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Abstract 

Fluid dispersion in small fixed bed reactors under single phase laminar flow conditions is 

evaluated through accurate predictions of axial Péclet numbers Peax using Direct Numerical 

Simulations (DNS). The fixed bed packing is obtained through the Discrete Element Method 

(DEM) code Grains3D. Peax numbers are computed from steady state simulations of the flow. 

An additional set of equations solving the spatial distribution of the moments of the age 

distribution is used. This gives access to local information on dead zones or bypasses. 

Computations are realized with the OpenFOAM
®

 open-source library. Results are close to the 

experimental data. The DEM-OpenFOAM
®
 workflow benefits from an accurate control of the 

fluid physical properties and packing geometry, thus leading to a faster production of data than 

an experimental approach. 

We first explore the influence of the reactor-to-sphere diameter ratio δ (δ < 4), fluid velocity and 

molecular diffusivity on the Peax number. The behavior proves much more complex than any 

previous report, and it can be qualitatively explained by looking at the packing structure. Then, 

we use the DEM-OpenFOAM
®
 workflow to quantify the uncertainty on the Peax number when 
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repeating the packing of a δ = 4 fixed bed reactor, and we propose that the uncertainty on the 

Peax number decreases as a function of the reactor length to the power of -0.5.  

Key words (max 6): Computational Fluid Dynamics; small fixed beds of spheres; axial Péclet 

number; Direct Numerical Simulations; laminar flow; moments of age 

 

1 Introduction 

1.1 Fixed bed downscaling  

Over the decades, fixed bed reactors for catalyst testing have faced a reduction in size. 

Nowadays they commonly have diameters below 1 cm, the limit being the catalyst pellet size 

(~1-3 mm). The advantages of these small reactors are numerous: less catalyst used, less amount 

of reactant used and of wastes produced, better temperature control, reduced safety risks and 

easier implementation of parallel reactor systems [1]. Those reactors were designed for catalyst 

screening, so that the hydrodynamics was not really an issue if the ranking and uncertainties 

were correct. As these reactors produce a large amount of data, a new question arises: can we use 

their results to build models for catalyst performance prediction? One of the limiting factors 

might be the hydrodynamic quality of the flow. 

Downscaling of fixed bed reactors is usually performed by keeping the ratio of flow rate (Q) to 

the catalyst amount (Vcat) constant, usually denoted as Space Velocity or SV. This ratio can be 

seen as the inverse of the contact time. When expressing the catalyst amount as a volume, the SV 

is the ratio of the superficial velocity (u) to the reactor length (L) (Equation 1). Laboratory 

reactors are typically 10-50 cm long so that the velocities are 20-100 times smaller than in 

industrial reactors (~ 10 meters in length). 
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 Equation 1 

 

For a wide range of reactions in biorefinery, biochemistry, petrochemistry, and refining, the 

velocities in laboratory reactors are so low that the flow regime is often laminar with Reynolds 

(Re) number lower than 10. For this reason, we focus on single-phase laminar flows in the rest of 

the paper. 

Currently, the reactors used in heterogeneous catalyst testing have diameter values smaller than 1 

cm and lengths that usually do not exceed 20-30 cm. As the catalyst particles are on the order of 

a few millimeters, these reactors are usually operated with values of δ = Dr/dp (reactor/sphere 

diameter ratio) between 1 and 5, possibly 10, while traditional packed beds have often larger 

values. In packed bed millireactors, the ratio δ governs the disposition of the particles in the 

reactor. For large values of δ there are few preferential paths and dead-zones due to the 

stochastic position of the particles at the center of the bed and the higher packing density [2, 3], 

while for the low δ values, occurring in packed bed millireactors, the global void fraction is 

higher and radially non-uniform [4], and preferential paths near the walls are significant and 

drive most of the flow.  

1.2 Plug flow behavior 

To perform kinetic studies, the results of the experiments must express the kinetic behavior of 

the catalyst rather than the hydrodynamics of the reactor. In a fixed bed, the ideal flow is plug 

flow with high heat and mass transfer coefficients. If these conditions are not met, the usual 

approach is to characterize those features building a reactor model that accounts for them and 

then optimize a kinetic model coupled with the reactor model. An example of this process can be 

found in [5]. In this paper, we focus on the plug flow behavior of the fixed bed reactors that is 
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very well described by a classical convection equation augmented with an axial dispersion term 

(Equation 2) [6]: 

   

  
    

   

   
 
 

 
 
  

  
 

Equation 2 

in which z is the axial coordinate along the bed, c is the concentration of the species, Dax the 

axial dispersion coefficient, u the superficial gas velocity, ε the void fraction of the reactor and t 

the time. If the axial dispersion coefficient, Dax, is sufficiently small, the axial dispersion can be 

neglected, which greatly simplifies the models. At this point, it is worth introducing the Peax 

number (Equation 3) that compares dispersion time scales to the axial convective time scales:  

 
     

   

     
 Equation 3 

in which L is the reactor length. The higher the Peax number, the closer the reactor is to ideal 

plug flow. In kinetic studies, it is very interesting to operate reactors with Peax number “large 

enough” so that they can be considered as ideal. The “large enough” term depends on the 

conversion level of the reaction as proposed by Mears [7]. 

1.3 Experimental literature 

To experimentally evaluate the dispersion in the reactors, transient experiments are required. 

