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Abstract: In the context of automated highway systems (AHS), this work proposes an approach
that enables a vehicle to autonomously join a platoon with optimized trajectory in the presence
of dynamical traffic obstacles. A notable aspect is the use of Model Predictive Control (MPC)
optimization of the planned path, in conjunction with a variant of the Rapidly-exploring Random
Trees (RRT*) algorithm for the purpose of platoon formation. This combination efficiently explores
the space of possible trajectories, returning trajectories that are smoothened out with respect to the
dynamic constraints of the vehicle, while at the same time allowing for real-time implementation.
The implementation we propose takes into consideration both localization and mapping through
relevant sensors and V2V communication. The complete algorithm is tested over various nominal
and worst-case scenarios, qualifying the merits of the proposed methodology.

Keywords: autonomous vehicle; platoon formation; path planning; model predictive control; RRT;
RRT*; optimization

1. Introduction

Energy consumption related to transport, combined with air quality issues, continues
to attract the attention of scientists. Various emerging technologies have been proposed
and/or developed to address these issues, and meanwhile recent research shows that
additional energy savings can be achieved by using an eco-driving system in a connected
vehicle environment. The adoption of an energy efficient driving style is the goal of eco-
driving techniques. It seeks to optimize a vehicle’s speed and trajectory between two
boundary points. Several driving scenarios can be compatible with eco-driving criteria.
One such scenario is car following where a minimum safety distance has to be kept with
respect to the leading vehicle. This can be in the form of a constant distancing between two
vehicles in a row, keeping a minimum safe distance [1,2], constant time headway policy
where the desired distance is velocity dependent [3,4] or in the form of nonlinear spacing
policy [5–7]. This leads to an autonomous system of vehicular platoons involving two or
more vehicles closely following each other. Platooning is a well-known research subject,
with the usual goals of the study being to reduce energyconsumption in vehicles, traffic
congestion [8–10] and to keep dynamic robustness of the platoon formed [11]. Highways
represent favorably constrained environments for autonomous vehicles and in this context
platooning forms a roadmap towards automated highway systems (AHS) [1,12], whereby
a dedicated “lead” vehicle, fully equipped with the required sensors, can guide other
vehicles (minimally equipped) into a platoon and maintain it.

In the context of passenger vehicles on highways, a vehicle “slave” can be enabled
to autonomously join a platoon, without requiring it to have advanced perception and
mapping systems. For this, a dedicated vehicle “leader” plans and supervises through
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V2V its path to integrate it into the platoon. Inter-vehicle communication is the key
element of platooning. The communication protocol describes how vehicles communicate
between each other. Moreover, leader-following approaches have been explored extensively
previously in robots where one robot is designated as the leader and the remaining robots
follow the leader’s motion offset by a distance. An advantage of leader-following is that
maneuvers can be specified in terms of the leader’s motion [13]. Autonomous co-operative
platoon maneuvering for AHS as a whole has been studied using logic-based rules [14].
Some work has been also conducted on the addition of vehicles at a merge junction
on highways to an existing platoon [15], but it bases its consideration on longitudinal
management of vehicles. Both these studies lack the consideration of formation of the
platoon itself dynamically, as depicted in Figure 1. A second gap lies in the consideration
of traffic obstacles. This leads to exploration of path planning methods that explore the
space around the ego that can enable platoon formation with both longitudinal and lateral
maneuvers, all the while avoiding obstacles.

Figure 1. Platoon formation illustration.

In order to make progress towards AHS, the question arises of how a “slave” vehi-
cle’s path can be planned to join a platoon autonomously. In this work, we describe the
implementation of autonomous path planning for platoon formation on highways, via
an algorithmic pipeline where “slave” vehicles are guided by a “lead” vehicle through
relevant sensors and V2V communication, validated in a virtual vehicle environment.

The overall goal of the implementation is to organize multiple vehicles into a platoon
and to find their optimum trajectories, all the while respecting the constraints: longitudinal
and lateral acceleration must be below 3 m/s2, lateral jerk must be below 5 m/s3, all the
while optimizing to minimize the time to join the platoon. The main focus of the work is
the path planning required for such a process, and considerations for vehicle dynamics
during the manoeuvres is discussed; this is achieved via the combination of a variant of
RRT and MPC, which does away with the conventional problems of just using RRT [16].

