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Abstract. In wind farms, the wakes of upstream turbines impact the downstream ones in
terms of power production, loads, and fatigue. The wake properties depend on many parameters
such as the stratification, Coriolis force, large-scale forcing and orography. To simulate this
interdependence, the actuator line method (ALM) has been implemented in the atmospheric
code Meso-NH, which is an LES research code developed by the French weather services. This
implementation has already been validated for the blade force distribution on the NewMexico
case (uniform inflow in a wind tunnel) and for the interaction with the atmosphere on the
Horns Rev photo case. The work presented here aims at completing the validation in a realistic
atmospheric boundary layer (ABL), with a focus on velocity deficit and wake meandering. It
is based on the international SWiFT benchmark which compares the results of many numerical
models with LiDAR measurements in the wake of a single turbine for three cases of atmospheric
stability: neutral, unstable and stable. The good results show the capacity of Meso-NH/ALM
to generate realistic wakes in a representative ABL.

1. Introduction
The wake behind a wind turbine is characterised by a decrease of wind velocity and an increased
turbulence intensity (TI) compared to the inflow properties, leading respectively to a decreased
generated power and increased unsteady loads for downstream turbines. The wake properties
are impacted by the atmospheric boundary layer (ABL) in which the turbines are embedded.
Shear and veer modify the wake shape [1], atmospheric stability influences the wake recovery
[2] and the large eddies of the ABL induce wake meandering (oscillations of the instantaneous
wake) [3]. An accurate description of the ABL is thus necessary to predict the wake properties.

The present work aims at demonstrating that Meso-NH with an actuator line method (ALM)
[4] can be used to generate reference wake data for the calibration and validation of analytical
models. Meso-NH is a meteorological solver that accounts for the aforementioned phenomena
which can affect wind turbine’s wakes. It can either be used in mesoscale or, as in this study, in
large eddy simulation (LES) mode.

This work relies on a benchmark hereafter called SWiFT benchmark [5]. It is based on
experiments where the wake of a stand-alone turbine over a flat terrain has been measured in
three different atmospheric stability regimes: stable, neutral, unstable. The Meso-NH results
are also compared to the LES codes of the benchmark: SOWFA (two simulations, hereafter
denoted SOWFA and SOWFA-2), NaluWind, PALM, and EllipSys3D.
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2. The Meso-NH LES solver
Meso-NH (MESOscale Non Hydrostatic) is a finite volume, open-source research code for ABL
simulations developed by the Centre National de Recherches Météorologiques and Laboratoire
d’Aérologie. The first version of the model was introduced in [6], and recent updates in [7]. The
unknowns are the velocities (Ux, Uy and Uz), the potential temperature θ and optionally the
humidity which is not used here. The system of equations is a modified Navier-Stokes system
with the following particularities:

• The equations use a constant density profile ρ(z), and a buoyancy term is added to the
momentum equation to take into account thermal effects.

• The equations are non-hydrostatic: the vertical pressure gradient term is not simplified
with the gravity term.

• The Coriolis force is added to the momentum equation.

• The momentum equation is modified to take into account large-scale forcing through a
geostrophic wind, which is imposed by the user.

In LES mode, an implicit low-pass filter is applied to the equations: the largest eddies of
turbulence are directly resolved whereas the smallest must be modelled. In Meso-NH these
eddies are modelled with a turbulence closure of order 1.5: an additional equation is introduced
for the subgrid kinetic energy esgs and the other subgrid terms are modelled as functions of
the resolved quantities, esgs and a mixing length Lm [8]. The mixing length is related to the
grid size and stratification through the Deardorff formulation [9] for the neutral case or modified
Deardorff formulation that works better in non-neutral conditions [10] for the stable and unstable
cases. The spatial and temporal numerical schemes are respectively a fourth order centered and
a fourth order Runge-Kunta. This leads to an accuracy of 4∆X [7], i.e. the smallest resolved
turbulent structures is at best four times the mesh size.