Usually a tracer is injected, and its concentration temporal evolution is recorded at the reactor 

outlet. When the inlet is a Dirac function, the outlet curve is the residence time distribution 

(RTD) curve, denoted as E(t). This is the reason why these types of experiments are often called 

RTD measurements. In practice, the inlet is never an exact Dirac function so that a measurement 

of the reactor inlet is recommended.  
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The axial dispersion coefficient can be deduced from the reactor outlet (and inlet) temporal tracer 

concentration profiles by solving the axial dispersion model equation [8–12]. 

Plug flow behavior studies in packed bed millireactors are scarce. A common rule-of-thumb [6] 

in chemical engineering recommends values of δ higher than ~15, so that the radial porosity 

fluctuations near the walls have less impact on the average flow and the packing can be 

considered uniform in the radial direction. In this case, variations of the fluid velocity, reactor 

porosity and axial dispersion coefficient in the radial direction can be neglected. Packed bed 

millireactors do not follow this rule of thumb and another design criterion is required.  

Studies from Šolcova and Schneider [10], Scott et al. [13] and Hsiang and Haynes [14] showed 

that, in terms of plug flow behavior, similar results to those observed in larger packed beds are 

achieved when δ is below 2. A previous study of our work group [15] investigated the effect of δ 

on the Peax number, concluding that the behavior is not monotonic, but the experimental limits 

on the control of the fluid physical properties and the packing geometrical parameters did not 

allow us for a more detailed understanding.  

Good control of the experimental setup is necessary to achieve a good accuracy on the axial 

dispersion measurements, which is time consuming [15]. Besides that, not all experimental 

conditions can be tested: spherical beads are only available in limited number of diameters, same 

for the reactor diameters. Fluid and tracer choice are limited by the analyzer’s capabilities. 

1.4 CFD in fixed beds 

Direct Numerical Simulation (DNS) of reactive flows in fixed beds has progressed enormously 

in the last decade with velocity, concentration and temperature 3D profiles [16–18]. Many papers 

present workflows to solve CFD problems in random packed beds of complex shapes, some of 
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them using open source solvers like OpenFOAM
®
 [19–21]. The computational resources are 

now sufficient to successfully perform DNS of packed bed High Throughput Experimentation 

reactors for non-reactive single-phase flows.  

However, transient CFD simulations are still expensive and few works focused on fluid 

dispersion in small-sized fixed bed reactors. Among them, a CFD study simulating residence 

time curves from Müller et al. [22] on a Single Pellet String Reactor (cylindrical reactor and 

spherical particles, δ = 1.2 and L = 0.1 m) concluded plug flow behavior for all the conditions 

tested, ranging from laminar to turbulent flow. Then, Fernengel et al. [23] performed a similar 

study for δ value ranging between 1.125 and 1.75. Non-diffusive numerical tracer simulations 

revealed that the reactors have plug flow behavior. They also simulated a heterogeneously 

catalyzed isothermal and isomolar gas-phase reaction with no change in gas density that showed 

conversions deviating less than 5% from plug flow.  

1.4.1 Theory of moments of age distribution 

A very interesting advance comes from the work of Liu and Tilton [24] that showed that the 

moments of age spatial distribution could be computed using steady-state simulations. Let us 

first introduce the notion of age distribution. At any point of the reactor, the age of the molecules 

a(x,t) since the reactor entrance follows a distribution, which is generally unknown but can be 

characterized by its moments (Equation 4).  

 
  ( )  

∫     (   )  
  

 

∫  (   )  
  

 

 
Equation 4 
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Following the works of Spalding [25], Danckwerts [26] and Zwietering [27], Liu and Tilton [24] 

demonstrated that the n-th moment of the age distribution follows a steady state 

convection/diffusion equation similar to momentum, energy or species: 

   (   )     (     )    
Equation 5  

   (   )     (     )       , n >1 
Equation 6 

in which v is the velocity vector and Dm the molecular diffusion coefficient. The boundary 

conditions are: Mi = 0 at inlet, null fluxes at the reactor walls and outlet. The equation for the 

first moment is quite easy to understand. The first moment of age follows a classical convection 

diffusion equation and its rate of change is unity. Those equations are valid for any open reactor, 

i.e. with an inlet and an outlet, and are easy to implement and solve in steady-state CFD solvers. 

Liu and Tilton also demonstrated that a mass flux weighted integration of the M1 and M2 fields 

over the inlet and outlet (Equation 7) yields M1,x and M2,x. The Peax number can be then 

calculated using  Equation 8.  

      
∫         

∫      

,   i=1 or 2, x = inlet or outlet 
Equation 7 

 

       
 ̅ 

  
  

(                  )
 

(                   
  )  (                 

 )
 

  Equation 8 

in which  ̅ is the mean residence time, σ² is the variance and M1 and M2 are the first and second 

order moments of spatial distribution of age. 

Another dimensionless number widely used in literature for the quantification of fluid dispersion 

is the Bodenstein number (Bo). The difference between the Bo and Peax numbers consists only in 

the characteristic length, which is the particle diameter (dp) for the Bo number. The Bo number 

can thus be calculated from the Peax number using Equation 9: 
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Equation 9 

The integrals of the moments (Equation 7) can also be easily computed in cross-sections of the 

reactor located at various axial position z (z = 0 at the bed inlet, z = L at outlet). In this way, 

considering the first and second order moments integrals, it is possible to obtain the profile of the 

Peax or Bo number along the bed axis. 

