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Abstract. Classical sedimentary basin simulators account for simplified geomechanical 9 

models that describe material compaction by means of phenomenological laws relating 10 

porosity to vertical effective stress. In order to overcome this limitation and to deal with a 11 

comprehensive poromechanical framework, an iterative coupling scheme between a basin 12 

modeling code and a mechanical finite element code is adopted. This work focuses on the 13 

porous material constitutive law specifically devised to couple 3D geomechanics to basin 14 

modeling. The sediment material is considered as an isotropic fully saturated poro-15 

elastoplastic medium undergoing large irreversible strains. Special attention is given to the 16 

development of a hardening law capable of reproducing the same porosity evolution as 17 

provided by the standard basin simulator when the sediment material is submitted to 18 

gravitational compaction under oedometric conditions. A synthetic case is used to illustrate 19 

the ability of the proposed workflow to integrate horizontal deformations in the basin model 20 

as such effects cannot be captured by the simplified geomechanics of the standard basin code. 21 

The results obtained by the coupled simulation demonstrate that horizontal compression may 22 

significantly contribute to overpressure development and brittle failure of the basin seal rocks, 23 

highlighting the importance of a coupled approach to simulate complex tectonic history. 24 

 25 
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1 Introduction 29 

Based on available data and postulated geological scenarios, sedimentary basin modeling 30 

seeks to describe the present day state of a basin by solving a complex multi-physics problem 31 

through tens to hundreds of millions of years (Allen and Allen, 2005; Hantschel and 32 

Kauerauf, 2009). It has been largely used in the last decades by the petroleum exploration 33 

industry to locate and estimate the amount of oil and gas in hydrocarbon reservoirs, providing 34 

also important information for drilling and production teams regarding fluid overpressure, cap 35 

rock integrity and fault stability. 36 

Basin modeling has been nowadays driven to further applications in the context of energy 37 

transition as preliminary assessments through large scale simulations may help to find suitable 38 

CO2 storage or geothermal reservoirs by characterizing, for instance, their rock and fluid 39 

properties, natural fractures network and hydrothermal fluid circulation (Benjakul et al., 2020; 40 

Grigoli et al., 2017; Moscariello, 2019; Stricker et al., 2020; Zappone et al., 2021; Zivar et al., 41 

2020). Simulating the evolution of a sedimentary basin through geological time requires the 42 

integration of several coupled phenomena such as sediment compaction, fluid flow and heat 43 

transport in order to predict rock porosity and permeability, temperature and heat flow 44 

distribution, as well as the identification of critically stressed zones (Bjorlykke, 2010; 45 

Gutierrez and Wangen, 2005; Tuncay and Ortoleva, 2004). 46 

In what concerns the mechanical aspects of sedimentary basins, understanding and 47 

modeling the burial history of sediments have been the subject of study for a long time 48 
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(Bjorlykke 2014; Hamilton, 1959; Hedberg, 1936; Schmidt and McDonald, 1979). A major 49 

contribution has been published by Athy (1930) who established an empirical law to describe 50 

rock porosity as an exponential function of burial depth. Later on, Smith (1971) has proposed 51 

to link porosity to vertical effective stress by means of a phenomenological relation. This 52 

equation has been extended by Schneider et al. (1996) by adding additional parameters to 53 

better describe near surface porosity data. 54 

The so called Schneider’s law is still applied in classical basin simulators to model 55 

mechanical compaction of sediments (Schneider et al., 2000). This relation is based on the 56 

hypothesis of an oedometric evolution of the basin, where deformation is only driven by 57 

sediments overburden. This approach is considered to be suitable for modeling basins which 58 

were not subjected to important horizontal deformation throughout their history. However, it 59 

is not capable to capture the impact of lateral tectonic loadings that may strongly affect its 60 

poromechanical state, leading to overpressure build-up and eventually resulting in seal rock 61 

fracturing and fault reactivation (Berthelon et al., 2021; Hubbert and Rubey, 1959; Maghous 62 

et al., 2014; Obradors-Prats et al., 2017). 63 

In order to overcome this limitation and to account for a three-dimensional poromechanical 64 

framework, an iterative coupling scheme between the conventional basin simulator ArcTem 65 

