this work were run on a single CPU and lasted a few hours at most.

Meshing is performed using the sequence of blockMesh and snappyHexMesh OpenFOAM®
utilities. b1 ockMesh computes the background mesh, which defines the refinement level 0. Its
output is a fully hexahedral grid consisting of nearly cubic cells, arranged in a butterfly,
structured blocks topology to match the reactor cylindrical shape. The butterfly topology is
obtained with an H-grid block around the cylinder axis, and with O-grid blocks at the reactor
walls. The background grid refinement (level 0) is a significant parameter on the simulation
results. In this paper, we present results in terms of “density”, which is the number of grid cells

per diameter of reactor (cpd).

snappyHexMesh computes a refined grid that matches the solid interfaces of the particles and
the reactor walls. The particles are introduced in the geometry section of snappyHexMesh as
“searchable objects”. This feature enables to define the spherical particles analytically instead of
using triangulated surfaces in STL format. Local refinements are specified on solid surfaces and
small gaps. Refinements are performed by specifying a grid level in snappyHexMesh. For
example, a grid level 1 on the walls (particles and reactor) corresponds to a division by a factor 2

of the background grid cell size, which is the level 0 defined by bl1ockMesh. An additional gap



level increment of 1 can be used. This parameter is only applied in regions of small gaps, where
the spherical particles are tangent. The output mesh consists in a mostly hexahedral grid, except
near the walls where tetrahedral and polyhedral cells can occur due to the projection of cell faces
on the walls. The interested reader can refer to the OpenFOAM® online user-guide [31] for more

details.

A suitable set of parameters has been chosen to achieve mesh convergence with the minimum

mesh size. This is detailed in the mesh convergence section.

The next step in our workflow is to compute the velocity and the first two moments of age
distribution in the packed beds. We used the open source OpenFOAM® suite as other work
groups [19, 20]. The solver is a laminar incompressible steady-state flow solver using the
SIMPLE pressure-velocity coupling algorithm, namely simpleFoam [32], augmented with two
convection diffusion equations for the moments M; and M, with a source term as described in
section 81.4.1. Our implementation of the mean age equations was validated against the 2D test
case detailed in Liu and Tilton [24], which is not presented here. Boundary conditions are
defined as follows: velocity is uniform on the inlet surface, pressure is uniform on the outlet
surface, first and second moments are uniform and equal to 0 on the inlet surface and with no
gradient on the outlet surface. On the reactor walls and particles, we assumed no-slip condition

for the velocity and null gradient for the moments of the age M; and M,.

We use second order spatial schemes for all the computations. The Gauss linear scheme is used
for gradient terms, with a cell limiter that limits the gradient such that, when cell values are
extrapolated to faces using the calculated gradient, the face values do not fall outside the bounds

of values in surrounding cells. Laplace operators are discretized with the Gauss linear corrected

10



scheme. The convective term in the momentum equation is treated with a bounded Gauss linear
upwind scheme specialized for vector fields. This scheme reduces to an upwind scheme in
regions of strong velocity gradient. The vector specialization consists in calculating a single
limiter which is applied to all components of the vectors, rather than calculating separate limiters
for each component. Finally, scalars like the moments of age, are computed using an upwind first
order scheme. In terms of linear solver, the generalized Geometric-Algebraic Multi-Grid
(GAMG) solver was used for the pressure equation. The iterative smooth solver was used for
other variables. All linear solvers used a Gauss-Seidel preconditioner. We refer the reader to the

OpenFOAM® user’s guide [33] for more details on numerical schemes.

Last, the integrals of the moments are computed in a post-processing step using a function object
that computes the mass flux weighted integrals of the moments over planar cross sections at

various positions along the axial direction z of the reactor.