The study overall is organized as follows. In Section 2, we first discuss the required
communication pipeline for platoon formation and the path planning algorithm, a variant
of Rapidly-exploring Random Trees. We then move on to discuss the optimization of this
path planned via model-predictive control in Section 3. Finally, we present and discuss the
results in Sections 4 and 5 then conclude in Section 6.

2. Platoon Formation and Path Planning

The solution proposed in this study supposes that the vehicle participating in the pla-
tooning manoeuvre includes the architecture described next. The leading vehicle “leader”
fully controls the platoon formation: it possesses the required sensors for localization and
mapping of its surroundings and the vehicles nearby. The leader does not need to be a L5
vehicle itself but rather is driven by a trained driver. The vehicles already integrated in
the platoon or desiring to join it (slaves) have only basic sensors for safety purposes. An
overall system architecture can then have the subsystems as described in Figure 2.
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Figure 2. Vehicle system architecture for autonomous platooning.

The chart in Figure 3 summarizes the flow of operations defined to build the platoon
from the moment a slave indicates its intention to join it. The first step is to decide the
order of the cars wanting to integrate into the platoon or, in other words, their respective
position in the platoon. The leader vehicle then calculates and updates the path of the
slave defined as first in the ordering step. During that operation, it fully controls the slave
vehicle until it reaches the desired position. This operation is then repeated for the other
slaves, one slave at a time. Note that these considerations were required for creating a
scenario for the simulation but are not the main focus of the study, which is dynamic path
planning for platoon formation and which is independent of whether these assumptions
hold or not. The optimum planned trajectory for platoon formation can be generated in
entirely different settings, unaffected by the above assumptions. For each slave that has
reached its position in the platoon, the leader also keeps controlling its dynamics to ensure
the autonomous platoon motion.

Figure 3. General operation flow of platoon formation.

As Figure 3 illustrates, a major part of the platooning formation is the calculation of a
path for each joining vehicle. This is done in two sequential operations:

1. Raw path calculation: this first step generates a path that is valid within the configu-
ration space: the path stays inside the road boundaries and prevents the hitting of
any road obstacle while making its way to the target position as fast as possible.

2. Path optimization: The path calculated in (1) does not guarantee that it is physically
achievable for a vehicle. The average driver will not be fond of high acceleration
or jerk peaks. This leads to the second operation: path optimization. From the
path defined in (1), this step will output a dynamically realistic path for the vehicle
to follow.

Note that for all the following figures shown, the paths described show the vehicle’s
centre of gravity and not their heading. The vehicle always starts and ends up in a
straight heading.
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2.1. Path Planning with Rapid-Exploring Random Trees (RRT)

Path planning finds a feasible path for the slave vehicle from its actual position to its
target platoon position. In this section, a feasible path is a path that is contained into the
road boundaries and that avoids other traffic obstacles including other vehicles.

There are many ways to solve this problem. Path planning has been extensively
studied in graph theory and offers therefore plenty different algorithms: Dijkstra algorithm,
A* algorithms, etc. [17].

The one chosen in this study is a variant of the Rapid- exploring Random Trees
(RRT) [18]. This method fulfils the demands of the path planning task to be efficient (real-
time capable) and safe (in face of uncertainty and sensing errors) [19]. The benefits of using
a sampling-based method are:

• There is no need to explicitly characterize the configuration space, but instead probe
the space and use collision detection on the go.

• They are incremental in nature and efficient which offers the potential for real-time
implementation while retaining completeness guarantees.

The basic principle of RRT as would be suitable in our context of platoon formation
is the following: a tree of trajectories is grown through random sampling [20] of an
environment localization map (the God’s eye view) created through data fusion of the
sensor data. Samples are added or discarded based on the feasibility.

Although the tree expansion and hence the space exploration is very fast, the simple
RRT path has a major drawback: it is highly random.