(Faille et al., 2014) and a mechanical finite element code (Code_Aster) has been developed. 66 

The simplified geomechanics of the standard basin code is then replaced by a full 3D poro-67 

elastoplastic formulation, which is able to provide a more realistic geomechanical history of 68 

the basin. Beyond that, the decision to integrate an explicit coupling instead of developing an 69 

implicit formulation on the existing basin code stems to the fact that it provides more 70 

flexibility and efficiency in code management (Kim et al., 2011). 71 

In this context, three key features must be thoroughly addressed regarding the numerical 72 

aspects of the coupled procedure: a) the formulation of a comprehensive mechanical 73 

description of the geological material relying on a tensorial formalism (Bernaud et al., 2006); 74 

b) the strategy of the staggered solution between codes and the convergence of the 75 

poromechanical problem (Felippa et al., 2001), and c) the geometrical consistency between 76 

the backward and forward basin history (Crook et al., 2018). 77 

This work focuses on the porous material constitutive model used in the mechanical code 78 

together with some fundamental aspects of its numerical implementation. Special attention is 79 

given to the development of a hardening law capable of reproducing the same porosity 80 

evolution as provided by the standard basin simulator when the sediment material is submitted 81 

to gravitational compaction under oedometric conditions. Complementary aspects with 82 

respect to the coupling strategy, the backward/forward consistency as well as other theoretical 83 

components of the basin code are not in the scope of this paper. Additional works related to 84 

the geomechanical modeling of sedimentary basins include: Albertz and Sanz (2012), 85 

Barnichon and Charlier (1996), Brüch et al. (2018), Buiter et al. (2009), Crook et al. (2006), 86 

Guy et al. (2019), Jarosinski et al. (2011), Miranda et al. (2020), Obradors-Prats et al. (2019). 87 

The constitutive model and main computational aspects are described in sections 2 and 3, 88 

respectively. Section 4 is dedicated to the verification of the material model and the 89 

calibration procedure based on the solution of an oedometric compression test, where 90 

sandstone and shale lithologies have been chosen to illustrate the constitutive model behavior. 91 

Finally, section 5 presents a 3D synthetic case of a sedimentary basin submitted to 92 

gravitational compaction and tectonic loading. The effectiveness of the coupling solution is 93 

discussed through comparison with results provided by the standard basin code before and 94 

after tectonics. 95 

 96 
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2 Constitutive model 97 

The burial history of a layer of sediments involves significant porosity loss. Therefore, 98 

physical and geometric nonlinearities have to be considered in the formulation of the 99 

constitutive model to represent the porous material behavior throughout the compaction 100 

process. In this work, the sediment material is considered as an isotropic fully saturated poro-101 

elastoplastic medium undergoing large irreversible strains. The continuum mechanics sign 102 

convention is adopted, i.e. compressive stresses are negative. 103 

2.1 State equation and complementary laws 104 

In the framework of finite poroplasticity, the macroscopic rate equation of state involves a 105 

rotational time derivative DtDJ  of the Terzaghi effective stress tensor 1' p+=  106 

(Dormieux and Maghous, 1999): 107 

( )pJ
ddC

Dt

D
−=−+= :'''

'

~






 (1) 

where   is the Cauchy total stress tensor, p  is the pore-fluid pressure, d  and 
p

d  are 108 

respectively the total and plastic part of the strain rate tensor and   is the spin rate tensor. 109 

The fourth-order tensor 
~
C  is the material drained elastic stiffness moduli and reads by virtue 110 

of isotropy assumption: 111 

( )
~~
121132  +−= KC  (2) 

where 1 and 
~
1  refer to the second and fourth-order identity tensors whereas K  and   denote 112 

the bulk and shear moduli, respectively. The latter are expected to increase with burial due to 113 

microstructural changes resulting from compaction: large macroscopic plastic strains are 114 

associated with an irreversible evolution of the microstructure, which is responsible for 115 

variations of the macroscopic elastic properties of the porous medium (Bernaud et al., 2002; 116 

Nooraiepour et al., 2017). This stiffness increase is addressed in the model by means of the 117 

