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A framework to perform quantification and reduction of un-
certainties in a wind turbine numerical model using a global
sensitivity analysis and a recursive Bayesian inferencemethod
is developed in this paper. We explain how a prior proba-
bility distribution on the model parameters is transformed
into a posterior probability distribution, by incorporating a
physical model and real field noisy observations. Neverthe-
less, these approaches suffer from the so-called curse of
dimensionality. In order to reduce the dimension, Sobol’
indices approach for global sensitivity analysis, in the con-
text of wind turbine modeling, is presented. A major is-
sue arising for such inverse problems is identifiability, i.e.
whether the observations are sufficient to unambiguously
determine the input parameters that generated the obser-
vations. Global sensitivity analysis is also used in the con-
text of identifiability.
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Inference, model calibration, nonlinear Kalman filters, GSA, UQ
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Introduction and Scope

In the current profound worldwide energy transition, wind power generation is developing rapidly. As a consequence,
wind turbines monitoring, performance optimization and lifetime assessment are becoming major issues. In the con-
text of digitalization of the industry, the exploitation of collected data can be optimized by combination with wind
turbine numerical models. Such numerical models can be complex and costly as they involve nonlinear dynamic equa-
tions with different physics as well as stochastic loading from the wind. Moreover, some input parameters of the
models can be poorly or badly known as the structure ages over time and defaults can appear. Consequently, model
predictions are affected by these uncertainties. Characterization and reduction of these uncertainties is important for
decision making [1]. It is the case in wind energy applications where uncertainties are omnipresent both in external
conditions and in the models used during design process. In this context, uncertainty quantification and reduction
methods have been developed [2]. As mentioned by Hart et al. [3], , even the concept of sensitivity is delicate when
dealing with stochastic models, as the one in our industrial application whose stochasticity is due to the stochastic
nature of the wind external solicitation. Note also that the models used in wind energy applications are often time
consuming [4, 5]. Therefore most of the commonly used methodologies for uncertainty quantification are inappropri-
ate in our setting. An historical strategy for uncertainty quantification in wind energy fields was to take into account
uncertainties by employing Monte-Carlo methods [6, 7]. Nevertheless, for high-fidelity numerical models, such un-
certainty quantification approaches based on Monte-Carlo methods become cumbersome due to the computational
cost. Advanced methods such as polynomial chaos expansion, stochastic collocation or Gaussian process have been
developed to alleviate this computational issue, see [8, 9, 10].
In the present work, we aim at investigating a complete framework to quantify and reduce the input parameter un-
certainties involved in a finite element wind turbine model. Such methods to reduce uncertainties involved in models
used in wind energy are currently investigated [11]. In the literature, Van Buren et al. have developed a framework to
quantify and reduce such uncertainties based on ANOVA decomposition and Bayesian inference [12]. However, our
approach is innovative due to the fact that we are dealing with a high-fidelity wind turbine numerical model and by the
recursive aspect of our inference procedure. Recently, similar research work on recursive inference with a low-fidelity
wind turbine numerical model has been led by Branlard et al., see [13]. They develop a digital twin concept in order
to estimate turbine states; e.g. wind speed, torque; based on the Kalman filter. Our main contribution is twofold.
Firstly, the framework allows quantifying the sources of uncertainties affecting the fatigue behavior of the structural
components of the wind turbine. To perform such analysis, we usually use an aero-servo-elastic software fed by
model parameters and wind solicitation. Each wind field is computed using a stochastic turbulent wind simulator. The
obtained outputs of the simulations are different time-series describing the behavior of the wind turbine, which are
reduced to some quantities of interest (QoIs), see Fig. 1. The functionM representing the time-consuming numerical
model is defined as:

y = M(x,V ) , (1)
where, x = (x1, ..., xp ) ∈ P ⊆ Òp are the model input parameters, V is a stochastic process modeling the external
wind solicitation, y = (y1, ..., ym ) ∈ Òm is the vector of discretized functional output; e.g., generated power, structural
accelerations or loads. Let g be the function mapping the functional loads of the structure in y to the damage quantity
of interest (QoI), such as the damage-equivalent load (DEL) [14]:

g (y) := g ◦ M(x,V ) · (2)
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F IGURE 1 General sketch for wind turbine modeling.

Global Sensitivity Analysis (GSA) methods have been developed to quantify the uncertainty in QoI w.r.t. the input
parameters, their individual contributions, or the contribution of their interactions. We propose a variance-based
GSA methodology, relied on the so-called Sobol’ indices [15], for stochastic computer simulations. Such techniques,
which often refer to the probabilistic framework andMonte-Carlo (MC) methods, require a lot of calls to the numerical
model. The uncertain input parameters are modeled by independent random variables gathered into a random vector
and characterized by their probability density function. Variance-based SA for time consuming deterministic computer
models has been mainly performed by approximating the model by a mathematical function, a.k.a. a surrogate model.
Among the different surrogate models, we focus on Gaussian process (GP), a.k.a. Kriging, which is characterized by its
mean and covariance functions. One advantage of the GPmodel is to provide both a prediction of the numerical model
and the associated uncertainty. Such surrogate modeling assumes that prior beliefs about the numerical code can be
modeled by aGaussian process. Nowadays, in industrial applications, numerical models are often run at different levels
of complexity and then a hierarchy of simulations is available. In this context, if several resolutions of simulation are
obtained, multi-fidelity GP regression has been proposed to predict the output of a costly numerical model, see [16,
17]. In particular, Parussini and Perdikaris have proposed a recursive formulation of the approach combined with
other approximations to enhance the computational efficiency, see [18, 19, 20]. These multi-fidelity formulations of
the GP regression are computing time efficient in terms of number of model evaluations in comparison to the simple
GP regression. However in the present industrial application, we did not implement multi-fidelity formulations of GP
regression as we could only run a high-resolution version of the stochastic simulatorM. In order to take into account
the inherent randomness from wind turbine simulation, our approach consists in focusing on the mean behavior of
the high-resolution runs of the stochastic simulator described by the deterministic model x ↦→ ÅV [g ◦ M(x,V ) ]. GP
regression is then used to reduce the numerical costs. More precisely, noisy evaluations of the conditional expectation
are computed viaMonte-Carlo and then filtered using heteroskedastic GPmodeling. Lastly, variance-based sensitivity
indices are computed by running the GP based surrogate in a so-called pick-freeze estimation procedure [21].
Secondly, after identification of the less influential input parameters on the fatigue behavior of the wind turbine, we
propose a Bayesian inference framework to carry out a model calibration procedure based on in situ-measurements. It
uses measurements ymes to update some prior probability density functions about the unknown input parameters X ∼
p (x) and yields some posterior probability density functions, through the Bayes’ theorem p (x |ymes ) ∝ p (ymes |x)p (x)
1. Numerous batch techniques have been developed to solve such Bayesian problems. Nevertheless, recent decades
have been marked by a simultaneous development of sensor technologies and Internet of Things capabilities. Thus,