An ALM representation of the wind turbine is employed, accounting for blade effect on the
surrounding flow using rotating lines of source terms in the momentum equation, also called
body forces [11]. The value of these body forces is computed with the blade element theory,
relying on aerofoil data. This method has been implemented in Meso-NH, validated against the
NewMexico experiments (a small turbine in a wind tunnel) and used to reproduce the Horns
Rev photo case [4]. This early work was missing a quantitative validation of the coupled Meso-
NH/ALM model in an actual ABL, which is the aim of the work presented hereby. It must be
noted that in the literature, the forces are usually smeared with a gaussian kernel whereas in
Meso-NH they are linearly smeared to the eight neighbouring cells.

The grid nesting technique allows to couple two or more computational domains of different
sizes, temporal and spatial resolutions [12]. Hence, the resolution can be brought below the
metre (necessary here in order to have 30 mesh-points per blade as recommended in [13]), while
still taking into account the large-scale behaviour of the ABL.

3. Workflow
3.1. The SWiFT benchmark
The SWiFT measurements are performed on a 3-bladed horizontal axis wind turbine of diametre
D = 27 m and hub height zhub = 32.1 m. The location of the facility has two advantages: the
orography can be neglected, and the atmospheric conditions are close to a canonical diurnal
cycle [15]. The inflow conditions (reported in Table 1 for the three stability cases) are measured
with a meteorological mast 65 m upstream the turbine and the velocity deficit in the wake is
measured with a rear-facing, nacelle-mounted DTU SpinnerLidar [16], as schemed in Figure 1.

It is assumed that the beam elevation angle is zero and that the turbine is always aligned with
the wind direction: consequently, the horizontal velocity is considered equal to the line-of-sight
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Figure 1: Schematic of the SWiFT facility used for this benchmark, from [14].

velocity [5]. The lidar sampling period was set to about 30–42 s for the neutral and stable cases,
where the measurements focused on the spatial evolution of the mean wake. It was set to about
2 s in the unstable case in order to compute the estimate the dynamic behaviour such as wake
meandering, but was restrained at one distance downstream (x = 3D) [17].

Table 1: Inflow conditions measured by the meteorological mast for the three cases. Performed
at hub height (32 m) for Uh,∞ and TI and at 10 m for the others variables.

Variable Notation Unit Neutral Unstable Stable

Horizontal inflow velocity Uh,∞ [m/s] 8.7 6.7 4.8
Turbulence intensity TI [%] 10.7 12.6 3.4
Friction velocity u∗ [m/s] 0.45 0.33 0.08
Stability parameter ζ = z/LMO [-] 0.004 –0.089 1.151

Kinematic vertical heat flux w′θ′ [K.m/s] –0.002 0.023 –0.005
Roughness length range z0 [mm] 5-50 5-50 5-50

3.2. Methodology
For each stability case we follow a three-step procedure:

• First it is necessary to properly reproduce the inflow conditions, focusing on the velocity and
TKE profiles 65 m upstream the turbine. The in-situ measurements used a meteorological
mast whereas the LES use time and lateral averaged profiles in a plane. In order to be
consistent with the other data of the benchmark (both LES and measurements), we only
use ensemble-averaged 10 minutes time-series of Ux, Uy and Uz, sampled at a frequency of
1 Hz. Consequently, the TKE profile does not take into account the subgrid quantities nor
the contribution of eddies of frequency comprised outside the range from 1.67 × 10−3 Hz
(= 1/10 min) to 1 Hz.
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• Once the inflow is validated, the turbine model is integrated in the simulation. After 10
minutes of “spin-up” to let the wake and induction region establish, the wind turbine mean
thrust coefficient and power are evaluated.

• Finally, the time-averaged velocity deficit in the wake is computed using the horizontal
velocity in the inflow plane (thereafter noted Uh,∞) as a reference. The results are plotted
as a function of the lateral (y) variable.

3.3. Numerical parameters

Table 2: Numerical parameters used in Meso-NH.