Hashin-Shtrikman upper bounds (Hashin, 1983), which are known to reasonably describe the 118 

elastic properties of isotropic porous media (Zaoui, 2002). The expressions for the bulk and 119 

shear moduli of the porous material are given as functions of the bulk and shear moduli of the 120 

solid phase, 
sk  and 

s , and the Eulerian porosity  : 121 

( )
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k
 (4) 

The Eulerian porosity defines the pore space volume fraction in the current configuration 122 

of the porous elementary volume. It is a key parameter of the model as it serves to 123 

characterize its constitutive and transport properties. It is thus of major importance to define 124 

an evolution law to quantify porosity change as a function of the irreversible (plastic) 125 

densification of the porous material. 126 

Assuming that the reversible (elastic) strains are infinitesimal, the Jacobian of the skeleton 127 

transformation defining the ratio between the porous element volume in its current and initial 128 

configurations can be approximated by the Jacobian of the plastic transformation, 
pJJ  . In 129 
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addition, the solid phase is considered to be incompressible during the irreversible 130 

transformation, which means that any variation of volume during plastic deformation is only 131 

due to porosity change. These considerations allow to compute the evolution of the porosity 132 

  as a function of the plastic Jacobian 
pJ  (Bernaud et al., 2006): 133 

pJ

01
1




−
−=  (5) 

2.2 Plastic yield surface and flow rule 134 

The plastic component of the model represents the mechanical compaction resulting from 135 

rearrangement of the solid particles during burial. The yield surface represented in Fig. 1 is 136 

based on the modified Cam-Clay model (Wood, 1990): 137 

( ) ( )( )ctc ppppMqpf +−+= '',' 22  (6) 

where ( ) ssq :23=  is the equivalent deviatoric stress, 13tr −=s  is the deviatoric 138 

stress tensor and 3'tr' =p  is the mean effective stress. Parameter M  is related to the 139 

Mohr–Coulomb friction angle and defines the slope of the line that intersects the yield surface 140 

at the tensile intercept tp  of the hydrostatic axis and the q  peak value (Neto et al., 2008). The 141 

consolidation pressure cp  defines the compressive intercept of the hydrostatic axis and 142 

represents the hardening parameter of the model. 143 

 144 

 145 
Fig. 1. Schematic representation of the plastic yield surface. 146 

The flow rule adopted for the plastic strain rate reads: 147 

'




=

g
d

p   (7) 

where   is the non-negative plastic multiplier and g  is the plastic potential: 148 

( ) ( )( )ctc ppppNqpg +−+= '',' 22  (8) 

Eq. (8) for the plastic potential differs from eq. (6) defining the yield surface through 149 

parameter N . When the stress state is located above the M  line, the value of this parameter 150 

relates to the dilatancy angle in order to control excessive porosity increase during shear-151 

induced dilation, resulting in a non-associated flow rule. For a stress state located below the 152 

M  line (compaction), parameter N  is taken equal to M , resulting in an associated flow rule. 153 
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Such conditions can be defined as: 154 

MN   for 
2

' tc pp
p

−
−  (9) 

MN =  for 
2

' tc pp
p

−
−  (10) 

It must be noted that assuming purely mechanical aspects as the only mechanisms of 155 

porosity reduction may be considered as an oversimplified approach. In reality, the diagenetic 156 

processes transforming sediments into rock are much more complex and different 157 

mechanisms such as pressure solution may predominate at deeper layers of the basin, where 158 

stresses and temperature are elevated (Schmidt and McDonald, 1979; Tada and Siever, 1989). 159 

2.3 Hardening law in the context of basin modeling 160 

The hardening law that describes the evolution of the consolidation pressure as a function 161 

of large plastic strains is a crucial feature of the model as parameter cp  controls the size of 162 

the yield surface. It is of major importance in the context of sedimentary basin modeling as it 163 

controls how porosity changes during burial. 164 

Let us first recall that in the context of small strain plasticity, the classical hardening law in 165 

the Cam-Clay model can be written as a function of the plastic volumetric strain p  and a 166 

material constant   that can be fitted from isotropic compression tests (Borja and Lee, 1990): 167 

( )p

cc pp −= exp0  (11) 