2.2 Mesh convergence
The mesh convergence is evaluated by checking the accuracy of the simulations on known global

quantities such as flow rate conservation, total particles volume, and mean residence time. Those
numbers are correlated. We next check the mesh convergence on pressure and Pe,, humber. A
parametric search shows that for our problem, the optimal mesh is obtained with a fine
background mesh and moderate additional refinement (level 1 in the snappyHexMesh
terminology) near the solid surfaces and in the small gaps. This is an expected behavior for our
problem in which we need to capture the velocity gradients near the solid surfaces and the
concentration gradients everywhere in the volume. To better capture flow boundary layers,

snappyHexMesh has a feature to add prismatic cell layers on walls, of prescribed thickness

11



and growth ratio. Layers addition proved unnecessary in the presented cases, due to the low Re

number simulated.
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Figure 1. Mesh convergence on Pey number as a function of the total grid size for three
background cell densities. L = 50 mm, D, = 7.75 mm, d, = 4 mm, u = 0.0272 m/s and Dy, = 10°°
m?/s. Blue diamonds: 27 cpd, red squares: 54 cpd, green triangles: 80 cpd. All the points of the

same color and shape correspond to meshes of same cpd but different level of refinement on
particles, walls and in small gaps. Selected grid: green triangle with the smallest number of
cells

The chosen mesh is the one with 80 cells per reactor diameter, with only a moderate additional
refinement near the solid surfaces and in the small gaps. This corresponds to the green triangle
with the lowest number of cells in Figure 1. The mesh is presented in Figure 2. The mesh
convergence has been checked on 4 geometries: D, = 7.75 mm and particles d, = 7.5 mm, d, = 4

mm, d, = 3 mm and d, = 2.4 mm for each fluid velocity and molecular diffusivity tested.
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Figure 2. Cut of the mesh obtained with the final meshing strategy. D,=7.75 mm, d, =5 mm

Numerical convection - diffusion problems can be quite stiff, requiring fine mesh near the
catalyst pellets. However, in our case, mesh convergence proved easier than expected. The mean
age evolves almost linearly from the entrance to the outlet while the second moment presents a
quadratic shape (see Figure 3). The problem is numerically smooth and the mesh reasonable in

size. A typical simulation of the flow, including moments, lasts 10 hours on 48 cores.

The automatic meshing workflow described above can naturally lead to bridges in regions of
small gaps, like near the points of tangency between spheres or between a sphere and the reactor
wall (see Figure 2). This question has been studied by Dixon [34] and is also briefly discussed by

Boccardo [20]. As the current study only concerns hydrodynamics, no particular treatment was
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needed to handle the bridges created by snappyHexMesh. A special treatment would have
been necessary at the contact points if we had to solve heat transfer physics [34]. From a
practical point of view, the gap level increment parameter discussed in section 82.1 controls the
level of refinement in small gap regions. Based on pressure gradient prediction and axial Péclet
numbers, we verified that increasing this parameter beyond the value 1 used in this study did not
change the obtained results. Mesh convergence was thus obtained with a gap level increment of
value 1. Moreover, the porosity of the bed obtained numerically was found within 0.4% of the

theoretical porosity.
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Figure 3. Example of M; and M evolution along the bed. D, = 7.75 mm, d, =5 mm, u =
0.0272 m/s, and Dy, = 7.5x10”° m?/s

2.3 Workflow validation
We validated the predictive ability of our workflow (DEM+CFD with OpenFOAM®) with

experimental estimations of the Bo numbers performed in a 7.75 mm diameter reactor. The

comparison of the Bo numbers is equivalent to the comparison of the Pesx numbers, since there is
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only a scale factor between these two dimensionless numbers (see Equation 9). Apparatus and

procedures are described in the article of Petrazzuoli et al. [15].

Numerical simulations are performed using the corresponding physical properties and operating
conditions: 0.014 < u < 0.028 m/s, D, = 7.75 mm, D, = 7.5x10° m¥s (helium-nitrogen
diffusivity), p = 1.2 kg/m®, p = 1.85x10° m¥s (nitrogen properties) for various particle

diameters.