1Random variables are written in upper case roman letters and particular realizations of a random variable are written in corresponding lower case letters.
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our research efforts have been directed towards inference techniques where the data are sequentially processed
when new observations become available. In this context, the model parameter inference can be carried out using
sequential Bayesian techniques. In geosciences, these techniques are called data-assimilation methods. We perform
the calibration using a recursive Bayesian inference approach based on an Ensemble Kalman Filter (EnKF) [22].
However, such recursive inverse problems can be solved assuming that several conditions of well-posedness and
identifiability are achieved. These conditions have been summarized by Hadamard [23]. As highlighted in [24], a
relationship between the non-identifiability of input parameters and the GSA can be established. Indeed, input pa-
rameters with null total sensitivity indices on the measured outputs imply their non-identifiability. Therefore, for the
purpose of identifiability a second GSA is conducted on the calibration parameters. However, due to the functional
behavior of the measurements, we propose to first reduce their dimensionality through principal component analysis.
Then, a GP is fitted to the different principal components and used to compute an aggregated Sobol’ index for each
model parameter [25].
Last but not least, the proposed framework has been applied to an industrial wind turbine numerical model. The
developed recursive inference procedure has shown promising results in the industrial inversion problem.
The paper is organized as follows. The GSA methodology in the context of stochastic time-consuming numerical
model is introduced in Section 1. In Section 2, we explore how the EnKF can be employed in model calibration
problems. Section 3 is devoted to present the wind turbine numerical model, its uncertain input parameters and the
selected output quantities used for quantifying and reducing the uncertainties. In Section 4, a wind turbine numerical
case study is used to illustrate the proposed framework, and its performance in calibrating parameters with noisy
pseudo-experimental output data.

1 | KRIGING BASED GLOBAL SENSITIVITY ANALYSIS

The aim of sensitivity analysis is to quantify the relative influence of input parameters on someQoI produced from the
model outputs of the numerical model. In the context of model calibration, conducting such an analysis can help to
identify which input parameters should be properly estimated. One may distinguish two categories of methods: local
and global. While local sensitivity analysis considers small perturbations of the inputs around some nominal values,
global sensitivity analysis (GSA) varies the inputs on their whole variation range [26]. Among the large number of
available approaches, variance-based sensitivity analysis introduced by [27] proposes to measure the sensitivity by
computing the so-called Sobol’ indices. When no analytical formulae of these indices are available, oneway to perform
their estimation is to rely on Monte-Carlo (MC) techniques, which require a huge number of model evaluations. In
the context of costly numerical codes as, e.g., the wind turbine numerical model under interest, the use of a cheap
metamodel in place of the true costly model is thus crucial. In addition to being computationally expensive, the
numerical model we are dealing with is stochastic. This means that from a same set of input parameters, the output
can have different values depending on the wind conditions. This specificity has to be carefully taken into account
when estimating sensitivity measures under interest. More precisely, let us use the formalism introduced in Eq. (1)
and (2) to the model in hand. We are interested in measuring the sensitivity of a QoI g (y) ∈ Ò with respect to the
input x. In the context of GSA, each input is now considered as a random variable Xj with its uncertainty modelled
by a probability distribution, such as X = (X1, . . . ,Xp ) . These one-dimensional probability distributions reflect the
practitioner’s belief in the uncertainty on the parameter values and the Xj are assumed to be independent from each
other. Then, the QoI g (Y) := g ◦ M(X,V ) is a random variable itself.
The randomness of the QoI has two sources: the randomness from the parameters X, and the one due to the stochas-
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ticity propagated from the model itself through V , which is assumed to be independent of X. There exists at least
two approaches to deal with this stochasticity in a GSA framework. The first one considers the full probability dis-
tribution of the QoI while the other one is only concerned with quantitative measures of the probability distribution,
e.g. quantile or expectation [28]. The latter is the one considered in this work by investigating the QoI averaged over
the inherent randomness of the physical system. We are therefore interested in the sensitivity of the deterministic
function f defined as:

f (X) = ÅV [g ◦ M(X,V ) ] . (3)

The total variance of f (X) can be split into different parts of variance under the assumption that the input parameters
are independent (this is the so-called Hoeffding decomposition, see [29]). Each part of variance corresponds to the
contribution of each set of parameters on the variance of the output f (X) . By considering the ratio of each part of
variance to the total variance, we obtain a measure of importance for each set of input parameters that is called the
Sobol’ index [27]. In the literature, functional analysis of variance (FANOVA) has been widely used to quantify the
sensitivity of a model output to input variables (see Appendix A in [30] and [31]). Let us denote u a subset of {1, ..., p },
−u its complement, and |u | its cardinality. Assuming V arX (f (X)) < +∞, V arX (f (X)) , 0, we define for any u the
closed Sobol’ index of order r = |u | associated to the set of inputs Xu = {Xj }j ∈u as:

Su =
V arXu (ÅX−u [f (X) |Xu ])

V arX (f (X))
· (4)

This index quantifies the main effect of all the variables within Xu, including interactions, on f (X) . The most influential
sets of input parameters can then be identified as the sets of input parameters with the largest Sobol’ indices. Total
Sobol’ indices can also been defined as:

STu = 1 − S−u = 1 −
V arX−u (ÅXu [f (X) |X−u ])

V arX (f (X))
(5)

This index quantifies the effect of Xu plus the effect of all interactions between variables in Xu and variables in X−u
on f (X) .
A general approach to estimate Sobol’ indices is based on Monte-Carlo and requires an important number of eval-
uations of f . The high computational cost of the wind turbine model prevents from performing such estimation in
reasonable time. It is the reason why we would like to rely on a metamodel to compute cheap evaluations of the initial
costly computer code. In this study, we chose to approximate the true numerical code by a Gaussian process, a.k.a.
Kriging metamodel, in order to apply a Kriging based sensitivity analysis, e.g., in [32]. We firstly present the noiseless
framework and then we detail the case where we are facing to heterogeneously noisy evaluations of the function f .
Ordinary Kriging - First, a Gaussian process regression model is built to surrogate the function f . The principle of
Kriging based metamodeling [33] is to consider that our deterministic model f can be considered as a realization of
a Gaussian process {Z (x) , x ∈ P} with mean function µ and covariance kernel C . Such covariance kernel (a.k.a.
covariance function, kernel function, or kernel), is a positive-definite function of two distinct inputs x, x′ allowing to
define the prior covariance between any two values of the function of interest. Many kernels can be used, each
one corresponding to a different set of prior assumptions made about the function of interest [34, 35, 36]. Each
kernel is defined by a number of parameters which specify the shape of the covariance function. These parameters,
a.k.a. hyper-parameters, can be either estimated byminimizing a loss function with a Leave-One-Out Cross-Validation
procedure ormaximizing a likelihood function [37]. In our study, we use the last mentioned approach to estimate these
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hyper-parameters of a 5/2 Matérn kernel.
For any x ∈ P, f (x) is approximated by the conditional Gaussian process {Zn (x) , x ∈ P} := { [Z (x) |Z (Xn ) =
z] , x ∈ P}, where z = {z1, . . . zn } are evaluations of f on n points Xn = {x1, . . . , xn }, xi ∈ P. The design
{(x1, z1), . . . , (xn , zn ) } is called the learning sample. In the following, Xn is chosen as a Latin Hypercube sample [38]
to guarantee a good exploration of our numerical model. We then get the ordinary Kriging equations:

Zn (x) ∼ N(mOK (x), s2OK (x)) , (6)
with

mOK (x) = µ (x) + c(x)T C−1 (z −µ) , (7)
s2OK (x) = C (x, x) − c(x)

T C−1c(x) . (8)
We denote by µ = µ (Xn ) the vector of trend values on Xn , by C = (C (xi , xj ))1≤i ,j≤n the covariance matrix of Z (Xn ) ,
and by c(x) = (C (x, xi ))1≤i≤n the vector of covariances between Z (x) and Z (Xn) .
Noisy Kriging - In our context, exact evaluations of f can not be obtained directly. We have, for each i = 1, . . . , n , a
noisy evaluation z̃i = f (xi ) + εi , where z̃i is defined as an empirical mean computed from a K -sample of g ◦M(xi ,V ) ,
and εi is a centered noise whose variance is τ2

i
= 1

K

(
1

K−1 (
∑K
j=1 (M(xi ,V = vj ) − 1

K

∑K
j=1M(xi ,V = vj ))2

) . We then
consider, as a first approximation, that the vector (ε1, . . . , εn ) is a centered Gaussian random vector with diagonal
covariance matrix diag(τ21 , . . . , τ2n ) denoted by ∆. Then, provided that the process Z and the Gaussian measurement
errors {εi }1≤i≤n are stochastically independent, the process conditionally on the noisy observations {Z̃n (x) , x ∈
P} := { [Z (x) |Z̃ (Xn ) = {z̃i }1≤i≤n ] , x ∈ P} is still Gaussian, and its conditional mean and variance functions are
given by the following slightly modified kriging equations:

Z̃n (x) ∼ N(mNK (x), s2NK (x)) , (9)
with

mNK (x) = µ (x) + c(x)T (C + ∆)−1 (z̃ −µ) , (10)
s2NK (x) = C (x, x) − c(x)

T (C + ∆)−1c(x) . (11)

Kriging based Sobol’ indices - Following [32] and [39] the idea is to substitute f with Z̃n in Eq. (4):

S̃u =
V arXu (ÅX−u [ Z̃n (X) | Xu ])

V arX (Z̃n (X))
. (12)

As Zn is a random process, the resulting indices are also random. These indices are estimated viaMonte-Carlo samples
from two designs of experiments, using a pick-freeze procedure. A design is a point set P = {xi }si=1 in which each
point is obtained by sampling s times each input variable Xj ∈ P, j = 1, . . . , p . Each row of the design is a point xi in
P, the j-th column of the design refers to a sample of Xj and for u ⊆ {1, . . . , p }, xi ,u = {xi ,j }, j ∈ u. Given two points
x and x′, the hybrid point (xu : x′−u) ∈ P is defined as xj if j ∈ u and x ′j if j < u. Consider P = {xi }si=1 and P′ = {x′i }si=1two designs sampled from the distribution of the input random vector X. One way to estimate the quantity in Eq. (12)
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has been proposed by Homma and Saltelli [40] and further studied in Janon et al., see Lemma 1 in [41]. They propose
the following estimator:

̂̃Su = 1
s

∑s
i=1 Z̃n (xi ) Z̃n (xi ,u : x′

i ,−u) −
1
s

∑s
i=1 Z̃n (xi )

1
s

∑s
i=1 Z̃n (xi ,u : x′

i ,−u)
1
s

∑s
i=1 Z̃n (xi )2 − (

1
s

∑s
i=1 Z̃n (xi ,u : x′

i ,−u))2
. (13)

Confidence intervals can be obtained via a bootstrap method, as described in Algorithm 1 of [32]. These intervals
integrate two sources of uncertainty, the first one is related to the metamodel approximation, and the second one is
related to the Monte-Carlo integration.
Each step of the procedurewas implemented inR using the km and sobolGP functions from respectively theDiceKriging
and Sensitivity packages, see [42, 43].

