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Classical sedimentary basin simulators account for simplified geomechanical models that describe material compaction by means of phenomenological laws relating porosity to vertical effective stress. In order to overcome this limitation and to deal with a comprehensive poromechanical framework, an iterative coupling scheme between a basin modeling code and a mechanical finite element code is adopted. This work focuses on the porous material constitutive law specifically devised to couple 3D geomechanics to basin modeling. The sediment material is considered as an isotropic fully saturated poroelastoplastic medium undergoing large irreversible strains. Special attention is given to the development of a hardening law capable of reproducing the same porosity evolution as provided by the standard basin simulator when the sediment material is submitted to gravitational compaction under oedometric conditions. A synthetic case is used to illustrate the ability of the proposed workflow to integrate horizontal deformations in the basin model as such effects cannot be captured by the simplified geomechanics of the standard basin code. The results obtained by the coupled simulation demonstrate that horizontal compression may significantly contribute to overpressure development and brittle failure of the basin seal rocks, highlighting the importance of a coupled approach to simulate complex tectonic history.

Based on available data and postulated geological scenarios, sedimentary basin modeling seeks to describe the present day state of a basin by solving a complex multi-physics problem through tens to hundreds of millions of years [START_REF] Allen | Basin analysis: principles and applications[END_REF][START_REF] Hantschel | Fundamentals of basin and petroleum systems modeling[END_REF]. It has been largely used in the last decades by the petroleum exploration industry to locate and estimate the amount of oil and gas in hydrocarbon reservoirs, providing also important information for drilling and production teams regarding fluid overpressure, cap rock integrity and fault stability.

Basin modeling has been nowadays driven to further applications in the context of energy transition as preliminary assessments through large scale simulations may help to find suitable CO2 storage or geothermal reservoirs by characterizing, for instance, their rock and fluid properties, natural fractures network and hydrothermal fluid circulation [START_REF] Benjakul | Understanding controls on hydrothermal dolomitisation: insights from 3D reactive transport modelling of geothermal convection[END_REF][START_REF] Grigoli | Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: a European perspective[END_REF][START_REF] Moscariello | Exploring for geo-energy resources in the Geneva Basin (Western Switzerland): opportunities and challenges[END_REF][START_REF] Stricker | The Potential of Depleted Oil Reservoirs for High-Temperature Storage Systems[END_REF][START_REF] Zappone | Fault sealing and caprock integrity for CO2 storage: an in-situ injection experiment[END_REF][START_REF] Zivar | Underground hydrogen storage: a comprehensive review[END_REF]. Simulating the evolution of a sedimentary basin through geological time requires the integration of several coupled phenomena such as sediment compaction, fluid flow and heat transport in order to predict rock porosity and permeability, temperature and heat flow distribution, as well as the identification of critically stressed zones [START_REF] Bjorlykke | Petroleum Geoscience: from Sedimentary Environments to Rock Physics[END_REF][START_REF] Gutierrez | Modeling of compaction and overpressuring in sedimentary basins[END_REF][START_REF] Tuncay | Quantitative basin modeling: present state and future developments towards predictability[END_REF].

In what concerns the mechanical aspects of sedimentary basins, understanding and modeling the burial history of sediments have been the subject of study for a long time [START_REF] Bjorlykke | Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins[END_REF][START_REF] Hamilton | Thickness and consolidation of deep-sea sediments[END_REF][START_REF] Hedberg | Gravitational compaction of clays and shales[END_REF][START_REF] Schmidt | The role of secondary porosity in the course of sandstone diagenesis[END_REF]. A major contribution has been published by [START_REF] Athy | Density, porosity, and compaction of sedimentary rocks[END_REF] who established an empirical law to describe rock porosity as an exponential function of burial depth. Later on, [START_REF] Smith | The dynamics of shale compaction and evolution of pore-fluid pressures[END_REF] has proposed to link porosity to vertical effective stress by means of a phenomenological relation. This equation has been extended by [START_REF] Schneider | Mechanical and chemical compaction model for sedimentary basin simulators[END_REF] by adding additional parameters to better describe near surface porosity data.

The so called Schneider's law is still applied in classical basin simulators to model mechanical compaction of sediments [START_REF] Schneider | A 3D Basin Model for Hydrocarbon Potential Evaluation: Application to Congo Offshore[END_REF]. This relation is based on the hypothesis of an oedometric evolution of the basin, where deformation is only driven by sediments overburden. This approach is considered to be suitable for modeling basins which were not subjected to important horizontal deformation throughout their history. However, it is not capable to capture the impact of lateral tectonic loadings that may strongly affect its poromechanical state, leading to overpressure build-up and eventually resulting in seal rock fracturing and fault reactivation [START_REF] Berthelon | Impact of tectonic shortening on fluid overpressure in petroleum system modelling: insights from the Neuquén basin, Argentina[END_REF][START_REF] Hubbert | Role of fluid pressure in mechanics of overthrust faulting: I mechanics of fluid-filled porous solids and its application to overthrust faulting[END_REF][START_REF] Maghous | Two-dimensional finite element analysis of gravitational and lateral-driven deformation in sedimentary basins[END_REF][START_REF] Obradors-Prats | Assessing the implications of tectonic compaction on pore pressure using a coupled geomechanical approach[END_REF].