As it can be seen from Figure 4, the agreement is good except for the data corresponding to the
reactor with 6 = 1.1, which corresponds to the lowest ¢ value explored in this comparison. The
experimental data have been confirmed by repeating twice the experiments, while a mesh
refinement confirmed the CFD results. The origin of this difference is unclear. Small differences
between experimental and numerical geometries (local deviation of reactor diameter, particle
diameter and sphericity...) are likely to be more significant in this case than in the others. In the
case of o = 1.1, we have only one sphere per diameter (a Single Pellet String Reactor, SPSR). In
SPSRs, the fluid flow mainly passes in the empty space between the particles and the reactor
wall. As for 6 = 1.1 we have the largest spheres among the ones considered in this comparison,
we have thus the smallest passage at the reactor wall. Any experimental error in the particle
sphericity or in the reactor diameter would thus be more influent in this case. This could explain
the differences observed in the fluid dispersion, leading to differences between experimental and

numerical Bo numbers.

A last comment can be that simulations may not solve the right equations because of higher Re
number values so that the flow is no longer laminar. The Re number, based on the particle

diameter as characteristic length, is larger than 20 for the data that do not match. Moreover, for

15



non-laminar flows, the molecular diffusion term of Equation 5 and Equation 6 is no longer valid.
Even though the origin of the discrepancy is not exactly known, we decided to present anyway
the obtained data. We need to keep in mind that for very low values of ¢ (< 1.2) the

experimental-CFD matching is probably less accurate.

However, CFD is able to capture changes in trend near 6 = 2, as we will see later. In fact,
simulations confirmed that the experimental data were correct and made us stop looking for

loopholes in our experimental setup.
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Figure 4. Validation of the CFD workflow by comparing the Bo number values of simulations
and experiments. D, = 7.75 mm. Comparison for different values of u (0.014, 0.021 and 0.28
m/s) and 6 (1.1, 1.29, 1.55, 1.93, 2.58, 3.875)



Another validation was performed against the experimental data from Solcova and Schneider

([10], Figure 5). The agreement is also good. We observe a small overestimation of the Bo

numbers, particularly for high Pey, numbers (Equation 10).

P U dy Equation 10
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Figure 5. Comparison of our CFD results (in blue) with Solcova and Schneider (in black) [10]

We conclude that our workflow correctly predicts the Bo numbers, excep
which we observe overestimations. Simulations take less than 24 hou
automated with scripts. Through parallelization, they yield results faster t
additional benefit of the DEM + CFD workflow is that we have a good con

parameters, especially geometrical dimensions and fluid properties.
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3 Results

We used the CFD simulations to gain a better understanding about two crucial questions in
heterogeneous catalyst testing. The first issue deals with the evolution of the Pe,x number as a
function of 6 in small reactors filled with spherical beads. The experimental data presented in
[15] show a complex behavior with ¢ that we wanted to explore more in detail. We used in silico
experiments to estimate Pe,x numbers for different values of 6 and other physical parameters
(molecular diffusivity) and process parameters (fluid velocity, particles diameter, reactor

diameter and length). We report this in section 8§3.1.

The second issue is about the repeatability of the Pe,x number when repeating the packing. In a
previous work we showed that 10% variability on void fraction has to be expected [35] when
randomly repeating the packing with the same particles. What is the effect on the Pes number
when repeating a random packing? We use the predictive capability of our workflow to repeat
the simulation starting from the packing generation using another random seed. This is explored

in section 83.2.

3.1 Axial Péclet number in narrow reactors
3.1.1 Axial Péclet number evolution along the bed

Equation 8 can be generalized between any two axial positions z; and z, (with z; < z,) in the bed:

(My,, - M1,zl)2 Equation 11
My, — M2, ) — (M — M3 ,)

Peax(zl - ZZ) =2

The Peg,(z; = z,) number can be seen as a “local” Péclet number between two axial
coordinates. For z; chosen as the bed inlet, and z, = z, Pey,(z) should vary linearly along the

bed axis coordinate z. Pe,,(z) is shown on Figure 6 for a bed with ¢ = 1.55. Depending on the

18



value of molecular diffusivity Dy, the Peg, (z) number evolution is slightly different. For higher
values of molecular diffusivity (>10° m?s) the Pe,,(z) number follows an almost perfect
straight line, as theoretically expected (see Figure 6, A), while for lower values (<10®° m?/s) the
behavior presents some “staircases” around the linear trend (see Figure 6, B). Local packing
structures of the spherical particles are at the origin of this staircase effect on local Péclet number
variations. Packings can locally present either bypasses or dead zones, depending on the local
void fraction and on the local configuration of the contact points and channels between the
spheres. The CFD results shown in Figure 6 reveal that behavior, particularly for low values of

molecular diffusivity.