2 | BAYESIAN INFERENCE FOR ONLINE PARAMETER IDENTIFICATION

In our context, we suppose that data are collected sequentially and we seek to refine our choice of parameters in the
numerical model at each iteration. This problem can be seen as a supervised learning problem that we aim to solve
sequentially as each pair of data points {v (k ) , y(k ) } is obtained at the iteration k [44].
In the recursive Bayesian parameter estimation framework, developed in this paper, the unknown time-invariant input
parameter vector x is modeled as a discrete Markov chain, the evolution of which is governed by a random walk
process. In our context, the dynamic evolution of the input parameter and the measurement modelisation with the
simulator responses can be formulated at iteration {k }k=1...T as:{

x(k ) = x(k−1) + δ (k )
y(k ) = M(x(k ) ,V = v (k ) ) + ε(k )

, (14)

where x(k ) is the input parameter vector, v (k ) is a known realization of the stochastic external excitation at k , the
Gaussian noises δ (k ) ∼ N(0,Q(k ) ) and ε(k ) ∼ N(0,R(k ) ) are respectively an artificial dynamic noise and a combination
of the model and observation errors. For the sake of readability, y ∈ Òm will represent the vector gathering the
measured responses obtained on the structure of interest.
Filtering techniques, a type of data assimilation, can be used to sequentially estimate the parameter vector in Eq. (14)
using the known input solicitation and the available measurements. Among all available filtering methods, the Kalman
Filter (KF) [45] has been widely applied when dealing with a linear system with Gaussian error sources. In this paper
due to the non-linearity in our numerical model, the Ensemble Kalman filter (EnKF) [22] is used to perform parameters
estimation. The EnKF is a sequential Monte-Carlo method that provides an alternative to the traditional KF. The
methodworks on an ensemble of parameter estimates transforming them from the prior distribution into the posterior
one. We propose to use a Latin Hypercube sampling technique coupled with a geometrical criteria maximizing the
minimum distance between the design points instead of a conventional Monte-Carlo method to generate the initial
ensemble of parameter estimates, see [46].
In the field of inverse problems, this inference method is referred to as Ensemble Kalman Inversion (EKI). The EnKF
formulation used in [47] is adopted in this paper. At iteration k , we have an ensemble of size Nens , of forecast param-
eter estimates xf(k ) = [xf (1)(k ) , . . . , xf (Nens )(k ) ] ∈ Òp×Nens where the superscript ·f (i ) denotes the i-th forecast member of
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the ensemble. The mean of the forecast members of the ensemble is given by:

x̄f(k ) =
1

Nens

Nens∑
i=1

xf (i )(k ) · (15)

The error covariance matrix for the forecast estimate in the KF can be empirically estimated as:

Pf(k ) =
1

Nens − 1

Nens∑
i=1

(xf (i )(k ) − x̄
f
(k ) ) (x

f (i )
(k ) − x̄

f
(k ) )

T · (16)

As said previously the structure of the EnKF is the same as the one of the Kalman filter [48]. Thus, we need to compute
the Kalman Gain, referred as K(k ) and defined by:

K(k ) = Pf(k )M
T

(
MPf(k )M

T + R(k )
)−1
, (17)

where the observation operator, denoted by M ∈ Òm×Nens , is linear or has been linearized from the function M,
see [49].
Nevertheless, for most applications this condition of linear (or linearized) observation operator cannot be applied. In
that context, as proposed in [50], we can replace the terms Pf(k )MT and MPf(k )M

T of the Kalman Gain equation by
the following ones:

1

Nens − 1

Nens∑
i=1

(
xf (i )(k ) − x̄

f
(k )

) (
M(xf (i )(k ) ,V = v (k ) ) − M(x̄f(k ) ,V = v (k ) )

)T (18)

and,
1

Nens − 1

Nens∑
i=1

(
M(xf (i )(k ) ,V = v (k ) ) − M(x̄f(k ) ,V = v (k ) )

) (
M(xf (i )(k ) ,V = v (k ) ) − M(x̄f(k ) ,V = v (k ) )

)T
· (19)

It has been argued, in [51], that Eq. (18) and Eq. (19) are good approximations if the following hypothesis are verified:

M(x̄f(k ) ,V = v (k ) ) = M(xf(k ) ,V = v (k ) ) =
1

Nens

Nens∑
i=1

M(xf (i )(k ) ,V = v (k ) ) ,

xf (i )(k ) − x̄
f
(k ) = ξi and ‖ξi ‖ is small for i = 1 . . .Nens ·

This version of EnKF treats the observations as random variables [22]. Indeed, an ensemble of observations of the
same size Nens is generated by adding noise terms to the observation set y(k ) such that:

y(i )(k ) = y(k ) + eo (i )(k ) , with eo (i )(k ) ∼ N(0,R(k ) ) , i = 1 . . .Nens · (20)
The noise terms are sampled from the distribution of the error covariance matrix R(k ) . The stochastic EnKF has been
showed to have the advantage to “re-Gaussianize” the ensemble distribution thanks to the observation perturbations
[52]. Maintaining Gaussianity has a positive impact on analysis quality of the ensemble filter by maintaining the
correct forecast error covariance. Most of the time, themeasurement observational error covariancematrix is diagonal
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according to the assumption of independent observations. Using the presented approximation, the computation of
the Kalman gain K(k ) can be done. We can independently update the ensemble members using:

xa (i )(k ) = xf (i )(k ) + K(k )
(
y(i )(k ) − M(x

f (i )
(k ) ,V = v (k ) )