In order to overcome this limitation and to account for a three-dimensional poromechanical framework, an iterative coupling scheme between the conventional basin simulator ArcTem [START_REF] Faille | Modeling Fluid Flow in Faulted Basins[END_REF] and a mechanical finite element code (Code_Aster) has been developed. The simplified geomechanics of the standard basin code is then replaced by a full 3D poroelastoplastic formulation, which is able to provide a more realistic geomechanical history of the basin. Beyond that, the decision to integrate an explicit coupling instead of developing an implicit formulation on the existing basin code stems to the fact that it provides more flexibility and efficiency in code management [START_REF] Kim | Stability and convergence of sequential methods for coupled flow and geomechanics: drained and undrained splits[END_REF].

In this context, three key features must be thoroughly addressed regarding the numerical aspects of the coupled procedure: a) the formulation of a comprehensive mechanical description of the geological material relying on a tensorial formalism [START_REF] Bernaud | A constitutive and numerical model for mechanical compaction in sedimentary basins[END_REF]; b) the strategy of the staggered solution between codes and the convergence of the poromechanical problem [START_REF] Felippa | Partitioned analysis of coupled mechanical systems[END_REF], and c) the geometrical consistency between the backward and forward basin history [START_REF] Crook | Towards an integrated restoration/forward geomechanical modelling workflow for basin evolution prediction[END_REF].

This work focuses on the porous material constitutive model used in the mechanical code together with some fundamental aspects of its numerical implementation. Special attention is given to the development of a hardening law capable of reproducing the same porosity evolution as provided by the standard basin simulator when the sediment material is submitted to gravitational compaction under oedometric conditions. Complementary aspects with respect to the coupling strategy, the backward/forward consistency as well as other theoretical components of the basin code are not in the scope of this paper. Additional works related to the geomechanical modeling of sedimentary basins include: [START_REF] Albertz | Critical state finite element models of contractional faultrelated folding: part 2. Mechanical analysis[END_REF], [START_REF] Barnichon | Finite element modelling of the competition between shear bands in the early stages of thrusting: strain localization analysis and constitutive law influence[END_REF], [START_REF] Brüch | A thermo-poro-mechanical constitutive and numerical model for deformation in sedimentary basins[END_REF], [START_REF] Buiter | Inversion of extensional sedimentary basins: a numerical evaluation of the localisation of shortening[END_REF], [START_REF] Crook | Predictive modelling of structure evolution in sandbox experiments[END_REF], [START_REF] Guy | Coupled modeling of sedimentary basin and geomechanics: a modified Drucker-Prager Cap model to describe rock compaction in tectonic context[END_REF], [START_REF] Jarosinski | Mechanics of basin inversion: finite element modelling of the Pannonian Basin System[END_REF], [START_REF] Miranda | Evaluation of the modified Cam Clay model in basin and petroleum system modeling (BPSM) loading conditions[END_REF][START_REF] Obradors-Prats | A diagenesis model for geomechanical simulations: Formulation and implications for pore pressure and development of geological structures[END_REF].

The constitutive model and main computational aspects are described in sections 2 and 3, respectively. Section 4 is dedicated to the verification of the material model and the calibration procedure based on the solution of an oedometric compression test, where sandstone and shale lithologies have been chosen to illustrate the constitutive model behavior. Finally, section 5 presents a 3D synthetic case of a sedimentary basin submitted to gravitational compaction and tectonic loading. The effectiveness of the coupling solution is discussed through comparison with results provided by the standard basin code before and after tectonics.

Constitutive model

The burial history of a layer of sediments involves significant porosity loss. Therefore, physical and geometric nonlinearities have to be considered in the formulation of the constitutive model to represent the porous material behavior throughout the compaction process. In this work, the sediment material is considered as an isotropic fully saturated poroelastoplastic medium undergoing large irreversible strains. The continuum mechanics sign convention is adopted, i.e. compressive stresses are negative.

State equation and complementary laws

In the framework of finite poroplasticity, the macroscopic rate equation of state involves a rotational time derivative Dt D J of the Terzaghi effective stress tensor 1 ' p + =   [START_REF] Dormieux | Poroelasticity and poroplasticity at large strains[END_REF]:

( ) p J d d C Dt D - =   -   + = : ' ' ' '       (1)
where  is the Cauchy total stress tensor, p is the pore-fluid pressure, d and p d are respectively the total and plastic part of the strain rate tensor and  is the spin rate tensor.

The fourth-order tensor C is the material drained elastic stiffness moduli and reads by virtue of isotropy assumption:

( )

1 2 1 1 3 2   +  - = K C (2)
where 1 and 1 refer to the second and fourth-order identity tensors whereas K and  denote the bulk and shear moduli, respectively. The latter are expected to increase with burial due to microstructural changes resulting from compaction: large macroscopic plastic strains are associated with an irreversible evolution of the microstructure, which is responsible for variations of the macroscopic elastic properties of the porous medium [START_REF] Bernaud | Evolution of elastic properties in finite poroplasticity and finite element analysis[END_REF][START_REF] Nooraiepour | Experimental mechanical compaction of reconstituted shale and mudstone aggregates: Investigation of petrophysical and acoustic properties of SW Barents Sea cap rock sequences[END_REF]. This stiffness increase is addressed in the model by means of the Hashin-Shtrikman upper bounds [START_REF] Hashin | Analysis of composite materials -a survey[END_REF], which are known to reasonably describe the elastic properties of isotropic porous media [START_REF] Zaoui | Continuum micromechanics: survey[END_REF]. The expressions for the bulk and shear moduli of the porous material are given as functions of the bulk and shear moduli of the solid phase, s k and s  , and the Eulerian porosity  :

( ) ( )
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The Eulerian porosity defines the pore space volume fraction in the current configuration of the porous elementary volume. It is a key parameter of the model as it serves to characterize its constitutive and transport properties. It is thus of major importance to define an evolution law to quantify porosity change as a function of the irreversible (plastic) densification of the porous material.