Unit Neutral Unstable Stable
D1 D2 D3 D4 D1 D2 D3 D4 D1 D2

z0 [mm] 14 14 14

w′θ′ [K.m/s] –0.0020 0.0247 -0.0047
ABL height [m] 1000 1000 200
Geostrophic wind [m/s] (u=11.35, v=-3.91) (u=8.1, v=-1.2) (u=7.6, v=-3.1)
∆Z [m] 0.5 0.5 0.4
∆X = ∆Y [m] 20 4 1 0.5 20 4 1 0.5 1.2 0.4
LX [m] 6400 2000 600 432 12000 3200 1000 450 540 360
LY [m] 2400 800 240 162 6000 1600 500 225 300 150
∆t [ms] 200 100 50 8 100 100 50 10 12 9
Cells number [106] 7 18 27 52 46 82 128 104 35 105
Simulation time [min] 80 20 10
Ω [rad/s] 4.56 3.89 2.79
γ [deg] –0.75 –0.75 –0.75

The numerical parameters used for the three simulations are presented in Table 2 for the
different domains of the grid nesting. The size of the horizontal mesh depends on the domain
Di but in Meso-NH, the vertical mesh is the same for every domain. This is a major limitation
which leads to flat cells near the ground, and to a needlessly large number of vertical mesh
points in the large-scale domain D1. In the region of the turbine and the wake, ∆Z is set in
order to have isotropic cells in the most refined domain. The bottom boundary is determined
by the subgrid momentum w′u′ and heat fluxes w′θ′. The latter is prescribed and governs the
evolution of θ in the middle of the first grid mesh, along with other resolved processes such
as advection. The momentum flux influences the evolution of the wind at the same height.
This subgrid momentum flux at the surface is computed according to the Monin-Obukhov laws,
depending on the roughness length, wind at middle of first grid mesh and heat flux.

The flowfield is initialised with a constant-velocity profile equal to the geostrophic wind. A
constant-temperature profile is set up to an arbitrary defined ABL height, capped by an inversion
region (5K/50m). The geostrophic wind, ABL height, roughness surface and kinematic vertical
heat flux are chosen in order to be as close as possible to the inflow measurements in terms of
velocity, wind direction, TKE and stability parameter.

In the first domain D1, the boundary conditions are cyclic in order to let the turbulence
establish. The domain dimensions LX and LY are chosen in order to be larger than the largest
eddies of the flow, typically a couple of times the ABL height. The eddies are larger as the
stability parameter ζ decreases: consequently a larger domain and four nested grids are needed



Wake Conference 2021
Journal of Physics: Conference Series 1934 (2021) 012003

IOP Publishing
doi:10.1088/1742-6596/1934/1/012003

5

for the neutral and unstable simulations, whereas a small domain and two nested domains are
enough for the stable one. The first step of the simulation is the initialisation of the ABL: the
domain D1 runs alone until the velocity spectra and the temperature and velocity profiles reach
a steady state. Thirty hours are needed for the neutral case while a couple of hours are enough
for the stable and unstable cases.

Then the nested domains (D2, D3 and D4) are created, where the boundary conditions are
interpolated from Di−1. The domain size is constrained by the size of a turbulence build-up
region: in each nested domain Di, the eddies near the inlet are still at the size of the mesh of
Di−1. A spectral analysis has been carried out after each nesting to avoid this region for the
next nested domain Di+1 or the turbine. It is not shown here for the sake of brevity but this
procedure results into satisfying spectra upstream the turbine. Time step in every domain is
driven by the CFL condition, except for the finest domain, where it is equal to the time needed
for the tip of the blades to cross one cell. Without grid nesting, a mesh of O(109) and a time
step needlessly low for most of the domain would be needed for the neutral and convective cases.

Table 2 also shows the total time over which the ensemble averaging is performed (with all
domains and ALM activated). It excludes a “spin-up” time arbitrarily set to 10 minutes to let
the flow establish. In the measurements, the ensemble averaging is done over six segments of 10
minutes for the neutral and stable cases and five segments for the unstable case. In Meso-NH,
an ensemble-average over eight segments (80 minutes) was targeted but due to unsteadiness it
had to be reduced for the stable and unstable cases.

The rotational velocity of the wind turbine Ω and pitch of the blade γ are set constant to a
value interpolated in the controller table of the turbine with Uh,∞ defined in Table 1. It must
be acknowledged that some other models use a more realistic controller which adapts Ω and
γ during the simulation. The Glauert correction for tip loss is used [4]. The velocity at every
blade node is interpolated with the eight neighbouring cells. A simple implementation of the
nacelle and the tower is used, even though it is not clear if these elements were included in the
other LES of the benchmark.