1.5 Aim of the present work 

The novelty of the present work is in the application of the Liu and Tilton moments of the age 

distribution theory [24] for steady state simulations of the hydrodynamics of small-sized fixed 

beds with low reactor-to-sphere diameter ratio δ. We focus on the area δ < 4, not yet fully 

explored in the literature.  

We calculate the Peax and Bo numbers as a post-treatment of a combined open-source workflow 

(DEM packing & CFD). We will study the effects of different physical, process and geometrical 

parameters and the uncertainty on the Peax number induced by randomly repeating the packing. 

The CFD is simple: laminar flow (Navier-Stokes equations) augmented with two convection – 

diffusion equations for the moments of age. In the following sections, we will present the 

workflow in detail as well as its validation.  

2 Numerical methods 

2.1 Detailed simulation workflow 

The simulation workflow starts with the reproduction of the particle’s arrangement using a 

Discrete Element Method (DEM). The DEM method [28] is a Lagrangian particle tracking 

method which computes the velocity, trajectory and orientation of each individual particle in the 

system. The simulation accounts for the collisions of each particle with other particles and with 



 

9 

 

the system walls. A key feature of any DEM tool is its ability to detect collisions, determine the 

contact point(s) and compute the resulting contact forces. Our DEM code Grains3D is based on 

the Gilbert-Johnson-Keerthi algorithm for collision detections [29]. Detailed information about 

our code Grains3D, its DEM and parallel computing features including the contact force model 

and the extension to non-convex shapes, can be found in the publication of Wachs et al. [30]. In 

the present work, we used Grains3D to compute packings of spheres in cylindrical reactors. 

Simulations for this work were run on a single CPU and lasted a few hours at most. 

Meshing is performed using the sequence of blockMesh and snappyHexMesh OpenFOAM
®
 

utilities. blockMesh computes the background mesh, which defines the refinement level 0. Its 

output is a fully hexahedral grid consisting of nearly cubic cells, arranged in a butterfly, 

structured blocks topology to match the reactor cylindrical shape. The butterfly topology is 

obtained with an H-grid block around the cylinder axis, and with O-grid blocks at the reactor 

walls. The background grid refinement (level 0) is a significant parameter on the simulation 

results. In this paper, we present results in terms of “density”, which is the number of grid cells 

per diameter of reactor (cpd). 

snappyHexMesh computes a refined grid that matches the solid interfaces of the particles and 

the reactor walls. The particles are introduced in the geometry section of snappyHexMesh as 

“searchable objects”. This feature enables to define the spherical particles analytically instead of 

using triangulated surfaces in STL format. Local refinements are specified on solid surfaces and 

small gaps. Refinements are performed by specifying a grid level in snappyHexMesh. For 

example, a grid level 1 on the walls (particles and reactor) corresponds to a division by a factor 2 

of the background grid cell size, which is the level 0 defined by blockMesh. An additional gap 
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level increment of 1 can be used. This parameter is only applied in regions of small gaps, where 

the spherical particles are tangent. The output mesh consists in a mostly hexahedral grid, except 

near the walls where tetrahedral and polyhedral cells can occur due to the projection of cell faces 

on the walls. The interested reader can refer to the OpenFOAM
®
 online user-guide [31] for more 

details.  

A suitable set of parameters has been chosen to achieve mesh convergence with the minimum 

mesh size. This is detailed in the mesh convergence section.  

The next step in our workflow is to compute the velocity and the first two moments of age 

distribution in the packed beds. We used the open source OpenFOAM
®
 suite as other work 

groups [19, 20]. The solver is a laminar incompressible steady-state flow solver using the 

SIMPLE pressure-velocity coupling algorithm, namely simpleFoam [32], augmented with two 

convection diffusion equations for the moments M1 and M2 with a source term as described in 

section §1.4.1. Our implementation of the mean age equations was validated against the 2D test 

case detailed in Liu and Tilton [24], which is not presented here. Boundary conditions are 

defined as follows: velocity is uniform on the inlet surface, pressure is uniform on the outlet 

surface, first and second moments are uniform and equal to 0 on the inlet surface and with no 

gradient on the outlet surface. On the reactor walls and particles, we assumed no-slip condition 

for the velocity and null gradient for the moments of the age M1 and M2. 

We use second order spatial schemes for all the computations. The Gauss linear scheme is used 

for gradient terms, with a cell limiter that limits the gradient such that, when cell values are 

extrapolated to faces using the calculated gradient, the face values do not fall outside the bounds 

of values in surrounding cells. Laplace operators are discretized with the Gauss linear corrected 
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scheme. The convective term in the momentum equation is treated with a bounded Gauss linear 

upwind scheme specialized for vector fields. This scheme reduces to an upwind scheme in 

regions of strong velocity gradient. The vector specialization consists in calculating a single 

limiter which is applied to all components of the vectors, rather than calculating separate limiters 

for each component. Finally, scalars like the moments of age, are computed using an upwind first 

order scheme. In terms of linear solver, the generalized Geometric-Algebraic Multi-Grid 

(GAMG) solver was used for the pressure equation. The iterative smooth solver was used for 

other variables. All linear solvers used a Gauss-Seidel preconditioner. We refer the reader to the 

OpenFOAM
®
 user’s guide [33] for more details on numerical schemes. 

Last, the integrals of the moments are computed in a post-processing step using a function object 

that computes the mass flux weighted integrals of the moments over planar cross sections at 

various positions along the axial direction z of the reactor.  