Assuming that the reversible (elastic) strains are infinitesimal, the Jacobian of the skeleton transformation defining the ratio between the porous element volume in its current and initial configurations can be approximated by the Jacobian of the plastic transformation, p J J  . In addition, the solid phase is considered to be incompressible during the irreversible transformation, which means that any variation of volume during plastic deformation is only due to porosity change. These considerations allow to compute the evolution of the porosity  as a function of the plastic Jacobian p J [START_REF] Bernaud | A constitutive and numerical model for mechanical compaction in sedimentary basins[END_REF]:

p J 0 1 1   - - = (5)

Plastic yield surface and flow rule

The plastic component of the model represents the mechanical compaction resulting from rearrangement of the solid particles during burial. The yield surface represented in Fig. 1 is based on the modified Cam-Clay model [START_REF] Wood | Soil Behaviour and Critical State Soil Mechanics[END_REF]:

( ) ( )( ) c t c p p p p M q p f + - + = ' ' , ' 2 2  (6)
where ( ) The flow rule adopted for the plastic strain rate reads:

s s q : 2 3 = is the equivalent deviatoric stress,
'     = g d p  (7)
where  is the non-negative plastic multiplier and g is the plastic potential:

( ) ( )( ) c t c p p p p N q p g + - + = ' ' , ' 2 2  (8)
Eq. ( 8) for the plastic potential differs from eq. ( 6) defining the yield surface through parameter N . When the stress state is located above the M line, the value of this parameter relates to the dilatancy angle in order to control excessive porosity increase during shearinduced dilation, resulting in a non-associated flow rule. For a stress state located below the M line (compaction), parameter N is taken equal to M , resulting in an associated flow rule.

Such conditions can be defined as:

M N  for 2 ' t c p p p - -  (9) M N = for 2 ' t c p p p - -  (10)
It must be noted that assuming purely mechanical aspects as the only mechanisms of porosity reduction may be considered as an oversimplified approach. In reality, the diagenetic processes transforming sediments into rock are much more complex and different mechanisms such as pressure solution may predominate at deeper layers of the basin, where stresses and temperature are elevated [START_REF] Schmidt | The role of secondary porosity in the course of sandstone diagenesis[END_REF][START_REF] Tada | Pressure solution during diagenesis[END_REF].

Hardening law in the context of basin modeling

The hardening law that describes the evolution of the consolidation pressure as a function of large plastic strains is a crucial feature of the model as parameter c p controls the size of the yield surface. It is of major importance in the context of sedimentary basin modeling as it controls how porosity changes during burial.

Let us first recall that in the context of small strain plasticity, the classical hardening law in the Cam-Clay model can be written as a function of the plastic volumetric strain p  and a material constant  that can be fitted from isotropic compression tests (Borja and Lee, 1990):

( )

p c c p p  - =  exp 0 (11)
An important assumption of the Cam-Clay model is that eq. ( 11) remains valid under non isotropic loadings. This implies that the effect of the deviatoric plastic strain on the hardening phenomenon is considered negligible. In other words, it is assumed that hardening is controlled by plastic densification [START_REF] Guéguen | Fundamentals of poromechanics[END_REF].

A simple way to generalize eq. ( 11) in the domain of large strains consists in replacing p  by 1 p J

, since both quantities are equal in the range of small plastic strains [START_REF] Bernaud | Evolution of elastic properties in finite poroplasticity and finite element analysis[END_REF]:

( ) (
)

1 exp 0 - - = p c c J α p p (12)
However, such a hardening law does not enforce the condition

0 1  -  p J
, corresponding to total pore closure, which may lead the sediment material to negative porosities under high isotropic compression [START_REF] Deudé | Compaction process in sedimentary basins: the role of stiffness increase and hardening induced by large plastic strains[END_REF]. To overcome this issue, a micromechanics-based law has been proposed by [START_REF] Barthélémy | Micromechanical approach to the modelling of compaction at large strains[END_REF] with the advantage that c p tends towards infinity when the pore space vanishes:

0 0 ln ln   c c p p = (13)
This formulation has been recently modified by [START_REF] Brüch | Overpressure development in sedimentary basins induced by chemo-mechanical compaction of sandstones[END_REF] using a calibration exponent m to predict more realistic porosity distribution curves for different lithologies, proving to be relevant to represent the compaction trend of clays:

m c c p p         = 0 0 ln ln   (14)
Even though eq. ( 14) may reasonably model the mechanical compaction of sediments, it does not permit to properly reproduce the variation of porosity with burial under oedometric conditions as done by the basin code, which is one of the assumptions of this work. Therefore a new hardening law must be formulated.

Formulation of a new hardening law

Before working on the mathematical formulation of the new hardening law, a brief review of the evolution of sedimentary basins compaction laws is presented.