4. Results
4.1. Inflow
The inflow horizontal velocity Uh,∞ and TKE e∞ measured in the benchmark cannot be directly
prescribed in Meso-NH. Instead, the user must find appropriate values for the geostrophic wind,
the initial conditions and the ground forcing (w′θ′, z0, u∗) that lead to the desired inflow profiles.

The stable case is actually a strongly stable case, with ζ = 1.151 at 10 m. The ABL under
such stable conditions is complex to simulate because the nature of turbulence is changed, leading
to the failure of usual turbulence models. A value of ζ = 0.4 has been reached in Meso-NH. A
better match is achievable, but would have needed a finer mesh in the domain D1 (estimated
around 0.8 m). Conversely, the unstable case can be considered as a weakly convective case
(|ζ| ≈ |Ri| < 0.3 [18]) and thus the physics should not be too different from the neutral case.

The inflow horizontal velocity profiles computed by Meso-NH, compared to the ones of the
benchmark are plotted in Figures 2a, 2b, and 2c (respectively for the neutral, unstable and stable
benchmarks). For the neutral and unstable cases, they are similar to the measured profiles and
to the inflow profiles of the other simulations. For the stable case, the shear in Meso-NH is
lower than the measurements and SOWFA. This can be explained by the fact that the stability
parameter is not reached in our simulation.

The TKE profile for the neutral case (Figure 3a) is very satisfying, with a better shape and
amplitude than the other codes compared to the measurements. For the unstable (Figure 3b),
and stable (Figure 3c) cases, the Meso-NH TKE profiles are similar to the other LES and slightly
lower than the measurements.
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(a) Neutral case (b) Unstable case (c) Stable case

Figure 2: Horizontal velocity at the inflow.

(a) Neutral case (b) Unstable case (c) Stable case

Figure 3: Horizontal TKE at the inflow.

4.2. Turbine response
The mean turbine response for the three cases is given in Figures 4a and 4b. We analyse the
generator’s power Pgen and the thrust coefficient defined by:

CT =
T

1

2
ρAU2

h,∞

(1)

where T is the total thrust of the turbine, ρ is the density of air, and A the swept rotor area.
The wake velocity deficit is mainly due to the thrust of the turbine, so it is the most important
variable for us. Unfortunately, it could not be measured on the full-scale turbine, so Meso-NH’s
results will only be compared to the other LES codes.

Regarding the neutral case, Meso-NH gives a thrust value similar to the other LES codes.
Less numerical models have taken part to the two other benchmarks, so it is difficult to compare
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(a) Thrust coefficient. No in-situ measure-
ments were available.

(b) Generator power, normalised by the measured
generator power. The grey region underlines the
standard deviation of the measurements.

Figure 4: 10-minute averaged turbine response of every code for the three benchmarks, with
error bars to highlight the standard deviation.

the results in absence of thrust measurements. The power, in Meso-NH like in the other LES,
is always overestimated compared to the measurements. It comes from a torque overestimation
that has not been explicitly explained in the original publication [5] but it is supposed to be of
secondary importance for the wake velocity deficit study since the thrust is the main driver. It
remains a subject of concern for our validation.

4.3. Velocity deficit

Figure 5: Velocity deficit profiles in the horizontal plane at hub height for the neutral case. The
other LES results of this case have been collapsed into one single curve (yellow).

For the neutral case, the time-averaged velocity deficit profiles at hub height in the wake
of the turbine are plotted in Figure 5 at four planes (2, 3, 4 and 5 diametres downstream the
turbine). For the sake of clarity, the ensemble average of the five LES of the benchmark is plotted
(yellow curve), along with the measurements and Meso-NH results. At x = 2D the maximum
deficit and wake width is very similar between Meso-NH and the other LES, which is consistent
with the fact that the thrust coefficients are in the same range. The wake then dissipates slightly
faster in Meso-NH than in the other codes, at a rate similar to the measurements: this can be
explained by the inflow TKE in Meso-NH being close to the measurements and higher than
in the other LES (Figure 3a). Overall, the behaviour of the wake is thus consistent with the
incoming flow field and turbine response.
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Figure 6: Velocity deficit profiles in the horizontal plane at hub height for the unstable case.