)
· (21)

where the superscript ·a (i ) denotes the i-th updated member of the ensemble. The last step of the EnKF method
is the forecast step of the ensemble parameters at k + 1 and involves an ensemble of Nens updated parameters for
iteration k , such as:

xf(k+1) = xa(k ) + δ (k ) , with δ (k ) ∼ N(0,Q(k ) ) · (22)
The presented method is fully described in Algo. 1.
Algorithm 1: Ensemble Kalman Filter for parameter inference, a.k.a. Ensemble Kalman Inversion.
Data:
number of members in the ensemble Nens ;
prior guess of the parameter vector xb and prior parameter covariance matrix Pb ;
some measurements {y(k ) }k=1,...,T and known realization of the external solicitation {v (k ) }k=1,...,T ;
error covariance matrix {R(k ) }k=1,...,T and artificial error covariance matrix {Q(k ) }k=0,...,T .
Initialisation step:
for i = 1 to Nens do

xa (i )(0) = xb + εb with, εb ∼ N(0,Pb )
for k = 1 toT do

Forecast step:

xf(k ) = xa(k−1) + δ (k−1) , with δ (k−1) ∼ N(0,Q(k−1) )
x̄f(k ) =

1

Nens

Nens∑
i=1

xf (i )(k ) and Pf(k ) = 1

Nens − 1

Nens∑
i=1

(xf (i )(k ) − x̄
f
(k ) ) (x

f (i )
(k ) − x̄

f
(k ) )

T

Update step:

Pf(k )M
T =

1

Nens − 1

Nens∑
i=1

(
xf (i )(k ) − x̄

f
(k )

) (
M(xf (i )(k ) ,V = v (k ) ) − M(x̄f(k ) ,V = v (k ) )

)T
MPf(k )M

T =
1

Nens − 1

Nens∑
i=1

(
M(xf (i )(k ) ,V = v (k ) ) − M(x̄f(k ) ,V = v (k ) )

) (
M(xf (i )(k ) ,V = v (k ) ) − M(x̄f(k ) ,V = v (k ) )

)T
K(k ) = Pf(k )M

T (MPf(k )M
T + R(k ) )−1

for i = 1 to Nens do

y(i )(k ) = y(k ) + eo (i )(k ) with eo (i )(k ) ∼ N(0,R(k ) )
xa (i )(k ) = xf (i )(k ) + K(k )

(
y(i )(k ) − M(x

f (i )
(k ) ,V = v (k ) )

)



10 Adrien Hirvoas et al.
3 | DESCRIPTION OF THE WIND TURBINE NUMERICAL MODEL

Dynamic analysis of wind turbines involves strong interactions between the turbines’ aerodynamics, the control sys-
tem and the structural mechanics. The main solicitations are the environmental conditions and the rotating machinery
during operating term. In order tomodel and simulate the nonlinear response ofwind turbine structures under such so-
licitations, various servo-aero-elastic software have been developed, such as OpenFAST [53], Bladed [54], HAWCK2
[55] or Deeplines Wind™[56].
In our study, a simulator of a Senvion MM82 wind turbine has been developed using Deeplines Wind™software from
technical specifications. This software is a fully coupled simulation tool taking into account the aerodynamics of
the aero-generator, the elasticity of the structural wind turbine components (mast, blades and drive-train systems)
and the control system [57]. The software architecture developed by IFPEN2 and Principia3 is fully modular with
different dynamic libraries (DLL) called by the solver. The integration in time is performed with an implicit Newmark
integration scheme. The developed simulator includes a nonlinear beam finite element formulation to model the
structural components. The aerodynamic loads acting on the turbine rotor are dynamically computed by employing
the blade element momentum (BEM) theory for Horizontal Axis Wind Turbine (HAWT). A Deeplines Wind™software
validation, based on code comparisons [5], has shown accurate results in various conditions.
Wind turbine simulation consists of two stages: first the generation of the input turbulent wind field and then the
fully coupled servo-aero-elastic simulation. The generation of the input stochastic process is done by using a simulator
called Turbsim [4]. This simulator has some deterministic inputs such as the turbulence intensity, themeanwind speed,
the mean flow angles, the spectrum and the spatial correlation model. In our model, we have used an IEC4 Kaimal
turbulence spectrumwith an exponential spatial coherence. Nevertheless, these deterministic values cannot uniquely
determine a stochastic wind field and a pseudo-random number generator have to be used in order to create random
phases for the velocity time. Then structural responses are time computed with a multi-physics numerical code such
as Deeplines Wind™, following the formalism introduced in Eq. (1). A wind turbine structure can encounter a variety
of operating conditions. Each of the operating conditions, modelled by the stochastic process V , is parameterized
by measurable deterministic quantities mentioned in Fig. 1. In this paper we will perform the study at an under-
rated average wind speed of 8 m/s corresponding to the most common operating regime of the considered turbine.
All computed responses are based on 10-min effective simulations of the MM82 Senvion wind turbine. By effective,
we mean that the transient start-up behavior is removed from the analysis. The transient start-up behavior can be
decomposed in a ramp time wind and an oversight periods. The oversight period has been set according to auto-
correlation studies of the outputs. This period permits to remove the effect of the ramp time period on the numerical
model responses. A numerical simulation lasts 15 minutes on an Intel Xeon Scalable Gold 6140 processor operating
at 2.3 GHz.
From the structural time responses computed by the Deeplines Wind™model, we obtain some QoIs describing the
fatigue behavior of the wind turbine. They are obtained by post-treating the resulting time series of internal loads at
different locations of the analysed design, see Fig. 2 and Tab. 1. In our study, we denote by g the function mapping
the functional loads of the structure to the damage QoIs, see Eq. (2). Each fatigue QoI has been estimated by using
the damage-equivalent load (DEL). The DEL is computed for a set of parameter values and different realizations of
the stochastic processV . It is defined as the regular load amplitude that would create in Nr ef cycles the same fatigue

2see https://www.ifpenergiesnouvelles.fr/
3see http://www.principia-group.com/
4International Electrotechnical Commission

https://www.ifpenergiesnouvelles.fr/
http://www.principia-group.com/
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as the considered irregular load history. The DEL is computed based on the Palgrem Miner’s rule [58]:

DEL =

(∑Nc
i=1

Si · Nmi
Nr ef

) 1
m

· (23)

where i = 1, . . . ,Nc corresponds to each range bin, Si is the cycle range value and Ni is the number of cycles for the
i-th bin. The exponentm is the negative inverse slope of the cyclic stress against the cycles to failure curve (S-N curve)
and Nr ef is the reference number of cycles usually set to an arbitrary value. The cycles in an irregular load history are
computed using the Rainflow counting method [59].