2.2 Mesh convergence 

The mesh convergence is evaluated by checking the accuracy of the simulations on known global 

quantities such as flow rate conservation, total particles volume, and mean residence time. Those 

numbers are correlated. We next check the mesh convergence on pressure and Peax number. A 

parametric search shows that for our problem, the optimal mesh is obtained with a fine 

background mesh and moderate additional refinement (level 1 in the snappyHexMesh 

terminology) near the solid surfaces and in the small gaps. This is an expected behavior for our 

problem in which we need to capture the velocity gradients near the solid surfaces and the 

concentration gradients everywhere in the volume. To better capture flow boundary layers, 

snappyHexMesh has a feature to add prismatic cell layers on walls, of prescribed thickness 
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and growth ratio. Layers addition proved unnecessary in the presented cases, due to the low Re 

number simulated. 

 

  

Figure 1. Mesh convergence on Peax number as a function of the total grid size for three 

background cell densities. L = 50 mm, Dr = 7.75 mm, dp = 4 mm, u = 0.0272 m/s and Dm = 10
-6

 

m
2
/s. Blue diamonds: 27 cpd, red squares: 54 cpd, green triangles: 80 cpd. All the points of the 

same color and shape correspond to meshes of same cpd but different level of refinement on 

particles, walls and in small gaps. Selected grid: green triangle with the smallest number of 

cells 

 

The chosen mesh is the one with 80 cells per reactor diameter, with only a moderate additional 

refinement near the solid surfaces and in the small gaps. This corresponds to the green triangle 

with the lowest number of cells in Figure 1. The mesh is presented in Figure 2. The mesh 

convergence has been checked on 4 geometries: Dr = 7.75 mm and particles dp = 7.5 mm, dp = 4 

mm, dp = 3 mm and dp = 2.4 mm for each fluid velocity and molecular diffusivity tested. 
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Figure 2. Cut of the mesh obtained with the final meshing strategy. Dr=7.75 mm, dp = 5 mm 

 

Numerical convection - diffusion problems can be quite stiff, requiring fine mesh near the 

catalyst pellets. However, in our case, mesh convergence proved easier than expected. The mean 

age evolves almost linearly from the entrance to the outlet while the second moment presents a 

quadratic shape (see Figure 3). The problem is numerically smooth and the mesh reasonable in 

size. A typical simulation of the flow, including moments, lasts 10 hours on 48 cores. 

The automatic meshing workflow described above can naturally lead to bridges in regions of 

small gaps, like near the points of tangency between spheres or between a sphere and the reactor 

wall (see Figure 2). This question has been studied by Dixon [34] and is also briefly discussed by 

Boccardo [20]. As the current study only concerns hydrodynamics, no particular treatment was 
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needed to handle the bridges created by snappyHexMesh. A special treatment would have 

been necessary at the contact points if we had to solve heat transfer physics [34]. From a 

practical point of view, the gap level increment parameter discussed in section §2.1 controls the 

level of refinement in small gap regions. Based on pressure gradient prediction and axial Péclet 

numbers, we verified that increasing this parameter beyond the value 1 used in this study did not 

change the obtained results. Mesh convergence was thus obtained with a gap level increment of 

value 1. Moreover, the porosity of the bed obtained numerically was found within 0.4% of the 

theoretical porosity.  

 

Figure 3. Example of M1 and M2 evolution along the bed. Dr = 7.75 mm, dp = 5 mm, u = 

0.0272 m/s, and Dm = 7.5x10
-5

 m
2
/s 

 

 

2.3 Workflow validation 

We validated the predictive ability of our workflow (DEM+CFD with OpenFOAM
®

) with 

experimental estimations of the Bo numbers performed in a 7.75 mm diameter reactor. The 

comparison of the Bo numbers is equivalent to the comparison of the Peax numbers, since there is 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.05 0.1 0.15 0.2

M
1

(s
)

L (m)

0

5

10

15

20

25

0 0.05 0.1 0.15 0.2

M
2

(s
2
)

L (m)



 

15 

 

only a scale factor between these two dimensionless numbers (see Equation 9). Apparatus and 

procedures are described in the article of Petrazzuoli et al. [15].  

Numerical simulations are performed using the corresponding physical properties and operating 

conditions: 0.014 < u < 0.028 m/s, Dr = 7.75 mm, Dm = 7.5x10
-5 

m²/s (helium-nitrogen 

diffusivity), ρ = 1.2 kg/m
3
, µ = 1.85x10

-5 
m²/s (nitrogen properties) for various particle 

diameters. 

As it can be seen from Figure 4, the agreement is good except for the data corresponding to the 

reactor with δ = 1.1, which corresponds to the lowest δ value explored in this comparison. The 

experimental data have been confirmed by repeating twice the experiments, while a mesh 

refinement confirmed the CFD results. The origin of this difference is unclear. Small differences 

between experimental and numerical geometries (local deviation of reactor diameter, particle 

diameter and sphericity…) are likely to be more significant in this case than in the others. In the 

case of δ = 1.1, we have only one sphere per diameter (a Single Pellet String Reactor, SPSR). In 

SPSRs, the fluid flow mainly passes in the empty space between the particles and the reactor 

wall. As for δ = 1.1 we have the largest spheres among the ones considered in this comparison, 

we have thus the smallest passage at the reactor wall. Any experimental error in the particle 

sphericity or in the reactor diameter would thus be more influent in this case. This could explain 

the differences observed in the fluid dispersion, leading to differences between experimental and 

numerical Bo numbers.  