One of the first empirical laws was formulated by [START_REF] Athy | Density, porosity, and compaction of sedimentary rocks[END_REF], describing rock porosity as a function of the burial depth z and a decay factor  :

( ) z    exp 0 = (15)
Based on similar assumptions and relying on Terzaghi's concepts, [START_REF] Smith | The dynamics of shale compaction and evolution of pore-fluid pressures[END_REF] proposed a phenomenological relationship to estimate porosity as a function of the vertical effective stress v '  and a lithology dependent parameter E as follows:

( )

E v ' exp 0    = (16)
The basin code used in this work relies on the porosity law developed by [START_REF] Schneider | Mechanical and chemical compaction model for sedimentary basin simulators[END_REF], who extended eq. ( 16) by introducing a residual porosity r  and a second exponential term to better fit field data: 

( ) ( ) b v b a v a r E E ' exp ' exp       + + = (17) where a  , b  ,
    + + = 0 .
The development of the expression for c p permitting to obtain from the mechanical code the same porosity as the one given by the basin code during gravitational compaction requires first the extension to the three-dimensional case of the one-dimensional compaction law (17). One possible way to proceed is to rewrite Schneider's law as a function of the mean effective stress: p . The next step consists of identifying the hardening law from the response of a representative elementary volume (REV) undergoing plastic deformation due to an isotropic compression together with the phenomenological law of eq. ( 18). According to the plastic yield surface, the loading representing the isotropic compression is a uniform pressure

( ) ( ) b b a a r C p C p ' exp ' exp     + + = (18)
c p p - = '
applied to the boundary of the REV. The corresponding effective stress is

1 ' c p - = 
. By substituting the current effective stress, eq. ( 18) can be rewritten as:

( ) ( ) b c b a c a r C p C p - + - + = exp exp     (19)
In the case 0 = b  , an analytical expression for c p can be straightforwardly derived:

        - = r a a c C p    ln (20)
Assuming that at its initial state 0   = the sediment material has no compressive strength, 0 = c p , eq. ( 20) gives

r a    - = 0
. The hardening law can now be rewritten as:

        - - = r r c C p     0 ln (21)
The calibration coefficient C controls the evolution of the hardening parameter c p with respect to porosity change. Depending on the nature of the sediment material, the microstructural changes resulting from mechanical compaction may lead to different material strength, and for the same compaction level, higher values of C will result in higher values of c p . By analogy with parameter E of Smith's law ( 16), higher values of C would result in higher porosity values for a given basin depth.

This expression is limited to representing the porosity trend of a single exponential compaction law as it has been derived in the case of 0 = b  . To circumvent this limitation and based on the same reasoning of eq. ( 14), an exponent m is applied in an attempt to properly represent the general Schneider's law (17) used by the sedimentary basin code:

m r r c C p         - - =     0 ln (22)
The resulting hardening law ( 22) is used in the present work to represent the porous material behavior in the mechanical code. It can be verified that + → c p when r   → , excluding the possibility to have porosities lower than the residual value. The verification of the model is presented in section 4.

Computational aspects

The mechanical problem is solved by means of the finite element method. The solution of the problem is achieved by solving at each instant of time a specific boundary value problem formulated on the geometrical domain  of the considered material system. It is defined by the field, constitutive and complementary equations, and completed by the initial values of all field variables together with the boundary conditions that should be prescribed on the boundary   of  .

Formulation of the mechanical problem

Disregarding inertial effects, the momentum balance equation for the porous continuum reads:

0 div = + g   (23)
where g is the acceleration of gravity and ( )

f s     + - = 1
is the density of the fluid saturated porous medium, with s  and f  corresponding to the mass densities of the solid and fluid phases [START_REF] Coussy | Poromechanics[END_REF].

The discretized form of the mechanical problem is obtained from weak formulation of the equilibrium equation at time

t t t  + = '
(unknown configuration) employing piecewise linear functions for the displacement U [START_REF] Zienkiewicz | The Finite Element Method V.1: The Basis[END_REF]. The updated Lagrangian scheme [START_REF] Bathe | Finite Element Procedures[END_REF] is used to calculate the finite element solution between the configuration at time t (updated reference configuration) and that at time ' t . The unknown variables are then updated at each time step t  .

Denoting by x t the coordinate vector of a sediment particle at time t , the boundary value problem is formulated in terms of displacement U of the particle between t and ' t :

x x U t t - = ' (24)
The pore-pressure field obtained from the basin code is discretized in time according to the mechanical scheme. The pressure variation at points similar within the porous material reads:

( ) ( ) p t x p x p P t t t  ' '  = - = (25)
The variation of the stress tensor is defined as:

    ' ' t t t t  = - (26)
The Eulerian strain rate tensor d t '

and the rotation rate tensor  ' t are approximated by:

  s t t U t d   = 1 ' (27)   a t t U t   =  1 ' ( 28 
)
The hypothesis of infinitesimal transformation is adopted by respecting the condition 1  U t for each time step. In fact, the norm of the displacement gradient is verified for each converged step and, if it does not respect a required criterion, the corresponding time step is automatically subdivided and recalculated in order to ensure this condition. As a consequence, the geometrical nonlinearities can be disregarded in the numerical procedure. Accordingly, the resulting expression of the state equation for time ' t is: The mechanical problem is then solved for time ' t by substituting eq. ( 29) in the weak form of the equilibrium eq. ( 23), considering

  1 : ' ' P U C s t ep t t t -  + =   (29)
' C C t t  ,   t t  ' , t t      ' and t t    ' .
These approximations imply that the only nonlinear term in the formulation concerns the fourth order tensor ep t C ' due to the plastic evolution of the porous material. It is worth mentioning that the local integration of the plastic strains is performed based on a generalization of the fully implicit return mapping algorithm proposed by [START_REF] Nguyen | On the elastic plastic initial boundary value problem and its numerical integration[END_REF].