F IGURE 2 Recorded time series of
loads at different locations of the wind
turbine

Load’s position m Type of load
Blade root moments 10 Out-of-plane bending In-plane bending
Tower top moment 3 Fore-aft bending Side-to-side bending

Tower bottom moment 3 Fore-aft bending Side-to-side bending
Tower top force 3 Fore-aft force Side-to-side force

TABLE 1 Fatigue damage equivalent loads used for the
global sensitivity analyses with their corresponding Wöhler’s
exponent, i.e., the negative inverse slope of the S-N curve.

In order to ensure that the variation induced by the input parameters is distinguishable from the one induced by the
realization of the stochastic processV , multiple wind realizations have to be generated. A convergence study has been
led in order to determine the number of realizations needed to encompass the variation of the selected realization
of the stochastic process. The QoIs analyzed in this study are the DEL at different locations of the wind turbine, see
Eq. (23). The number of stochastic process realizations used during the convergence study varies from 1 to 30.
Fig. 3 shows the convergence of the tower bottom fore-aft bending moment DEL on the number of realizations
used for their averaging estimation. We assume a 10-minutes mean hub-height wind speed of 8 m/s and a wind
fluctuation following the Kaimal IEC. The IEC 61400-1 standard has three turbulence categories: A, B and C, see [60].
We have decided to use the A class corresponding to the highest turbulence intensity, i.e. the ratio of standard
deviation of fluctuating wind velocity to the mean wind speed is around 24 %. A time series respecting the 10-
minutes statistics, which will be different at each generation, is created thanks to the simulator [4]. According to
certification guidelines, see design load case 1.2 in [61], the fatigue analysis has to be led with 6 wind realizations of
10 min time period. Nevertheless, as we can underline with the last mentioned figure, the empirical mean computed
from these 6 realizations does not seem to be a reliable estimator. In other words, 6 simulations are not sufficient for
QoIs’ statistics to converge. With our industrial numerical model, a compromise has been made to balance the quality
of the empirical estimator and the computing time goal by fixing the number of realizations to 10 for the GSA of the
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damage equivalent loads.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Number of seeds used [-]

160000

170000

180000

190000

200000

210000

D
ow

n-
to

w
er

 fo
re

/a
ft

 m
om

en
t [

N
/m

]

Empirical mean
95% CI bounds

F IGURE 3 Convergence of the tower bottom fore-aft bending moment DEL as a function of the number of
turbulent seeds used for its evaluation. 95% confidence interval around the estimated empirical mean is also
represented (grey area). The wind turbulence intensity is set around 24 %, see [60].

The aim of this paper is to identify and reduce the structural sources of uncertainty on the fatigue QoIs. We will focus
our study on somewind turbine properties represented by 13 parameters gathered in the vector x. A literature review
has been done to specify the uncertainty in the parameter values. Based on expert knowledge, all these parameters
were considered independent of one another with Gaussian distributions due to their physical properties.
Here follows a description of the 13 considered parameters, see Tab. 2. For the support structural properties, six
parameters have been considered, including nacelle mass, nacelle center of mass, tower Rayleigh damping, inertial
nacelle and drive-train torsion stiffness. The tower thickness has been changed by uniformly scaling the distributed
tower thickness. The boundary values have been set by changing the first fore-aft tower frequency mode by ±10% of
its reference value.
The uncertainties in blade structural properties have been represented using five parameters. The blade structural
responses have led to the definition of the uncertainty range. Indeed, the frequency of the edge-wise (ES) and flap-
wise (FS) mode were changed about 10% each from their nominal value. These modifications of the mode were done
by uniformly scaling the associated stiffness and the distributed blade mass of all blades. Blade imbalance effects
have been also included by applying a different change value to each blade. One blade is modified to be a value that
is higher than the nominal value, and another one modified to a lower value. The third blade remains unchanged at
the nominal value.
For the aerodynamic properties, we have considered the wind turbine yaw misalignment by changing the yaw angle
of the turbine. For the individual blade pitch error, a constant offset angle is applied to two of the blades, respectively
above and below nominal value.



Adrien Hirvoas et al. 13
TABLE 2 Structural properties - uncertainties affecting the input parameters of the wind turbine model.

Input parameter µ σ REF
Nacelle Mass - Nmass [kg] 6.90e+04 2.30e+03 [62]

Nacelle center of mass - NCM x [m] 1.00 3.33e-02 [63]
Tower thickness - e [%] 0 7 IFPEN

±10% 1 FA
Tower Rayleigh Damping - βT R [-] 3.10e-02 9.93e-03 [64]
Inertial Nacelle - Izz [k g · m2] 7.00e+05 2.33e+04 IFPEN

±10% µ

Drive-train Torsional stiffness - KD [ N ·m2r ad ] 4.45e+09 1.48e+08 [65]
Blade Flap wise Stiffness - αBF [N · m2 ] 1.00 3.33e-02 IFPEN

∼ ±10% 1 FS
Blade Edge wise Stiffness - αBE [N · m2 ] 1.00 3.33e-02 IFPEN

∼ ±10% 1 ES
Blade mass coefficient - αmass [%] 1.00 1.67e-02 [62]
Blade Rayleigh Damping - βBR [-] 5.39e-03 1.45e-03 [63]
Blade mass imbalance - ηB [%] 2.50 8.33e-01 [63]

Yaw misalignment - ω [◦ ] 0 6.67 [66]
Individual pitch error - Ω [◦ ] 0.10 3.33e-02 [67]