A last comment can be that simulations may not solve the right equations because of higher Re 

number values so that the flow is no longer laminar. The Re number, based on the particle 

diameter as characteristic length, is larger than 20 for the data that do not match. Moreover, for 
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non-laminar flows, the molecular diffusion term of Equation 5 and Equation 6 is no longer valid. 

Even though the origin of the discrepancy is not exactly known, we decided to present anyway 

the obtained data. We need to keep in mind that for very low values of δ (< 1.2) the 

experimental-CFD matching is probably less accurate. 

However, CFD is able to capture changes in trend near δ = 2, as we will see later. In fact, 

simulations confirmed that the experimental data were correct and made us stop looking for 

loopholes in our experimental setup. 

 

 

Figure 4. Validation of the CFD workflow by comparing the Bo number values of simulations 

and experiments. Dr = 7.75 mm. Comparison for different values of u (0.014, 0.021 and 0.28 

m/s) and δ (1.1, 1.29, 1.55, 1.93, 2.58, 3.875) 
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Another validation was performed against the experimental data from Šolcova and Schneider 

([10], Figure 5). The agreement is also good. We observe a small overestimation of the Bo 

numbers, particularly for high Pem numbers (Equation 10). 

 
    

    

    
 Equation 10 

 

 

Figure 5. Comparison of our CFD results (in blue) with Šolcova and Schneider (in black) [10]  

 

We conclude that our workflow correctly predicts the Bo numbers, except for low δ values in 

which we observe overestimations. Simulations take less than 24 hours and can be fully 

automated with scripts. Through parallelization, they yield results faster than experiments. An 

additional benefit of the DEM + CFD workflow is that we have a good control of the simulation 

parameters, especially geometrical dimensions and fluid properties.  
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3 Results 

We used the CFD simulations to gain a better understanding about two crucial questions in 

heterogeneous catalyst testing. The first issue deals with the evolution of the Peax number as a 

function of δ in small reactors filled with spherical beads. The experimental data presented in 

[15] show a complex behavior with δ that we wanted to explore more in detail. We used in silico 

experiments to estimate Peax numbers for different values of δ and other physical parameters 

(molecular diffusivity) and process parameters (fluid velocity, particles diameter, reactor 

diameter and length). We report this in section §3.1. 

The second issue is about the repeatability of the Peax number when repeating the packing. In a 

previous work we showed that 10% variability on void fraction has to be expected [35] when 

randomly repeating the packing with the same particles. What is the effect on the Peax number 

when repeating a random packing? We use the predictive capability of our workflow to repeat 

the simulation starting from the packing generation using another random seed. This is explored 

in section §3.2.  

3.1 Axial Péclet number in narrow reactors 

3.1.1 Axial Péclet number evolution along the bed 

Equation 8 can be generalized between any two axial positions z1 and z2 (with z1 < z2) in the bed:  

 

    (     )   
(           )

 

(           
  )  (           

 )
 

  Equation 11 

The     (     ) number can be seen as a “local” Péclet number between two axial 

coordinates. For    chosen as the bed inlet, and     ,     ( ) should vary linearly along the 

bed axis coordinate z.     ( ) is shown on Figure 6 for a bed with δ = 1.55. Depending on the 
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value of molecular diffusivity Dm, the     ( ) number evolution is slightly different. For higher 

values of molecular diffusivity (>10
-5

 m
2
/s) the     ( ) number follows an almost perfect 

straight line, as theoretically expected (see Figure 6, A), while for lower values (<10
-5

 m
2
/s) the 

behavior presents some “staircases” around the linear trend (see Figure 6, B). Local packing 

structures of the spherical particles are at the origin of this staircase effect on local Péclet number 

variations. Packings can locally present either bypasses or dead zones, depending on the local 

void fraction and on the local configuration of the contact points and channels between the 

spheres. The CFD results shown in Figure 6 reveal that behavior, particularly for low values of 

molecular diffusivity.  

Finally, when computing the overall bed Peax number (z2=zoutlet), this is found to be proportional 

to bed length as experimentally observed (see Petrazzuoli et al. [15]). 

 

Figure 6. Peax(z) number evolution along the bed axis z for two different molecular diffusivity 

values: A) Dm = 8x10
-5

 m
2
/s, B) Dm = 10

-6
 m

2
/s. Dr =7.75 mm, dp = 5 mm 

 

3.1.2 A close look at the local packing structures 
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Table 1 shows the packing structures and the flow fields of some of the CFD simulations. For δ < 

  , with      
√ 

 
⁄  = 1.87, a particle touches the wall and 2 other particles (one above, one 

below). The particles arrange in a planar and alternate way. Two side passages are present on the 

side of the particles. At the critical value δ =   , the reactor is wide enough so that the particle 

has now 5 contact points: the wall, two particles above, and two particles below. The 

arrangement is still planar. For δ >   , the arrangement stops to be planar and the particles 

arrange in a spiral. Our DEM packings present in some cases deviation from ideal packings that 

can arise during the pouring process when a particle is blocked by another one before reaching 

its equilibrium position. 