Tangent operator

In order to enhance the convergence rate of the iterative solution of the mechanical problem, the consistent tangent stiffness operator must be derived (Crisfield, 1991). Disregarding the terms involving the spin rate tensor, the state equation reads:

( ) p d d C - = : '   (30)
Taking the first order approximation of the plastic strain rate flow rule:

' : ' ' 2 2           +   = g g d p (31)
Substituting the strain rate (31) in eq. ( 30) gives:

          - = ' : ' ~   g d R   (32)
where the fourth-order tensor R is defined as:

1 2 2 1 ~' - -            + =   g C R (33)
The plastic consistency condition 0 = f  reads:

0 ' : ' =      +   =        c c p p f f f (34)
Eqs. ( 32) and ( 34) allow to obtain the plastic multiplier  :

          -       = c c p p f g R f d R f ' : : ' : : ' ~ (35)
To symmetrize the fourth order tensor that will be used to construct the mechanical stiffness matrix, an additional scalar is introduced [START_REF] Luo | A symmetrisation method for nonassociated unified hardening model[END_REF]:

d R f d R g : : ' : : '        = (36)
Multiplying and dividing eq. ( 35) by  : where the symmetric tensor of the consistent tangent moduli reads:

             -       =      
             -          - =       c c ep p p f g R f R g g R R C ' : : ' : ' ' : ~~ (39)

Coupling the mechanical and basin codes

Once the mechanical problem is solved as described in section 3.1, its solution has to be transmitted to the basin code. The objective is to integrate the porosity change induced by horizontal deformations in the sedimentary basin model. This is achieved by means of an iterative coupling scheme presented in Fig. 2 and briefly described in the remaining part of this section.

The basin history is defined in the standard basin code by a sequence of geological events. The coupling strategy considers these events as the time periods for which the staggered solution between the basin and mechanical codes should be repeated until convergence is reached. During these periods, each code has its own time discretization and independent porosity evaluation. Therefore, the convergence criterion used for the iterative coupling is based on the porosity difference between the two codes.

For a given geological event n, the first calculation is performed by the basin code. The pore-pressure P obtained at the end of the geological event is transmitted to the mechanical code and applied to eq. ( 29) to solve the equilibrium problem. The porosity distribution M  resulting from the 3D geomechanics solution is then compared to the porosity values B  obtained from the simplified compaction law of the basin simulator. If the porosity difference

B M    - = 
is lower than a user defined tolerance, the numerical simulation proceeds to the next event. Otherwise, a corrective term v   is applied to correct the inconsistency between the porosity computed from both codes and the event is computed again. This type of predictor-corrector approach is well known for coupling geomechanics to reservoir simulation [START_REF] Mainguy | Coupling fluid flow and rock mechanics: formulations of the partial coupling between reservoir and geomechanical simulators[END_REF].

Keeping in mind that the basin code evaluates porosity change as a function of the vertical effective stress 17), the corrective term v   integrates the effects of the deformation field obtained in the mechanical code. For the ith iteration of the staggered procedure, the vertical stress considered in the basin code reads:

p v v + =   ' through eq. (
i v i v i v , , 1 ,     + = + (40)
Depending on the permeability distribution of the basin, the corrective term v   will affect the porosity and/or the pore-pressure fields in the basin code. The scheme is repeated up to porosity convergence. 

Verification of the material model

This section illustrates the capability of the constitutive model to reproduce the same porosity evolution of the basin code when submitted to gravitational compaction. The verification procedure is based on the solution of a representative elementary volume of the porous material subjected to a prescribed uniaxial strain parallel to the vertical direction v e , i.e. oedometric compression. The REV represents a macroscopic particle of the sediment material undergoing compaction during burial.

Oedometric compression problem

Fig. 3 presents the geometry and loading of the model. The problem is treated in drained conditions (no excess pore-pressure). In its initial configuration, the REV is a parallelepipedic domain 0

 of height 0 h and horizontal sides 0 l . The response of the REV to increasing values of displacement  is supposed to simulate the stress and deformation of particles located at increasing depths of a sedimentary basin. 

' : ' =    +   = p p c c J J p p f f f      (42)
The rate of the Jacobian of plastic transformation is given by:

p p p d J J tr =  (43)
Introducing eqs. ( 1), ( 7) and ( 43) in eq. ( 42) allows deriving the plastic multiplier  : ' tr ' : : '

: : ' ~~           -       = g J J p p f g C f d C f p p c c  (44)
Finally, substitution of eqs. ( 7) and ( 44) in eq. ( 43) leads to the following nonlinear differential equation that governs the evolution of 

: : ' ~~             -       = g g J J p p f g C f d C f J J p p c c p p  (45) 
A closed-form solution to this differential equation has been formulated in [START_REF] Brüch | A constitutive model for mechanical and chemo-mechanical compaction in sedimentary basins and finite element analysis[END_REF] for the case of an associated plastic flow rule with linear expressions for the yield surface and hardening law. However, this cannot be achieved for the present constitutive model and a numerical procedure is necessary for this purpose.

The strategy adopted herein to evaluate p J is to discretize the problem in time and to numerically integrate eq. ( 45), then solving the resulting nonlinear problem explicitly. Once the plastic Jacobian is determined for time t , the constitutive and complementary variables can be accordingly updated. The increasing displacement  is applied until porosity reaches its minimum value. Given the fact that the model assumes

0   =  t p J J
, the displacement needed to reach residual porosity is given by the following equation:

( )         - - -  = r r h      1 1 1 0 0 (46)
Finally, a calibration procedure has to be carried out for each lithology of the geological model in order to find the parameters C and m of the hardening law ( 22) that best fit the burial trend described by Schneider's law (17). This optimization process has been implemented in the mechanical code as a preprocessing step by applying an automatic procedure based on the least squares method by repeatedly solving eq. ( 45) for different sets of parameters.