Figure 4 illustrates an RRT path calculation for the platooning problem. Even though it
avoids obstacles and reaches the desired target, it is obvious that this path is not applicable
in a real situation.

Figure 4. Path planning with RRT.

2.2. Biased RRT Star (RRT*)

RRT* is an evolution of the RRT algorithm [21–23]. Instead of connecting each new
node to its closest tree node, it connects with the node that reaches it with the least cost
(distance).

To accelerate the path finding towards the target position, the sampling of the con-
figuration space is biased: x% of the new samples are taken towards the goal position
(x depends on the complexity of the situation, i.e., the number of traffic objects or the shape
of the road, but is usually high). This bias enables it to converge faster and create straighter
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paths. Note that the RRT path will always be biased in the following discussion even if it is
not specified.

Figure 5 illustrates biased RRT* path planning for the platooning problem. The RRT*
path is less random and quickly reaches the desired position. However, this solution is not
optimal. A human driver would rather pick a path on the left of the traffic vehicle.

Figure 5. Path planning with RRT*.

2.3. Informed RRT* (i-RRT*)

Informed RRT* is again an evolution of the RRT* algorithm. The basic principle is
to have an RRT* path search in a restricted configuration space to converge quicker to a
close to optimal solution [24]. The limited configuration space is taken as an ellipse whose
characteristics are defined by an initial RRT* path.

Figure 6 shows the initial RRT-star path, the ellipse derived from it and the new i-RRT*
path found for the platooning problem, showing desirable results.

Figure 6. Path planning with i-RRT*.

3. Path Optimization Using Model Predictive Control

Having an initial path planned, and using RRT*, the next important consideration is to
optimize it for feasibility. A Model Predictive Control is an optimal control technique that



Sustainability 2021, 13, 4668 6 of 13

relies on the prediction of future outputs of the considered plant to perform an optimization
under constraints of the current time step control action. At each time step, a cost function is
minimized over a certain number of future time steps called prediction horizon, calculating
and applying to the prediction model a certain number of future control moves called
control horizon [25].

The MPC path optimization algorithm is used to generate an optimal vehicle control
sequence so that the vehicle follows as accurately as possible the a priori calculated RRT*
path, while complying with constraints. These constraints include soft constraints such as
acceleration and jerk limits, and physical or hard constraints such as steering angle limits.

The core of the MPC technique relies on a prediction model of the controlled sys-
tem and for this study we use a kinematic and a dynamic-bicycle model [26,27], which
accurately models the vehicle to a desired fidelity, accounting for its dimensions and
the geometry.

Once the RRT* algorithm has found an initial path it is used to determine a set of
control commands to apply to the slave for it to reach the leader, in an optimal manner using
MPC. The considered control variables are the steering angle δf and the jerk j described by
a vector u =

(
j δ

)t [28,29].
The RRT* path coordinates can be treated as set points for the slave lateral position, as

illustrated in Figure 7. The longitudinal distance between the leader and the slave x∗ is
treated as a cost value to be minimized over the simulation period (prediction horizon).
The control and state variables are bounded by the dynamic constraints the slave vehicle
must respect. Alongside those constraints the controller aims at not being too demanding
on the control variables (jerk and steering angle) since it is a necessity for the vehicle to be
gently steered and softly driven.

Figure 7. Raw RRT* path and leader-ego x∗ distance to minimize.

Next, to solve the prediction model while complying with a certain set of constraints
applied to the state and command variables, an optimization problem is solved. For this
study, the objective is written as a minimization of the cost function J defined as follows:

argminu∈U J =
∫ t f

0
q1(y− yr(x∗))2 + q2x∗

2
+ q3 j2 + q4δ2

f dt (1)

such that

{ .
X(t) = A(t)X(t) + B(t)u(t)
Y(t) = C(t)X(t) + D(t)u(t)

(2)
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with state : X =
(

x y x∗ vx vy a j ψ
.
ψ δ f xleader

)t
(3)

and constraints


X(t0) = x0
t f = 15 s
|a| < 3 m/s2

|j| < 5 m/s3

v < 130 km/h

(4)

Using:

• y the lateral vehicle coordinate [m].