For larger δ, the arrangement tends to be more and more random although some structures can 

appear. For example, for δ > 2, the particles can form rings and the packings present a “hole” in 

the center whose size is maximum near δ = 2.6. The hole in the center disappears for higher δ as 

the probability of a particle being stable in the center increases, which prevents the regular ring 

formation. A similar rings and holes structure occurs for δ ~ 3.4. The reactor-to-sphere diameter 

δ governs the packing and small changes of its value can lead to significantly different 

arrangements. 
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Table 1. Packing structures for chosen values of δ. Particles are in white and the fluid zone is 

colored by velocity magnitude (red = fastest flow, blue = slowest flow, the scale is different for 

each case) 
δ 1.06 1.72 2.21 2.58 3.1 3.37 3.875 

Structure 
Almost planar with 

passages on the side 

Ring and hole in the 

center 
Uniform 

Some 

preferential 

passages 

Uniform 

Reactor’s 

cut in the 

central 

vertical 

plane 

 

       

 

 

An outcome of this non-monotonic behavior is that great care must be taken when using 

literature correlations near “geometric” transitions. Figure 7 compares the void fraction measured 

from our DEM simulations to the void fraction predicted by the correlation proposed by Dixon 

for spheres [36] and the void fraction of some experimental estimations in literature and resumed 

by Seckendorff et al. [37] in their article.  As we can see, there is a good matching until δ ~ 1.87, 

then for higher values the correlation is not able to capture packing defects. For δ > 1.87 the 

correlation shows a stable decrease in ε while the data from DEM present some “rebounds” due 
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to packing imperfections. In the experimental works, these “rebounds” are indeed detected (see 

Figure 7). 

  

Figure 7. Void fraction as a function of δ in packed beds of spheres measured by DEM (blue 

diamonds) compared to the Dixon correlation (red line) [36] and other experimental works in 

literature [37]  

 

Moreover, also the correlations that predict the radial void fraction profile deviate for some 

specific values of δ. For example, the correlations proposed by Mueller [4] do not predict a hole 

(ε = 1) in the reactor center for δ ~ 2.6 (Figure 8, r/dp = 0 corresponds to the reactor wall). For 

that case, some experimental data are present in the literature [38].  

 

ε

δ

DEM Dixon Correlation
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Figure 8. Comparison between radial void fraction profiles measured experimentally [38], 

Mueller correlation [4], and our DEM results 

 

 

From our DEM work, we conclude that classical correlations on overall and radial void fraction 

should be used carefully for values of δ > 1.87 and in particular near geometrical transitions 

located at δ = δc, δ ~ 2.6 (single ring), and for the values of δ leading to other ring formations (δ 

~ 3.4). 

3.1.3 Results in narrow reactors for a fixed reactor length 

In this section, we use our DEM + CFD workflow to predict Peax numbers in narrow reactors 

filled with spherical particles, varying the geometry through the particles size, inlet velocity and 

molecular diffusion. The reactor diameter is set to 7.75 mm and its length to 107.3 mm. 

The Peax number profiles against δ are presented in Figure 9, for various combinations of fluid 

velocity and molecular diffusion coefficient. The profile is more complex than the one expected 
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based on our experimental work and depends both on δ and on the combination of velocity and 

molecular diffusion.  

A first comment is that, for the most part of conditions examined, (specifically Pem < 3-4) 

doubling the velocity or halving the molecular diffusivity coefficient has the same effect on the 

Peax and Bo number values. This suggests that u/Dm is invariant. However, this is not true for 

higher values of Pem number because of the intervention of the Schmidt number effect [6].  

 

 

Figure 9. Evolution of Peax number against δ for various superficial velocities and molecular 

diffusivity values. Dr = 7.75 mm, L = 10.73 cm 
 

Let us first explore in detail the profile of the top curves of Figure 9 (highest velocity and lowest 

molecular diffusivity, dark symbols). Starting from δ just above 1, the Peax number evolution 
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presents a smooth evolution as the geometrical constraints prevent random packing defects. The 

reactor Peax number value starts at a high value, increases to a maximum (δ ~ 1.2) and then 

decreases towards a minimum located near δ = 1.72, which is slightly less than the critical value. 

We explain the gradual decrease of Pe with δ by the progressive increase of the passages on the 

particle sides that act as bypasses. As it can be seen from  

 

 

 

Table 1, the packings are not ideal for δ = 1.72 with a change in the orientation of the particle 

settling planes due to packing “defects”. Those random effects explain why the Peax number 

starts to increase for δ < δc, in other words before the transition to “spiral” packings that present 

less opportunities for bypasses. For δ > δc, the Peax number increases until the hole at the center 

of the geometry becomes large enough to create a significant bypass whose consequence on the 

Peax number depends on the velocity and molecular diffusion. The Peax number reaches a 

minimum near δ = 2.6. The “irregularities” in the curve are due to defects in the packing that 

locally create or prevent bypasses. For larger δ, the Peax number increases again due to a more 

random arrangement less likely to create by-passes. The rest of the curve is a repetition of the 

latter part: decrease due to a significant preferential path in the center (δ ~ 3.4) followed by an 

increase due to more random and uniform arrangements and less bypasses.  

When the ratio fluid velocity to molecular diffusion decreases, the Peax number values are shifted 

downward. The curves are smoother, and the oscillations get smoother (Figure 9). The 

smoothing and dampening are explained by a higher contribution of molecular diffusion 
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compared to velocity. Molecules have more time to diffuse in and out of the bypass. Two length 

scales are governing the physics: one in the axial direction (particle size or reactor length), one in 

the radial direction (fluid passage size).  