After an appropriate sensitivity analysis leading to the identification of the less influential input parameters on the
fatigue QoIs, we can fix their value to a nominal one without affecting the fatigue behavior of the structure. Then,
the uncertainties of the other parameters has to be reduced by employing an appropriate inference method based on
in-situ measurements. In this context, let us consider a wind turbine instrumented with accelerometers. We assume
that bi-axial measuring devices are located at mid and top tower height position. From these sensors, we can record
four functional acceleration time series. Then, the power spectral density (PSD) of each measured acceleration time
series is computed using Welch’s method [68], see Fig. 4.
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F IGURE 4 On the left side (a): simulated acceleration in m

s2
of the wind turbine tower in the fore-aft direction

obtained at the accelerometer device located at mid-tower decomposed in a ramp time wind 1 , an oversight
period 2 and a dynamical period of interest 3 . On the right side (b): estimated PSD of the period of interest using
Welch’s method [68].
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4 | ILLUSTRATION OF THE PROPOSED FRAMEWORK ON THE WIND TUR-

BINE NUMERICAL MODEL

GSA of the fatigue QoIs - The Deeplines Wind™numerical model presented in Section 3 is used with 13 uncertain
input parameters, each one having its associated probability distribution, see Tab.2. The total Sobol’ indices associated
to these parameters for each DEL have been estimated using the heteroscedastic noisy GP model-based Sobol’ index
procedure as described in Section 1. A Latin Hypercube Sampling (LHS) of size 500 has been used to emulate the
numerical model. Then, an augmented LHS of size 150 has been generated to determine the accuracy of the surrogate
models. To apply this approach 6,500 forward wind turbine numerical simulations were submitted on the 206 TFlops
supercomputer of IFPEN.
The function sobolGP performs a kriging-based GSA by taking into account the complete conditional predictive distri-
bution of the surrogate model. The function estimates total Sobol’ indices thanks to the Jansen estimators, see [69].
Jansen Sobol’ index estimators are accurate for large and small total indices. Moreover, by taking into account the
complete conditional predictive distribution of the trained surrogate model in the estimation procedure of the total
Sobol’ indices, we can evaluate the uncertainty due to Monte-Carlo estimation, but also due to metamodeling [32].
The results for the total Sobol’ indices with their corresponding 95% confidence intervals are summarized in Fig. 5.
A threshold of 2.5e-2 was chosen to display a separation between input parameters with high and low total Sobol’
indices. Fig. 6 represents the different sources of uncertainty for the estimation of total Sobol’ indices, obtained thanks
to the function sobolGP for the DEL of the out-of-plane bending blade-root moment.
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F IGURE 5 Estimation of total Sobol’ indices (y-axis) with their 95% confidence interval corresponding to each of
the 13 parameters (x-axis) for the different quantities of interest in fatigue. The dashed line corresponds to a
threshold arbitrarily chosen to 2.5e-2. Confidence intervals (CI) are obtained by taking into account the uncertainties
due to both the metamodel and the Monte-Carlo estimation. The number of samples for the conditional Gaussian
process, in order to quantify the uncertainty of the Kriging approximation, was set to 100. The uncertainty due to
Monte-Carlo integration was computed with a bootstrap procedure with a sample size of 100.
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F IGURE 6 Splitting of the variance of total Sobol’ index estimators (y-axis) corresponding to each of the 13 input
parameters (x-axis)for the DEL of the out-of-plane bending blade-root moment. The number of samples for the
conditional Gaussian process, in order to quantify the uncertainty of the Gaussian process approximation, was set to
100. The uncertainty due to Monte-Carlo integration was computed with a bootstrap procedure of 100.

By considering all the total Sobol’ indices obtained for the different fatigue QoIs presented in Fig. 5, we can notice that
only 6 parameters have indices values greater than the threshold. Consequently, we can fix other parameters to any
specific value in the range of variability without affecting the fatigue QoIs. During the recursive Bayesian estimation,
these non-influential parameters will be arbitrarily set at their mean value described in Tab. 2. By employing this
method, we will reduce the parameter dimension in the inference procedure without affecting the fatigue QoIs which
are crucial for assessing the lifespan of wind turbines.
Identifiability study - It is possible that the considered experimental measurement settings do not offer enough
information for the identification of some input parameters. In this context, another interesting property of the GSA
underlined in Proposition 4.2 in [24] is that nullity of the total sensitivity index for a specific input parameter implies
its non-identifiability from the output under consideration. Thus, a GSA led on the measured outputs will determine
which parameters cannot be inferred, although it is not a sufficient condition for identifiability.
In our industrial application study, the measured outputs, obtained from the accelerometers, are expressed as dis-
cretized time series. We are interested in their response in the frequency-domain by using the power spectral density
(PSD). Discretized PSD series involve a substantial dimensionality and a high degree of redundancy. To bypass this
issue, we have firstly focused our study on an orthogonal decomposition, of the different discretized PSDs, in order
to reduce their dimensionality. This orthogonal decomposition will be performed by a data-driven method called Prin-
cipal Component Analysis (PCA) [70]. PCA allows the functional output expansion in a new reduced space spanned
by the most significant directions in term of variance of the discretized functional output.
In our study, a method based on PCA and GSA with GP model is used to compute an aggregated Sobol’ index for each
input parameter of the model. As described in [25] , the proposed index synthesizes the influence of the parameter
on the whole time series output.
In our study to ensure that the variation of the input parameters is distinguishable from the realization of the stochas-
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tic process V , 10 wind realizations have been used in this GSA. A new LHS of size 300 with a geometrical criteria
maximizing the minimum distance between the design points has been used to emulate the numerical model. In
Tab. 3, we summarize the total aggregated Sobol’ indices obtained with the GP model built on the trained set from
the lastly mentioned LHS. In this analysis, parameters with total Sobol’ index values under a threshold set at 1e-02
will be considered as non-identifiable from the measured output. We can conclude that none of the significant input
parameters can be considered a-priori as non-identifiable.
TABLE 3 Total Sobol’ indices for each output used during the recursive inference procedure described in details
in Section 2. Estimated total Sobol’ indices higher than the arbitrary threshold are underlined.