Sandstone and shale models

Sandstone and shale lithologies have been chosen to illustrate the constitutive model behavior and the results of the calibration procedure based on the oedometric compression test. The material parameters for the basin compaction law ( 17) are presented in Table 1. 

    + + = 0 .

The values of

C and m to be used in the hardening law ( 22) are obtained from the automatic calibration procedure based on the REV solution of section 4.1. The relation between porosity and vertical effective stress resulting from the oedometric test is presented in Fig. 4 for both lithologies. The porosity values obtained from the basin compaction law (17) are given as reference for the same range of stress. The results confirm the ability of the constitutive model to provide similar porosity trends as those of the standard basin simulator when the sediment material is submitted to oedometric conditions. According to eq. ( 46), the displacement  applied to the VER corresponds to 44.4% and 58.3% of deformation for the sandstone and shale materials, respectively. These deformation levels emphasize the need to appropriately handle the problem of sedimentary basin compaction in the framework of large irreversible strains.

Illustrative case

The iterative coupling scheme between 3D geomechanics and the standard basin code has been used by petroleum exploration teams as a tool to better understand the geological history of sedimentary basins in complex conditions. A recent work has been published by [START_REF] Berthelon | Impact of tectonic shortening on fluid overpressure in petroleum system modelling: insights from the Neuquén basin, Argentina[END_REF] demonstrating the importance of considering horizontal deformations to reliably model the pore-pressure evolution of the Neuquén basin in Argentina.

In this work, a synthetic case has been chosen to illustrate the coupled procedure in a threedimensional framework. The main advantage of working with a simplified scenario is that it makes it easier to investigate the constitutive model behavior and its impact on the evolution of the sedimentary basin. The geological scenario concerns a large period of sediment deposition and gravitational compaction followed by a tectonic phase leading to the development of a characteristic buckle fold at the center of the model. The results obtained by means of the coupled scheme are compared to those of the classical basin code before and after tectonics.

Problem statement

The deposition history of the sedimentary basin is given by the following geological events: 1) a sandstone compartment is deposited in the first 20 My at constant rate of 144 m/My, 2) in the sequel, shale seal rocks are deposited during 30 My at 53 m/My, 3) finally, a sandstone overburden is deposited in the last 40 My with an average rate of 58.5 m/My. During these sequences, all stratigraphic units are disposed parallel to the horizontal plane. Furthermore, both compartment and overburden are considered to be formed by the same sandstone lithology.

Immediately after the deposition sequences, the basin is submitted to a lateral shortening of 4% during 4 My at constant rate. According to the geological scenario of the basin code during this phase, a central region of the basin is progressively uplifted as a result of the tectonics-induced deformation. As a consequence, a superficial thickness of the basin is partially eroded.

The geometry is defined in the horizontal plane xy by a 50x50 km square. In the vertical direction z , the basin is composed by 20 stratigraphic units: 8 layers for the compartment, 8 layers for the seal rocks and 4 layers for the overburden. The model is discretized by 100 100 8-node hexahedral elements in the horizontal plane for a total of 200,000 elements. The present day geometry of the basin is shown together with its lithology distribution in Fig. 5, where the sandstone formations are drawn in blue and the shale rocks in red. Only a quarter of the basin is presented due to the existence of two vertical planes of symmetry intersecting each other at the center of the model. One can also observe the erosion process of the superficial layer, starting at the limbs of the fold and reaching nearly 500 m of total erosion at the hinge. In the mechanical code, the boundary conditions are applied as follows. During a nontectonic period, nodes of the bottom surface are fixed and the lateral sides of the model have their normal direction restrained. During a tectonic sequence, the loading is simulated as an imposed deformation rate. This is achieved by applying at each time step a linear displacement field at the boundaries of the model corresponding to the desired kinematics.

In the basin code, the water table coincides with the top surface of the model during all the simulation. The bottom and lateral surfaces are impermeable. For the sake of simplicity, the thermal problem assumes an imposed temperature of C 10 = T at the top surface of the model combined with a prescribed vertical temperature gradient of km C 30 = T .

Material data

The sandstone and shale data correspond to those of section 4.2. In addition, the mass density of the solid phase for the sandstone is . Water is considered to be the only fluid saturating the porous material with its mass density given by [START_REF] Coussy | Poromechanics[END_REF]: The permeability tensor reads [START_REF] Schneider | A 3D Basin Model for Hydrocarbon Potential Evaluation: Application to Congo Offshore[END_REF]:

       -  = T K p f f f f    3 exp
f k a K = (49)
where f k is the intrinsic permeability coefficient and a is the anisotropy tensor defined as:

( ) with t a and n a respectively being the anisotropy coefficients related to the orthogonal tangential directions, 1 t e and 2 t e , and normal direction n e with respect to the layering plan of the rock in its local coordinate system.

n
The intrinsic permeability coefficient f k of the porous medium is modeled through Kozeny-Carman formula:

( ) 2 2 3 1 2 . 0   - = S k f if % 10   (51) ( ) 2 2 5 1 20   - = S k f if % 10   (52)
where S is the specific surface area of the porous medium. The sandstone permeability tensor is taken isotropic with 1 = = . These parameters have been chosen to make the sandstone material highly permeable during the whole simulation so that any overpressure development results from the low permeability shale layers. In addition, shale rocks permeability may be strongly anisotropic due to the presence of bedding, resulting in permeability values in the vertical direction magnitudes lower than in the horizontal direction [START_REF] Pan | Measuring anisotropic permeability using a cubic shale sample in a triaxial cell[END_REF]. These microstructural effects are represented in the model by the adopted n a coefficient. It should be emphasized that the Kozeny-Carman formula for porosity-permeability relation is mostly applicable to sediment particles with spherical structures. It is known that such approach fails to accurately predict the permeability of shale-like rocks for which an appropriate phenomenological or micromechanics-based model should be considered [START_REF] Ma | Review of permeability evolution model for fractured porous media[END_REF][START_REF] Revil | Permeability of shaly sands[END_REF]. However, such approach may be acceptable in the context of a synthetic sedimentary basin model.