• yr the RRT* lateral coordinate [m] (Figure 8).

Figure 8. Results of the optimization solver using a kinematic bicycle model.

• x∗ the longitudinal distance between leader and slave [m].

• xleader the leader longitudinal coordinate [m].

• ψ,
.
ψ, δ f the heading angle, the yaw rate and the steering angle, respectively [rad].

• vx, vy the slave lateral and longitudinal speed, respectively [m/s].

• qi∈1,2,3,4 the weights of the cost function [-].

• t f the prediction horizon (time over which the dynamic model is solved).

The cost function can be interpreted as the cumulative sum over time of four weighted
errors using the coefficients (qi∈1,2,3,4). Minimizing J naturally implies minimizing these
cumulative errors over the prediction horizon.

The weight coefficients qi∈1,2,3,4 are empirically determined by assessing the results
of the optimization solver. When setting the MPC controller the value of each qi must be
specified. The absolute value of each coefficient taken separately has no meaning but yet
their relative values with respect to each other affect the cost function behaviour during
minimization. Hence, to minimize an error more than the others, its associated weight in
the cost function shall be increased. For instance, a large q1/q2 would yield an optimized
path very close to the RRT* reference but would be detrimental to the time to reach the
leader. The values listed in Table 1 have been found to yield best results.

Table 1. Values of the cost function weights.

Weight q1 q2 q3 q4

Value 150 5 50 1

The squared error terms are the following:
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• (y− yr(x∗))2: deviation between slave lateral position and the RRT* lateral coordinate.

• x∗
2
: distance between the slave and the goal. Minimizing this state variable is the

main lever to reach the leader.

• j2: slave jerk. Minimizing the jerk prevents being too demanding on it.

• δ2
f : slave steering angle. Same justification as for the jerk.

The dynamic equations of the system
.

X = AX + Bu can either be derived from the
dynamic bicycle model or the kinematic one. This implementation of the path planner is
possible in any virtual vehicle environment. The choice of the vehicle model will affect the
accuracy and robustness of the path planner. Indeed, using the dynamic bicycle model will
lead to a better model accuracy but will impede on computational speed. As later discussed
in this paper, the higher the path planning frequency, the smaller the discrepancies between
actual and predicted slave position.

Next, we consider solving the optimization problem practically. A python package
called GEKKO, was used to solve the optimization problem which uses direct transcription
method (also call “orthogonal collocation on finite elements”) to minimize the cost function
acting on state and control variables. These variables are manipulated to find the optimal
solution that minimizes the cost function J. Yet the solver plays on variables so that they
respect the system dynamics. In other words, there is at any point in time a valid solution
of the system, that is a set of differential equations.

4. Results
4.1. Path Optimization

The previously described optimization problem has been implemented in GEKKO
(with a 150 ms discretization of the kinematic bicycle model). Using the kinematic bicycle
model as a first try, the results are shown in Figure 8. Applied constraints are listed in
Table 2.

Table 2. Constraints on state and control variables.

State Variable vx a
.
ψ j δf

Minimum 0 m/s −5 m/s2 −10◦/s −5 m/s3 −10◦

Maximum 30 m/s 5 m/s2 10◦/s 5 m/s3 10◦

Figure 9 shows that for this case the constraints on acceleration, jerk and steering
angle were, respectively, 5 m·s−2, 5 m·s−3 and 8◦. The blue dashed line represents the jerk
for the dynamic bicycle model. Beyond smoothing the jerk of raw RRT* path, the MPC
method has provided us with the time profiles of each command variable to be adopted by
the slave. The optimization solver finds a kinematically feasible solution while minimizing
the deviation between the slave lateral position and RRT* lateral reference coordinate. The
optimization has been run for a prediction horizon of 15 s but a 10 s horizon has turned
out to be enough to reach the leader. In the early stages of the manoeuvre the acceleration
and the jerk control variables hit their limits. Indeed, since the cost function includes the
distance to the leader x∗, the solver minimizes this quantity over the complete prediction
horizon. This results in reaching the leader position as quickly as possible and thus the
control variables are asked to operate at their limits as soon as possible.