The behavior of the reactors for δ very close to 1 (1 < δ < 1.3) is also different: there is a 

maximum that is shifted towards lower δ values and it is less pronounced when reducing the 

fluid velocity (or increasing the molecular diffusivity). In that range of δ, the particles are 

arranged in a plane (indicated with a dashed line in Figure 10) and the flow patterns are of two 

types: one type that flows outside of the particles plane (and that becomes more important for 

larger δ values) and one type that flows in-plane, going from one side of the reactor to the other 

around the particles. As we can see from Figure 10, for δ = 1.1 most of the flow is in-plane while 

increasing δ (1.5 in Figure 10) the flow becomes more out of plane. 

 

δ=1.1 δ=1.3 δ=1.5

A B C
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Figure 10. Velocity magnitude in cross sections as a function of the δ value. The cross 

sections pass through a sphere center. The symmetry plane is indicated with a dashed line. u = 

0.0272 m/s, Dr = 7.75 mm, Dm = 7.5x10
-5

 m
2
/s. Red = fastest flow, blue = slowest flow 

 

We propose that the change in behavior with velocities and molecular diffusion coefficient is due 

to the relative change in the importance and interaction of those two flow pattern types. 

3.1.4 Comparison with literature on larger packed beds 

In the literature, results are traditionally presented as Bo = f(Pem) [6], which scales all 

dimensions to the particle diameter. In Figure 11, we plot the results reported by Delgado [6] for 

single phase gas flow as well as our results. For clarity, we decided to split our results into three 

groups. 

The first group (Figure 11-A) corresponds to reactors whose Bo numbers are in line with the 

literature. This group corresponds to δ > δc = 1.87, except for the reactors with large preferential 

passages or holes in the center (2.4 < δ < 2.7, δ = 3.37).  

The next group (Figure 11-B) corresponds to reactors with a hole or large preferential passages in 

the center (2.4 < δ < 2.7, δ = 3.37). At low Pem number values (Pem < 2), in the molecular 

diffusion driven dispersion zone, these reactors present a similar behavior as group A. But when 

Pem increases, the Bo number of these reactors falls under that of group A: Pem is then large 

enough that the preferential paths in the reactor’s center lower the Bo number.  

The last group (Figure 11-C) encompasses all reactors with δ < δc = 1.87 that we will denote as 

Single Pellet String Reactors (SPSRs). These SPSRs present high Bo number values (> 5), 

particularly for the reactors with δ < 1.3. Our values are similar to those of the experimental 

study of Šolcova and Schneider [10] for δ = 1.25, as discussed in §2.3. We think that these high 
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values result mostly from the dimension scaling that is based on the particle diameters, which is 

quite large in our simulations and Šolcova and Schneider [10] experiments (dp  > 7 mm). A more 

physical scaling based on fluid passage size (hydraulic diameter for example) would bring these 

data points closer to group A. For larger δ, the passage size is a weak function of the void 

fraction and the scaling by particle diameter offsets the curve by a constant amount. 
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Figure 11. Evolution of the Bo number versus the Pem number for various superficial 

velocities, molecular diffusivities, and bed geometries. A) 1.87 < δ < 2.4 + 2.7 < δ < 3.3, B) 2.4 

< δ < 2.7 + δ = 3.37, C) 1.03 < δ < 1.87. Dr = 7.75 mm 
 

3.2 Repeatability of the axial Péclet number profiles in narrow reactors 

3.2.1 Methods 

We now focus on the variability when repeating the packing in random packed beds. We will 

compare the Peax number profiles along the reactor length for beds packed with the same set of 

particles but loaded differently through a different set of initial conditions (random seed). For 

different random seeds, the bed structure can be different due to the stochastic loading even if the 

particles composing the bed are the same.  
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As seen earlier, the Peax number curves for small δ are smooth as the geometrical constraints 

limit the probability of defects occurring during packing. We now study larger fixed beds made 

with 3 mm diameter spheres packed in a 12 mm diameter reactor (δ = 4). We repeat the 

workflow six times (DEM-CFD) from scratch, to obtain six different packings and check that the 

packings were really all different and not a rotated version of one another. The easiest way to 

check this is to sort particles by their center’s height (zi), plot zi against their rank and check that 

the curves are not identical. One may also compare void fraction on several slices. 

3.2.2 Axial Péclet number profiles in repeated packed beds 

The Peax number evolution with the reactor axial coordinate z (see Equation 11) follows a linear 

overall trend consistent with an axial dispersion independent on the length (Figure 12 A). It 

presents small variations around this trend and these variations are different in all the packings. 

In the cases presented in Figure 12 A, there is almost no difference at z = 10 cm, while a 

difference of 10 in Peax number is measured at z = 7 cm. Such a difference can yield significant 

differences in the apparent reactor performance for high conversion reactions if the Peax number 

is low (Peax < 40 for example). It depends on the desired conversion [7].  

The Peax numbers for all the six cases tested are shown in Figure 12 B for four different lengths. 
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Figure 12. A) Plots of Peax(z) number as function of the length in the reactor for two repeats 

of the same numerical experiment (both beds are made with the same beads and are different). 

B) Peax(z) number variation for the six cases and for four values of the axial coordinate z. 

Dm=10
-6

 m
2
/s 

 

A better view of the variability is achieved when plotting the Peax(z) number increments (ΔPe) 

from plane to plane as shown in Figure 13 for case 2 that presents a locally flat evolution of the 

Peax(z) number. The ΔPe value depends on the distance between two cut planes dz (here dz = 4 

mm). Peax(z) number increments in that case are mostly between 1.5 and 2 with slightly higher 

values but significantly lower values. Lower values (as near z = 0.13 m) are due to a hole in the 

packing and a resulting preferential path of fluid. 