Results: gravitational compaction

As burial proceeds and the basin deforms under oedometric conditions, all stratigraphic units remain parallel to each other. As a consequence, the resulting poromechanical fields at a given depth are constant with respect to the horizontal directions and a single profile is enough to illustrate their distribution in the basin. In the following part, the results of the gravitational compaction period are presented for the coupled as well as for the standard approaches.

The porosity, overpressure and effective stress profiles are presented in Figs. . It can be readily observed that both approaches provided the same results. This validates the requirement of the present constitutive model to represent the same behavior of the basin code under oedometric conditions, so that the iterative coupling scheme may affect the standard code simulation only when needed, i.e., when the horizontal deformations are not negligible. 

Results: tectonic loading

The impact of tectonics on the present day state of the basin is analyzed in this section. It concerns an imposed deformation of 4% in the x direction for a period of 4 My at constant rate. The basin profiles given hereafter refer to the center of the model. . As expected, the results obtained from the coupled code are significantly different from those provided by the classical basin code alone as the latter is not capable of taking horizontal deformations into account. As a consequence, the basin code porosity distribution is higher than the coupled one, except for the top compartment and bottom seal rocks which resulted in similar porosity values. However, the mechanics of porosity loss in these zones differs for each simulation. In the coupled case the porosity reduction results from tectonics, whereas for the standard one it results from dissipation of the excess pore fluid pressure cumulated during the sedimentation phase.

This can be verified by comparing Figs. 7 and 10, where the overpressure in the sandstone compartment has reduced from 7.7 MPa to 1.3 MPa in the standard simulation. The opposite has happened in the coupled calculation, where the tectonic loading has increased the overpressure up to 23.3 MPa. As a consequence, the resulting vertical effective stress profiles are particularly different between the two cases. The maximum compressive horizontal effective stress H '

 and the minimum compressive horizontal effective stress h '  cannot be compared between the two simulations since they only exist in the coupled code. A three-dimensional geomechanics model is of interest for industrial applications as it allows to identify critically stressed zones and to evaluate seal rocks integrity. One way of doing this is to analyze the distribution of the stress ratio ( )

t p p q - - '
to verify the proximity of the stress state to the M line of the yield surface (6). In that matter, a change in the plastic regime from ductile failure (compaction) to brittle failure (dilation) can be used as a preliminary criterion to predict the possibility of shear-induced fractures in the basin [START_REF] Bemer | Geomechanical log deduced from porosity and mineralogical content[END_REF].

The stress ratio along the center of the model is shown in Fig. 12 for the coupled solution before and after tectonics. It can be observed that during the burial phase a constant value of 0.42 is obtained for the whole basin. Nevertheless, the tectonic deformation has led the bottom of the shale seal rocks and the sandstone formation at the hinge of the fold to present stress ratio values higher than

2 . 1 = M
. Two different brittle behaviors are likely to occur for the rocks in these two locations: for the lower shale rocks, the brittle behavior results from pore-pressure build up in undrained conditions, whereas for the surface sandstones the brittle behavior is related to a lack of confinement stress required to resist the shear efforts acting on the top of the basin. In what follows, the investigation of the constitutive model behavior will focus on the evolution of the lower shale rock which presented a stress ratio higher than the M value in Fig. 12 as the integrity of seal rocks is of major interest in sedimentary basin modeling. An effective way to understand this failure mechanism is by drawing a stress path as shown in Fig. 13 for the element in the base of the shale layer located at the center of the basin model. The plastic yield surfaces before and after tectonics are also represented. From the moment when the lower seal rock has been deposited until the end of the deposition period, the stress path follows a straight line defining the porous material burial trend. As the lateral loading starts, the deviatoric stress increases, while the mean effective stress decreases as a consequence of the pore-pressure build up. The stress path follows the plastic yield surface and slightly crosses the M line, leading to shear-induced dilation. the tectonic shortening starts and the porepressure significantly increases. At the same time, the erosion process takes place in the uplifted part of the basin, resulting in a constant decrease of the lithostatic and hydrostatic pressures. This phase is characterized by two opposite phenomena: the pore-pressure increase due to tectonics and its decrease associated to the lowering level of the water table. It is interesting to note that the maximum overpressure in the bottom shale rock occurs at My 2 -= t

, corresponding to 23.9 MPa. t . This quantity can be used as a first approach to visualize the potential distribution of natural fracturing in the basin as illustrated in Fig. 15, where 0  p eq  indicates that the porous material has undergone shear-induced dilation. This is the case for a large region of the bottom seal rocks and small regions of the top compartment and top overburden sandstones. The present day equivalent shear strain of the bottom seal rocks is presented in Fig. 16.

The extent of the brittle failure region is 4.5 km in the x direction and 11.5 km in the y direction. It can be observed that the highest values occur at the limbs of the fold, with its maximum located 7 km away from the center of the model. As discussed in Figs. 12, 13 and 14, the distribution of the brittle failure deformation in these rocks results from the multiple phenomena occurring during the tectonic phase of the basin.