Finally, when computing the overall bed Pea number (zo=zoutet), this is found to be proportional

to bed length as experimentally observed (see Petrazzuoli et al. [15]).

A) 100 B) 60

80 j 50 M

60 M % 20 MM
e e w

0 005 01 015 02 0 005 01 015 02
z (m) z (m)

PeaX(Z)

N b
[N ]
N
o

Figure 6. Peax(z) number evolution along the bed axis z for two different molecular diffusivity
values: A) Dy, = 8x10° m%s, B) Dy, = 10° m?/s. D, =7.75 mm, d, = 5 mm

3.1.2 A close look at the local packing structures
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Table 1 shows the packing structures and the flow fields of some of the CFD simulations. For ¢ <

Oq With 6, =1 + ‘/§/2 = 1.87, a particle touches the wall and 2 other particles (one above, one

below). The particles arrange in a planar and alternate way. Two side passages are present on the
side of the particles. At the critical value 0 = &, the reactor is wide enough so that the particle
has now 5 contact points: the wall, two particles above, and two particles below. The
arrangement is still planar. For 6 > 6., the arrangement stops to be planar and the particles
arrange in a spiral. Our DEM packings present in some cases deviation from ideal packings that
can arise during the pouring process when a particle is blocked by another one before reaching

its equilibrium position.

For larger ¢, the arrangement tends to be more and more random although some structures can
appear. For example, for ¢ > 2, the particles can form rings and the packings present a “hole” in
the center whose size is maximum near ¢ = 2.6. The hole in the center disappears for higher ¢ as
the probability of a particle being stable in the center increases, which prevents the regular ring
formation. A similar rings and holes structure occurs for ¢ ~ 3.4. The reactor-to-sphere diameter
0 governs the packing and small changes of its value can lead to significantly different

arrangements.
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Table 1. Packing structures for chosen values of o. Particles are in white and the fluid zone is
colored by velocity magnitude (red = fastest flow, blue = slowest flow, the scale is different for

each case)
b 1.06 1.72 2.21 2.58 3.1 3.37 3.875
Almost planar with Ring and hole in the . Some . .
Structure . Uniform preferential Uniform
passages on the side center
passages
Reactor’s
cutin the
central
vertical
plane
4

An outcome of this non-monotonic behavior is that great care must be taken when using
literature correlations near “geometric” transitions. Figure 7 compares the void fraction measured
from our DEM simulations to the void fraction predicted by the correlation proposed by Dixon
for spheres [36] and the void fraction of some experimental estimations in literature and resumed
by Seckendorff et al. [37] in their article. As we can see, there is a good matching until 6 ~ 1.87,
then for higher values the correlation is not able to capture packing defects. For 6 > 1.87 the

correlation shows a stable decrease in ¢ while the data from DEM present some “rebounds” due
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to packing imperfections. In the experimental works, these “rebounds” are indeed detected (see

Figure 7).
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Figure 7. Void fraction as a function of 6 in packed beds of spheres measured by DEM (blue
diamonds) compared to the Dixon correlation (red line) [36] and other experimental works in
literature [37]

Moreover, also the correlations that predict the radial void fraction profile deviate for some
specific values of 6. For example, the correlations proposed by Mueller [4] do not predict a hole
(¢ = 1) in the reactor center for 6 ~ 2.6 (Figure 8, r/d, = 0 corresponds to the reactor wall). For

that case, some experimental data are present in the literature [38].
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Figure 8. Comparison between radial void fraction profiles measured experimentally [38],
Mueller correlation [4], and our DEM results

From our DEM work, we conclude that classical correlations on overall and radial void fraction
should be used carefully for values of 6 > 1.87 and in particular near geometrical transitions
located at 6 = d, o ~ 2.6 (single ring), and for the values of ¢ leading to other ring formations (¢

~3.4).