The unstable case is focusing on the wake deficit three diametres downstream the turbine
(Figure 6). At first sight, it appears that the wake in Meso-NH and EllipSys3D are better
than those of SOWFA-2 and PALM. However, when the meandering motion is removed, all the
simulations give results very similar to the measurements (not shown here for brevity). The
discrepancies observed here can thus be interpreted as the consequence of differences in wake
meandering (see next section) and not in the wake itself.

Figure 7: Velocity deficit profiles in the horizontal plane at hub height for the stable case.

Despite strong differences in thrust coefficients, the velocity deficit in the stable case (Figure 7)
is very similar between Meso-NH and SOWFA-2 excepted at x = 5D where the Meso-NH’s wake
is narrower and has a slightly larger velocity deficit. For both LES, the wake dissipates faster
than in the measurements, despite correct values of inflow TKE (Figure 3c). This highlights the
difficulty of numerical codes and measurements to operate in a strongly stable atmosphere.

4.4. Wake meandering
In this work the horizontal wake meandering is quantified as:

Γy(x) =

√
y′2
c

D
(2)

where y′2
c is the variance of the horizontal position of the wake centre. The vertical wake

meandering Γz(x) is similarly defined. To find the position of the wake centre at each time
step, the methodology of the SWiFT benchmark [5] is followed in order to have the same post-
processing and comparable results: a 2D Gaussian curve is fitted on the velocity deficit at each
time step [19]. After removing spurious positions, a median filter is applied to the time series
of the wake position.
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(a) Neutral case (b) Unstable case (c) Stable case

Figure 8: Horizontal wake meandering.

(a) Neutral case (b) Unstable case (c) Stable case

Figure 9: Vertical wake meandering.

The horizontal and vertical wake meandering are plotted for every case in Figures 8a to 9c
as a function of x/D. Measurements are only available for the unstable case at x = 3D, where
they are in good agreement with Meso-NH for the vertical direction (Figure 9b). Conversely,
the amplitude of the horizontal meandering in Meso-NH is twice the value of the in-situ
measurements. Even though the other codes also overestimate the horizontal meandering, Meso-
NH is always among the codes predicting the strongest meandering in this direction.

For every case the horizontal wake meandering is stronger than the vertical one, a phenomenon
attributed to the presence of the ground that prevents the formation of large eddies. Also,
the wake meandering decreases as the stability increases. Despite having one single point of
validation at x = 3D the general behaviour of the wake meandering in Meso-NH is consistent
with a previous LES study on the subject [2].

5. Conclusion
The newly implemented actuator line method in Meso-NH has been compared to the in-situ
measurements and LES simulations of the SWiFT benchmark. For the three cases (near neutral,
weakly unstable and strongly stable), the turbine’s power and thrust, the near-wake (x = 2D
to x = 5D) velocity deficit, and meandering have been evaluated. All the Meso-NH simulations
gave promising results even though the stable case was at the edge of the code’s capacities.

The slight overestimation of the generated power in Meso-NH can be linked to similar
observations of the code’s tangential efforts on the blades [4]. It might be due to the smearing
of the forces that is used, which is not the one recommended in the literature. For every case
the thrust coefficient and velocity deficit in the wake are satisfying when compared to the other
codes. Similarly to the SOWFA simulation, the wake in Meso-NH is dissipating too quickly
in the stable case compared to measurements. Finally the wake meandering in the horizontal
direction in Meso-NH is among the highest values of other codes. Conversely, in the vertical
direction it is among the lowest values and fits well the measurements for the unstable case at
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x/D = 3.
As a conclusion, we can consider that the coupling Meso-NH/ALM is validated for wakes in

stratified ABLs. It will now be possible to use it as a tool to quantify the effect of the ABL (e.g.
stratification and surface roughness) on the wake, and in particular on the added turbulence.
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Andersen) for allowing the use of their data. They would also like to thank E. Quon for helping
to perform the wake tracking with his SAMWICH toolbox. This work was granted access to the
HPC resources of TGCC under the allocation 2020- A0092A12008 made by GENCI.

References
[1] Englberger A, Dörnbrack A and Lundquist J K Does the rotational direction of a wind turbine impact the

wake in a stably stratified atmospheric boundary layer? 2020 Wind Energy Science 5 1359–1374
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