We will now propose a method to quantify this variability as a function of the length, which can 

be useful to design reactors. 

0

20

40

60

80

100

120

140

160

0 0.05 0.1 0.15 0.2

P
e 

n
u

m
b

er

z (m)

Case 1 Case 6

0

20

40

60

80

100

120

140

160

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

P
e 

n
u

m
b

er

z=0.05 m z=0.1 m z=0.15 m z=0.2 mA) B)A)
P

e a
x
(z

)

0

20

40

60

80

100

120

140

160

0 0.05 0.1 0.15 0.2

P
e 

n
u

m
b

er

z (m)

Case 1 Case 6

0

20

40

60

80

100

120

140

160

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

P
e 

n
u

m
b

er

z=0.05 m z=0.1 m z=0.15 m z=0.2 mA) B)

P
e a

x
(z

)

B)



 

33 

 

 

Figure 13. Case 2 - Left axis (red, dashed line): Peax(z) number evolution. Right axis (blue): 

Evolution of the Peax(z) number increment ΔPe as a function of reactor length (dz = 4 mm). 

Dm= 10
-6

 m
2
/s 

 

 

3.2.3 The axial Péclet number uncertainty as a function of the reactor length 

We assume that ΔPe is a random variable with a probability density. We can estimate the Peax 

numbers for a reactor of a given length L as the sum of N realizations of the ΔPe random 

variable, N being the number of Peax number increment (L/dz). We will assume that the Peax 

number increment follows a Gaussian law of mean m and standard deviation s. The Peax number 

then follows a Gaussian law of mean mPe = N∙m and standard deviation sPe =  √ . The relative 

uncertainty of the Peax number with a 95% confidence level U95% is by definition given by 

Equation 12. As L is proportional to N, U95% is proportional to 
 

√ 
 (Equation 13). 
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 Equation 12 
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 √ 

   
 
 

√ 
  

 

Equation 13 

The relative uncertainty on the Peax number due to a random packing decreases as the inverse of 

the square root of the reactor length. Short reactors are thus likely to give both small Peax 

numbers and large variations of Peax number values and are thus not recommended for kinetic 

studies. 

4 Conclusions  

Combining recent advances in fixed bed simulations and Liu and Tilton moments of the age 

distribution theory [24], we were able to compute accurate values of Peax number in fixed bed 

reactors packed with spheres in presence of a single-phase laminar flow. The whole workflow is 

fully automated and requires less than 1 day per case (geometry creation, meshing, CFD 

simulation and post-treatment). This workflow is now faster than experiments and allows for a 

good control on parameters. It gives access to local information as would be given by complex 

experimental tools like µPIV or tomography.  

We first used this capability to explore the relationship of the Peax number as a function of δ for 

narrow reactors (δ < 4), fluid velocity and molecular diffusivity. This relationship proves to be 

quite complex and it can be qualitatively explained by looking at the packing structures. The Peax 

number is lower when the structures present large preferential passages or holes. This happens 

for values of δ around 1.7, 2.6 and 3.4. 
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Then, we used the DEM-CFD workflow to quantify the packing uncertainty in a δ = 4 fixed bed 

reactor. Repeating the packing has an effect on local preferential passages or “defects” that 

influence the Peax number. While, as already known, the Peax number increases on average 

linearly with the length, we propose that the uncertainty on the Peax number decreases with a 

power of -0.5 of the reactor length. 
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Nomenclature  

Roman letters 

a: Age of the molecules [s] 

c: 

cpd: 

Concentration  

Cells per diameter 

[mol/m
3
] 

 

Dax: Axial dispersion coefficient [m
2
/s] 

Dm: Molecular diffusivity  [m
2
/s] 

dp: Particles diameter  [m]                       

Dr: Reactor internal diameter  [m] 

dz: Spatial discretization interval [m] 

E(t): Normalized response to a Dirac function [s
-1

] 

L: Bed length  [m] 

m: Mean of a gaussian distribution variable  

M1: First order moment of the E(t) [s] 

M2: Second order moment of the E(t) [s
2
] 

n: Generic moments order  

N: Number of realizations of ΔPe increment  



 

37 

 

Q: Gas flow rate  [m
3
/s] 

r: Reactor radial coordinate [m] 

s: Standard deviation of a gaussian distribution variable  

S: Generic surface [m
2
] 

SV: Space Velocity [s
-1

] 

t: Time  [s] 

 :̅ Mean fluid residence time [s] 

u: Inlet superficial velocity  [m/s] 

U95%: Relative 95% confidence level uncertainty  

Vcat: Catalyst volume [m
3
] 

x: Generic point in the reactor  

z: Reactor axial coordinate [m] 

 

Greek letters 

δ: 
  

  
 Reactor/particle diameter ratio  

ΔPe: Difference in Pe number between two reactor plans  
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ε: Void fraction of the reactor  

µ: Fluid viscosity [Pa⸱s] 

ρ: Fluid density  [kg/m
3
] 

σ: Variance [s
2
] 

τ: Tortuosity factor of the packed bed  

 

Dimensionless numbers 

Bo: 
    

     
 Bodenstein number 

Peax: 
   

     
 Axial Peclet number 

Pem: 

    

    
 Molecular Peclet number 

Re: 
      

   
 Reynolds number 

Sc: 
 

    
 Schmidt number 
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