3.1.3 Results in narrow reactors for a fixed reactor length

In this section, we use our DEM + CFD workflow to predict Pe,x numbers in narrow reactors
filled with spherical particles, varying the geometry through the particles size, inlet velocity and

molecular diffusion. The reactor diameter is set to 7.75 mm and its length to 107.3 mm.

The Peax number profiles against ¢ are presented in Figure 9, for various combinations of fluid

velocity and molecular diffusion coefficient. The profile is more complex than the one expected
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based on our experimental work and depends both on ¢ and on the combination of velocity and

molecular diffusion.

A first comment is that, for the most part of conditions examined, (specifically Pe, < 3-4)
doubling the velocity or halving the molecular diffusivity coefficient has the same effect on the
Peax and Bo number values. This suggests that u/Dp, is invariant. However, this is not true for

higher values of Pep, number because of the intervention of the Schmidt number effect [6].
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Figure 9. Evolution of Peyx number against o for various superficial velocities and molecular
diffusivity values. Dy = 7.75 mm, L = 10.73 cm

Let us first explore in detail the profile of the top curves of Figure 9 (highest velocity and lowest
molecular diffusivity, dark symbols). Starting from ¢ just above 1, the Pesx number evolution
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presents a smooth evolution as the geometrical constraints prevent random packing defects. The
reactor Pesx number value starts at a high value, increases to a maximum (¢ ~ 1.2) and then
decreases towards a minimum located near 6 = 1.72, which is slightly less than the critical value.
We explain the gradual decrease of Pe with ¢ by the progressive increase of the passages on the

particle sides that act as bypasses. As it can be seen from

Table 1, the packings are not ideal for ¢ = 1.72 with a change in the orientation of the particle
settling planes due to packing “defects”. Those random effects explain why the Pes number
starts to increase for J < Jc, in other words before the transition to “spiral” packings that present
less opportunities for bypasses. For 0 > d., the Pe,x number increases until the hole at the center
of the geometry becomes large enough to create a significant bypass whose consequence on the
Peax number depends on the velocity and molecular diffusion. The Pe,x number reaches a
minimum near 0 = 2.6. The “irregularities” in the curve are due to defects in the packing that
locally create or prevent bypasses. For larger J, the Pes number increases again due to a more
random arrangement less likely to create by-passes. The rest of the curve is a repetition of the
latter part: decrease due to a significant preferential path in the center (6 ~ 3.4) followed by an

increase due to more random and uniform arrangements and less bypasses.

When the ratio fluid velocity to molecular diffusion decreases, the Pe,, number values are shifted
downward. The curves are smoother, and the oscillations get smoother (Figure 9). The

smoothing and dampening are explained by a higher contribution of molecular diffusion
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compared to velocity. Molecules have more time to diffuse in and out of the bypass. Two length
scales are governing the physics: one in the axial direction (particle size or reactor length), one in

the radial direction (fluid passage size).

The behavior of the reactors for 6 very close to 1 (1 < ¢ < 1.3) is also different: there is a
maximum that is shifted towards lower ¢ values and it is less pronounced when reducing the
fluid velocity (or increasing the molecular diffusivity). In that range of J, the particles are
arranged in a plane (indicated with a dashed line in Figure 10) and the flow patterns are of two
types: one type that flows outside of the particles plane (and that becomes more important for
larger ¢ values) and one type that flows in-plane, going from one side of the reactor to the other
around the particles. As we can see from Figure 10, for 6 = 1.1 most of the flow is in-plane while

increasing ¢ (1.5 in Figure 10) the flow becomes more out of plane.
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Figure 10. Velocity magnitude in cross sections as a function of the o value. The cross
sections pass through a sphere center. The symmetry plane is indicated with a dashed line. u =
0.0272 m/s, D, = 7.75 mm, Dy, = 7.5x10™ m?/s. Red = fastest flow, blue = slowest flow

We propose that the change in behavior with velocities and molecular diffusion coefficient is due

to the relative change in the importance and interaction of those two flow pattern types.

3.1.4 Comparison with literature on larger packed beds

In the literature, results are traditionally presented as Bo = f(Pey) [6], which scales all
dimensions to the particle diameter. In Figure 11, we plot the results reported by Delgado [6] for
single phase gas flow as well as our results. For clarity, we decided to split our results into three

groups.