As briefly previously discussed, the dynamic model choice will impede on path
planner accuracy. Figure 9 shows both the optimized path based on a kinematic bicycle
model and the one leveraging a dynamic bicycle model. The results slightly differ in
terms of command profiles, and indeed the dynamic bicycle turned out to lead to a more
aggressive steering angle command.
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Figure 9. Comparison of the optimization solver results using kinematic and dynamic bicycle models.

In the final implementation the path planner runs the RRT* along with an optimization
algorithm several times prior to reaching the leader. Throughout the manoeuvre the path
planner is called numerous times at a specific frequency to run the calculation as the slave
is getting closer to the leader (see Figure 10). This is done so that the path planner could
cope with a changing environment. If this frequency is too low, then the time in between
each optimization result is longer and the slave travels larger distances. This would lead
us to face the risk of having bigger discrepancies between the model-predicted vehicle
position and the actual vehicle position when beginning the next path planning calculation.

Figure 10. Configuration example with a leader, three slaves and three traffic vehicles.

Therefore, to prevent the path planner from lacking accuracy one should properly set
its frequency or should use a more detailed vehicle dynamics model. It is necessary to find
the best compromise between a high path planning frequency that would alleviate model
inaccuracy (detrimental to computational time) and the use of a more sophisticated vehicle
model that would require longer computational time.

4.2. Simulation Results

After configuring the input and output signals, the platooning and optimization
algorithms were implemented in a virtual vehicle environment as depicted in Figure 11,
which shows the complete pipeline.
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Figure 11. Path planner implementation pipeline.

The platoon ordering step accounts for the starting point. At the very beginning of
the platooning, the RRT* path planner is run for each platoon candidate. Then, all the
candidates are ranked based on their RRT* cost which is the length of the raw RRT* path.
The closest candidate will be the first to be steered and driven towards its platoon position.
Once it has made its way to its goal, the platoon ordering function is called again to decide
the next candidate to join the platoon. This loop is performed until all the candidates
have entered the platoon. Changing traffic, moving leader and highway curvature require
the frequent repetition the path planner during a candidate attempt to reach the leader.
Likewise, the imperfection of the considered dynamic model yields the same path planner
execution constraint.

Figure 10 depicts a scenario involving three traffic objects and three platooning candi-
dates. In this case the path planner frequency has been set to fpp = 5 Hz. The left picture
is a God’s eye view of the vehicles configuration in a virtual vehicle environment and
the right axis shows the path planner results for different time steps. The intensity of the
object’s color refers to the time step of the simulation.

At each path planning step, the initial conditions used in the MPC controller are the
last vehicle state variables at the last time step. As a result, it is required to feed the MPC
controller with the updated candidate and leader states. In this example, the MPC manages
to correct the path infeasibilities generated by the RRT* calculation. The slave behaviour
is expected to be smoother if we were to use informed i-RRT* instead of conventional
RRT*. Indeed, informed RRT* tends to correct non-relevant trajectories yielded by RRT*.
Figure 12 shows different frames depicting the platoon being formed. The closest slave gets
called first. It finds a trajectory around the traffic in front of it and joins the leader. Then the
slave from the back is called second. It avoids the two traffic vehicles in front of it as well as
the third vehicle and aims to drive behind the first slave. Finally, the third slave is allowed
to join the platoon and finishes the manoeuvre. Each slave had to abide by the constraints
given to it as well as keep a safe distance from both the traffic vehicles as well as the other
slaves in the platoon. Link to the video: https://drive.google.com/file/d/1weKhGTTy9
nHOSGgDcRcBPgzpw-OH8l9X/view?usp=sharing (accessed on 21 April 2021).

Figure 12. Beginning (a) and end frames (b) of the vehicles forming the platoon.