It is important to note that the consolidation pressure c p remains the only hardening parameter of the plastic model. The other parameters defining the size and shape of the yield surface, t p and M , are taken as constants, as well as parameter N defining the plastic flow rule. This simplified approach is justified by the fact that the major concern at the present moment corresponds to the ductile behavior (compaction) of the constitutive model. Nevertheless, considering additional hardening laws such as the evolution of parameter The same physics reported in this section have been obtained in the real case study of the Neuquén basin due to successive tectonic shortening phases related to the Andean subduction [START_REF] Berthelon | Impact of tectonic shortening on fluid overpressure in petroleum system modelling: insights from the Neuquén basin, Argentina[END_REF]. A large zone of brittle failure has been observed in the low permeability Vaca Muerta formation resulting from the tectonic phase, with higher shear strain values at the edges of the western fold of the model.

In addition, similar material behavior has been observed by other authors such as [START_REF] Maghous | Two-dimensional finite element analysis of gravitational and lateral-driven deformation in sedimentary basins[END_REF] and [START_REF] Obradors-Prats | Assessing the implications of tectonic compaction on pore pressure using a coupled geomechanical approach[END_REF]. These authors worked on synthetic models to investigate the influence of lateral loadings in sedimentary basins by applying different rates of horizontal deformation under different states of basin consolidation.

It is important to note that this synthetic case has been developed to provide purely oedometric deformation during the whole deposition phase of the basin. For this reason, all stratigraphic units of the geological model are expressly deposited parallel to the horizontal plane. In real case basins this is not likely to occur and non-negligible horizontal deformations may occur even in the absence of tectonics.

Conclusions

The paper presented a poromechanical constitutive law specifically devised to couple 3D geomechanics to classical sedimentary basin modeling. Based on the premise that the standard basin simulator provides consistent results for gravitational compaction, a new hardening law has been developed to make the mechanical code reproduce the same burial history of the basin code when submitted to oedometric conditions. Moreover, this turned out to be a good coupling strategy as it requires the mechanical solution to correct the basin code simulation only when horizontal deformations are not negligible, thus optimizing the iterative solution.

Referring to tectonics, the synthetic scenario of section 5 has revealed the lack of capacity of the standard basin code to deal with complex geological conditions. For such situations, the geomechanics coupling has proven its relevance to integrate horizontal deformations in the numerical simulation. The results of section 5.4 have shown that the lateral loading has led to significant overpressure build-up in the sandstone compartment, which in consequence resulted in a large surface of brittle failure in the shale seal rocks.

Although initially developed to serve hydrocarbon exploration teams, the proposed workflow may have an important role for the energy transition as the usage of the subsurface extends to other industrial applications such as CO2 storage and geothermal energy. For such activities, a reliable basin simulation based on a comprehensive geomechanical framework may provide valuable information regarding critically stressed zones, seal rock integrity and fault stability. In addition, the resulting poromechanical fields can be used to define initial and boundary conditions of reservoir models.

Further developments are still ongoing to extend the geomechanics contribution in basin modeling. Regarding the constitutive model, the impact of brittle failure on rock permeability is an important issue to be addressed, as well as the incorporation of a chemo-mechanical coupling to account for fluid-rock interactions occurring at the microstructural level of the porous material. In what concerns the mechanical code, a new strategy of multi-domain parallel computation capable of dealing with large displacement contact problems is under development in order to simulate geological fault systems.

  the mean effective stress. Parameter M is related to the Mohr-Coulomb friction angle and defines the slope of the line that intersects the yield surface at the tensile intercept t p of the hydrostatic axis and the q peak value[START_REF] Neto | Computational methods for plasticity: Theory and applications[END_REF]. The consolidation pressure c p defines the compressive intercept of the hydrostatic axis and represents the hardening parameter of the model.
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  is the fluid thermal dilation coefficient and T is the temperature. The fluid viscosity is given by the following equation, with f  in s MPa  and T in degree Celsius[START_REF] Schneider | Modèle de compaction élasto-plastique en simulation de bassins[END_REF]:
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 14 Fig. 14. Pore fluid, lithostatic and hydrostatic pressures evolution in the lower seal rock.
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 15 Fig. 15. Present day equivalent shear strain of the basin (vertical exaggeration: 3x).

  brittle behavior of the model, resulting in a different distribution of the equivalent shear strain in Figs. 15 and 16. Such aspects remain to be addressed in a future version of the model.
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 16 Fig. 16. Present day equivalent shear strain of the bottom seal rocks.

Table 1 :

 1 Basin compaction law parameters. Table2gives the elastic and plastic parameters of the 3D poromechanical constitutive law, where 0 E and 0  respectively denote the initial Young modulus and Poisson's ratio of the material. The plastic parameters M , values correspond to a friction angle of 30° and to a dilatancy angle of 10°, respectively . The initial and residual porosities come from the basin compaction law, with

	Parameter Sandstone	Shale
		r	( ) %		1	4
		a	( ) %		14	12
	a E		( MPa	)	17	4
		b	( ) %		30	44
	b E		( MPa	)	43	16
						r	a	b

N and t p are taken constant. The M and N

Table 2 :

 2 Poromechanical law parameters.

	Parameter Sandstone	Shale
	0 E			( MPa	)	9000	4000
					0	0.32	0.26
				M	1.2	1.2
					N	0.37	0.37
	t p		( MPa	)	0.25	0.25
		0	( ) %	45	60
		r	( ) %	1	4
	C	( ) MPa	28.77	11.12
					m	1.09	1.17