The first group (Figure 11-A) corresponds to reactors whose Bo numbers are in line with the
literature. This group corresponds to ¢ > o, = 1.87, except for the reactors with large preferential

passages or holes in the center (2.4 <0< 2.7, 0 = 3.37).

The next group (Figure 11-B) corresponds to reactors with a hole or large preferential passages in
the center (2.4 < 0 < 2.7, 0 = 3.37). At low Pey number values (Pen < 2), in the molecular
diffusion driven dispersion zone, these reactors present a similar behavior as group A. But when
Pen increases, the Bo number of these reactors falls under that of group A: Pey, is then large

enough that the preferential paths in the reactor’s center lower the Bo number.

The last group (Figure 11-C) encompasses all reactors with ¢ < d. = 1.87 that we will denote as
Single Pellet String Reactors (SPSRs). These SPSRs present high Bo number values (> 5),
particularly for the reactors with ¢ < 1.3. Our values are similar to those of the experimental

study of Solcova and Schneider [10] for & = 1.25, as discussed in §2.3. We think that these high
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values result mostly from the dimension scaling that is based on the particle diameters, which is
quite large in our simulations and Solcova and Schneider [10] experiments (d, > 7 mm). A more
physical scaling based on fluid passage size (hydraulic diameter for example) would bring these
data points closer to group A. For larger o, the passage size is a weak function of the void

fraction and the scaling by particle diameter offsets the curve by a constant amount.
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Figure 11. Evolution of the Bo number versus the Pe,, number for various superficial
velocities, molecular diffusivities, and bed geometries. A) 1.87 <0<24+27<0<33,B)24
<0<27+6=3.37,C)1.03<6<1.87.D;=7.75mm

3.2 Repeatability of the axial Péclet number profiles in narrow reactors

3.2.1 Methods

We now focus on the variability when repeating the packing in random packed beds. We will
compare the Pey number profiles along the reactor length for beds packed with the same set of
particles but loaded differently through a different set of initial conditions (random seed). For

different random seeds, the bed structure can be different due to the stochastic loading even if the

particles composing the bed are the same.
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As seen earlier, the Pea number curves for small 6 are smooth as the geometrical constraints
limit the probability of defects occurring during packing. We now study larger fixed beds made
with 3 mm diameter spheres packed in a 12 mm diameter reactor (6 = 4). We repeat the
workflow six times (DEM-CFD) from scratch, to obtain six different packings and check that the
packings were really all different and not a rotated version of one another. The easiest way to
check this is to sort particles by their center’s height (z;), plot z; against their rank and check that

the curves are not identical. One may also compare void fraction on several slices.

3.2.2 Axial Péclet number profiles in repeated packed beds

The Peax number evolution with the reactor axial coordinate z (see Equation 11) follows a linear
overall trend consistent with an axial dispersion independent on the length (Figure 12 A). It
presents small variations around this trend and these variations are different in all the packings.
In the cases presented in Figure 12 A, there is almost no difference at z = 10 cm, while a
difference of 10 in Peg number is measured at z = 7 cm. Such a difference can yield significant
differences in the apparent reactor performance for high conversion reactions if the Pe,x number

is low (Peax < 40 for example). It depends on the desired conversion [7].

The Peax numbers for all the six cases tested are shown in Figure 12 B for four different lengths.
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Figure 12. A) Plots of Pea(z) number as function of the length in the reactor for two repeats
of the same numerical experiment (both beds are made with the same beads and are different).
B) Peax(z) number variation for the six cases and for four values of the axial coordinate z.
Dm=10"° m%/s
A better view of the variability is achieved when plotting the Peay(z) number increments (4Pe)
from plane to plane as shown in Figure 13 for case 2 that presents a locally flat evolution of the
Peax(z) number. The 4Pe value depends on the distance between two cut planes dz (here dz = 4
mm). Pea(z) number increments in that case are mostly between 1.5 and 2 with slightly higher

values but significantly lower values. Lower values (as near z = 0.13 m) are due to a hole in the

packing and a resulting preferential path of fluid.