5. Discussion

Path planning studies are often proposed pertaining to maintaining a platoon [1–4].
Cooperative manoeuvring of formed platoons has been studied [9,14] and addition of
a new vehicle at highway junctions has been discussed [8,15], but no consideration has

https://drive.google.com/file/d/1weKhGTTy9nHOSGgDcRcBPgzpw-OH8l9X/view?usp=sharing
https://drive.google.com/file/d/1weKhGTTy9nHOSGgDcRcBPgzpw-OH8l9X/view?usp=sharing
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been given to platoon formation itself, which would need to be in a dynamic environment.
This remains a bottleneck for fully automated co-operative systems. The results from
Section 4 indicate that using an initial given scenario (initial positions of vehicles and
“leader” on a highway, along with traffic objects), by using a combination of RRT* and
MPC, it is feasible to generate optimal paths to be followed for vehicles to join and form
a platoon, independent of the initial positions of the vehicles and the traffic objects (non-
platooning vehicles). This is possible due to RRT* being computationally cheap along with
a kinematic bicycle model of the vehicle for MPC prediction, which permits high frequency
update of the path (see Table 3 and Figure 11). RRT* was criticized for its sampling based
nature [16] in the context of platooning, but optimizing the initial path from RRT* (via
MPC) gives desired results. To the best of our knowledge, no previous work has used this
combination in the context of platooning on highways. The average time for a complete
path calculation was simulated to be 1.3 s which would be even faster in real-time systems,
although this was not studied further in this work. Importantly, we note that calculation
of a vehicle’s optimum trajectory to form a platoon while keeping the longitudinal and
lateral acceleration to safe limits (below 3 m/s2, and lateral jerk below 5 m/s3) is feasible.
This is made possible by the prediction horizon of the MPC of 10 units ahead in time.
Furthermore, the trajectory is updated continuously within and thus can deal with varying
environments (traffic vehicles changing lanes, for example). Therefore, these results should
be taken into account when considering highly automated highway systems.

Table 3. Computational time for both models.

Bicycle Model Computational Time

Kinematic 1.3 s

Dynamic 1.6 s

The validation of this pipeline was done in a virtual vehicle environment, but the
implementation is independent of any specific environment and the reader is encouraged to
test the merits of the proposed methodology of finding paths for platooning on highways,
which represents a constrained environment in terms of the space of possible actions for
a given vehicle. Furthermore, the considerations for “slave” vehicles forming a platoon
with a “leader” vehicle were required for creating scenarios for the simulation but are not
the main focus of the study, which is dynamic path planning for platoon formation and
which is independent whether these assumptions hold or not. The outcome (the optimum
planned trajectory for platoon formation) can be generated in entirely different settings,
unaffected by the above assumptions. To that extent, several shortcomings for the problem
of dynamic path planning for platoon formation still need to be treated:

1. Several scenarios are still to be studied (border cases), such as the “leader” being
behind “slave” vehicles, or all three lanes being completely blocked by traffic.

2. Although the RRT* algorithm provides us with an obstacle-free trajectory, the MPC
controller yields a very close but still different trajectory. There is thus a risk of collid-
ing with obstacles if the path planner frequency is too low. To that extent, the real-time
performance in embedded systems is an important aspect to be tested, for example,
with hardware in-the-loop modelling. Although the results in simulation show a high
frequency path calculation, it must be real-time capable for a given hardware.

3. The path planner implemented here considered no highway driving protocols, such
as knowing the legal way to cross lanes, which gives scope for future study. Another
important direction is the usage of informed-RRT* which should result in faster
converging paths.

6. Conclusions

This work introduces a path planning solution that enables a vehicle to autonomously
join a platoon with optimized trajectory robust to uncertain traffic obstacles on highways,
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bringing us closer to automated highway systems (AHS). To the best of our knowledge, this
paper is the first to harness RRT* and MPC to achieve platoon formation on highways in
the face of varying initial positions and dynamic obstacles (other vehicles as traffic). Initial
results simulated in a virtual vehicle environment show the potential of the method. In
particular, the use of RRT* to find the initial path optimized via MPC is both efficient and
easy to implement. Our proposed solution has been tested in a virtual vehicle simulation
environment with a high fidelity vehicle dynamics model in realistic highway scenarios.
This work could also serve as a basis for studies that aim to find optimal paths for platoon
formation beyond automated highway systems, in urban environments.
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