Measured outputs e

[%]
βT R

[−]
αBF

[%]
αBE

[%]
αmass

[%]
ηB

[%]
Tower middle fore-aft
acceleration’s PSD 2.44e-01 7.64e-01 6.07e-03 1.37e-04 3.59e-04 4.46e-03

Tower middle side-to-side
acceleration’s PSD 3.84e-01 3.95e-01 1.38e-01 6.73e-04 8.60e-02 7.17e-03
Tower top fore-aft
acceleration’s PSD 1.21e-01 6.70e-01 2.09e-03 5.91e-02 6.76e-02 1.05e-01

Tower top side to side
acceleration’s PSD 6.56e-02 6.24e-01 1.36e-03 9.67e-02 1.39e-01 9.52e-02

Recursive Bayesian inference study - The 6 input parameters having an influential effect on the fatigue behavior
of the structure and potentially identifiable are considered during the inference procedure. These unknown input
parameters define the model parameter vector to be estimated, i.e., x = [e, βT R , αBF , αBE , αmass , ηB ]T .
In this section we focus on pseudo-experimental numerical tests in order to validate the inference procedure. These
tests consist in running direct numerical analyses considering known values of input parameters, and then adding a
Gaussian noise of known variance to the observed outputs. The dynamic response of thewind turbine structure is sim-
ulated using the mean values of the unknown model parameters described in Tab. 2. The noisy pseudo-experimental
outputs used to recursively update the wind turbine model are the PSD of the acceleration time series obtained for
side to side and fore-aft at the two different tower positions.
Algo. 1 is used to recursively estimate the expected values of the unknown input parameters at each iteration step.
The output measurement noise covariance matrixRk is assumed to be diagonal, i.e., cross-correlations between the
noise components are disregarded. Usually, the amplitudes of the measurement noise can be estimated based on
the characteristics of the used sensors. Nevertheless, in our pseudo-experimental numerical case, these amplitudes
have been arbitrarily chosen. Indeed, to mimic real-life applications, noise is incorporated in the simulated data by
considering a noise covariance matrix such as the obtained standard deviation is equivalent to a 1% signal-to-noise
ratio.
For the initialization of the Bayesian estimation procedure, xb = [−0.10, 4.00e − 02, 0.98, 1.05, 9.85e − 01, 0.04]T is
assumed to be the initial prior of the value of the input parameters. The initial error covariance matrix of the input
parameters, denoted by Pb , is also assumed to be diagonal. In other words, the initial prior of the input parameters
are assumed to be statistically independent. Diagonal elements of Pb represent the practitioner’s belief on the input
parameters uncertainties, such as Pb = diag(7.00e − 02, 9.93e − 03, 3.33e − 02, 3.33e − 02, 1.67e − 02, 8.33e − 03) .
The number of inference iterationsT and of the number of members N were respectively fixed atT = 20 and N = 100.
This choice was mainly guide by the maximal simulation budget allocated to our study and by the fact that modest
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ensemble size is a reasonable practice as observed in industrial setups [22, 71, 72]. Fig. 7 shows the results of the
identification. It can be observed that the considered input parameters are well recovered. Tab. 4 reports the final a
posteriori estimate of the input parameters.
TABLE 4 Target, initial prior and final a posteriori estimates of the input parameters of the wind turbine
numerical model.

e

[%]
βT R

[−]
αBF

[%]
αBE

[%]
αmass

[%]
ηB

[%]
Target 0 3.10e-02 1 1 1 2.50e-02
Prior

estimates -1.00e-01 4.00e-02 9.80e-01 1.05 9.85e-01 4.00e-02
A posteriori

estimates (T=20) 3.26e-03 3.08e-02 9.98e-01 1.00e+00 1.00e+00 2.52e-02
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F IGURE 7 Iteration evolution of the a posteriori estimates of the input parameters. Results obtained by running
EnKF presented in Section 2 with N = 100 members of the ensemble used for the estimation and considering
pseudo-experimental numerical observations.

Robustness analysis - To test the effectiveness of the proposed EnKF procedure, different noise levels affecting the
synthetic data have been considered. We have chosen different structures of noise covariance matrices such as the
obtained standard deviations affecting the measurements are respectively equivalent to 3% and 5% signal-to-noise
ratios. The performed analysis have highlighted that the incorporation of higher noise leads to a harder identification
of input parameters. The estimation of these parameters is less reliable because their identifiability property becomes
weaker. The issue of identifiability is a crucial aspect due to the presence of noise in real-life applications. However, the
proposed recursive Bayesian inferencemethod have the ability to give confidence intervals on the inferred parameters
due to its probabilistic framework.
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Conclusion

This paper presents a framework to quantify and reduce the uncertainties from the input parameters of a wind turbine
numerical model.
The contributions of this paper are twofold. First, we have proposed a global sensitivity analysis based on Sobol’
indices using a Gaussian process model with heteroscedastic nugget effect to quantify uncertainties of a stochastic
and time-consuming wind turbine numerical model. The procedure we present is efficient to balance the inherent
uncertainty of the stochastic numerical model and the one from the input parameters. More precisely the GSA has
been performed on the fatigue quantities of interest and showed that only a restricted number of unknownparameters
happens to influence these responses. Since fatigue quantities of interest are a crucial wind turbine design and life
criteria, these influential input parameters have to be properly estimated in order to give confidence in fatigue analysis
results.
Consequently, the second objective of this paper was to develop a recursive inference procedure to properly deter-
mine these parameters based on available measurements. But first was addressed the question of parameter non-
identifiability by employing a global sensibility study on the measured outputs. As previously stated, performing such
sensitivity analysis is not a sufficient condition for identifiability. Finally for the inference task, this paper demon-
strates the applicability and computational efficiency of the ensemble Kalman filter (EnKF) for this type of challenging
problem. The EnKF-based approach has been integrated into the commercial software Deeplines Wind™. The pro-
posed methodology was verified using numerically simulated response data. For future work, the recursive Bayesian
estimation procedure will be further tested by incorporating other measured output data.
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