We will now propose a method to quantify this variability as a function of the length, which can

be useful to design reactors.
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Figure 13. Case 2 - Left axis (red, dashed line): Peax(z) number evolution. Right axis (blue):
Evolution of the Peax(z) number increment APe6 asa function of reactor length (dz = 4 mm).
Dm= 10" m“/s

3.2.3 The axial Péclet number uncertainty as a function of the reactor length

We assume that 4Pe is a random variable with a probability density. We can estimate the Pe,x
numbers for a reactor of a given length L as the sum of N realizations of the 4Pe random
variable, N being the number of Pey number increment (L/dz). We will assume that the Pe,x
number increment follows a Gaussian law of mean m and standard deviation s. The Peg number
then follows a Gaussian law of mean mPe = N-m and standard deviation sPe = sv/N. The relative

uncertainty of the Pesx number with a 95% confidence level U95% is by definition given by

Equation 12. As L is proportional to N, U95% is proportional to % (Equation 13).
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The relative uncertainty on the Pe,x number due to a random packing decreases as the inverse of
the square root of the reactor length. Short reactors are thus likely to give both small Pe
numbers and large variations of Pes number values and are thus not recommended for Kkinetic

studies.

4 Conclusions

Combining recent advances in fixed bed simulations and Liu and Tilton moments of the age
distribution theory [24], we were able to compute accurate values of Pe, number in fixed bed
reactors packed with spheres in presence of a single-phase laminar flow. The whole workflow is
fully automated and requires less than 1 day per case (geometry creation, meshing, CFD
simulation and post-treatment). This workflow is now faster than experiments and allows for a
good control on parameters. It gives access to local information as would be given by complex

experimental tools like uPIV or tomography.

We first used this capability to explore the relationship of the Pes number as a function of ¢ for
narrow reactors (0 < 4), fluid velocity and molecular diffusivity. This relationship proves to be
quite complex and it can be qualitatively explained by looking at the packing structures. The Peax
number is lower when the structures present large preferential passages or holes. This happens

for values of ¢ around 1.7, 2.6 and 3.4.
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Then, we used the DEM-CFD workflow to quantify the packing uncertainty in a ¢ = 4 fixed bed
reactor. Repeating the packing has an effect on local preferential passages or “defects” that
influence the Pesx number. While, as already known, the Pe,x number increases on average

linearly with the length, we propose that the uncertainty on the Pesx number decreases with a

power of -0.5 of the reactor length.
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Nomenclature

Roman letters

D

dz:

E(t):

M;j:

Age of the molecules

Concentration

Cells per diameter

Axial dispersion coefficient

Molecular diffusivity

Particles diameter

Reactor internal diameter

Spatial discretization interval

Normalized response to a Dirac function

Bed length

Mean of a gaussian distribution variable

First order moment of the E(t)

Second order moment of the E(t)

Generic moments order

Number of realizations of APe increment
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[s]

[mol/m?]

[m/s]
[m/s]
[m]
[m]
[m]
[s7]

[m]

[s]

[s°]



SV:

U95%:

Veat:

Greek letters

Dr

o: 3

APe:

Gas flow rate

Reactor radial coordinate

Standard deviation of a gaussian distribution variable

Generic surface

Space Velocity

Time

Mean fluid residence time

Inlet superficial velocity

Relative 95% confidence level uncertainty

Catalyst volume

Generic point in the reactor

Reactor axial coordinate

Reactor/particle diameter ratio

Difference in Pe number between two reactor plans
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[m®/s]

[m]

[m’]
[s7]
[s]
[s]

[m/s]

[m’]

[m]



Void fraction of the reactor

Fluid viscosity

Fluid density

Variance

Tortuosity factor of the packed bed

Dimensionless numbers

uld
Bo: —2=
e@D,x

. ublL

X-
X e@D,

. uldp

me-
e@Dm

pEuld
Re: —2

el@p

" p*Diy

Bodenstein number

Axial Peclet number

Molecular Peclet number

Reynolds number

Schmidt number
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[Pa-s]
[kg/m?]
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