An important assumption of the Cam-Clay model is that eq. (11) remains valid under non 168 

isotropic loadings. This implies that the effect of the deviatoric plastic strain on the hardening 169 

phenomenon is considered negligible. In other words, it is assumed that hardening is 170 

controlled by plastic densification (Guéguen et al., 2004). 171 

A simple way to generalize eq. (11) in the domain of large strains consists in replacing p  172 

by 1−pJ , since both quantities are equal in the range of small plastic strains (Bernaud et al., 173 

2002): 174 

( )( )1exp0 −−= p

cc Jαpp  (12) 

However, such a hardening law does not enforce the condition 01 −pJ , corresponding 175 

to total pore closure, which may lead the sediment material to negative porosities under high 176 

isotropic compression (Deudé et al., 2004). To overcome this issue, a micromechanics-based 177 

law has been proposed by Barthélémy et al. (2003) with the advantage that cp  tends towards 178 

infinity when the pore space vanishes: 179 

0

0
ln

ln




cc pp =  (13) 

This formulation has been recently modified by Brüch et al. (2019) using a calibration 180 

exponent m  to predict more realistic porosity distribution curves for different lithologies, 181 

proving to be relevant to represent the compaction trend of clays: 182 

m

cc pp 









=

0

0
ln

ln




 (14) 
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Even though eq. (14) may reasonably model the mechanical compaction of sediments, it 183 

does not permit to properly reproduce the variation of porosity with burial under oedometric 184 

conditions as done by the basin code, which is one of the assumptions of this work. Therefore 185 

a new hardening law must be formulated. 186 

2.4 Formulation of a new hardening law 187 

Before working on the mathematical formulation of the new hardening law, a brief review 188 

of the evolution of sedimentary basins compaction laws is presented. 189 

One of the first empirical laws was formulated by Athy (1930), describing rock porosity as 190 

a function of the burial depth z  and a decay factor  : 191 

( )z exp0=  (15) 

Based on similar assumptions and relying on Terzaghi’s concepts, Smith (1971) proposed 192 

a phenomenological relationship to estimate porosity as a function of the vertical effective 193 

stress v'  and a lithology dependent parameter E  as follows: 194 

( )Ev'exp0  =  (16) 

The basin code used in this work relies on the porosity law developed by Schneider et al. 195 

(1996), who extended eq. (16) by introducing a residual porosity r  and a second exponential 196 

term to better fit field data: 197 

( ) ( )bvbavar EE 'exp'exp  ++=  (17) 

where a , b , aE  and bE  are calibration coefficients. It must be noted that at surface 0' =v198 

, thus the initial condition corresponds to bar  ++=0 . 199 

The development of the expression for cp  permitting to obtain from the mechanical code 200 

the same porosity as the one given by the basin code during gravitational compaction requires 201 

first the extension to the three-dimensional case of the one-dimensional compaction law (17). 202 

One possible way to proceed is to rewrite Schneider’s law as a function of the mean effective 203 

stress: 204 

( ) ( )bbaar CpCp 'exp'exp  ++=  (18) 

where aC  and bC  are calibration coefficients related to 'p . 205 

The next step consists of identifying the hardening law from the response of a 206 

representative elementary volume (REV) undergoing plastic deformation due to an isotropic 207 

compression together with the phenomenological law of eq. (18). According to the plastic 208 

yield surface, the loading representing the isotropic compression is a uniform pressure 209 

cpp −='  applied to the boundary of the REV. The corresponding effective stress is 1' cp−=210 

. By substituting the current effective stress, eq. (18) can be rewritten as: 211 

( ) ( )bcbacar CpCp −+−+= expexp   (19) 

In the case 0=b , an analytical expression for cp  can be straightforwardly derived: 212 










−
=

r

a
ac Cp




ln  (20) 

Assuming that at its initial state 0 =  the sediment material has no compressive strength, 213 
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0=cp , eq. (20) gives ra  −= 0 . The hardening law can now be rewritten as: 214 










−

−
=

r

r
c Cp



0ln  (21) 

The calibration coefficient C  controls the evolution of the hardening parameter cp  with 215 

respect to porosity change. Depending on the nature of the sediment material, the 216 

microstructural changes resulting from mechanical compaction may lead to different material 217 

strength, and for the same compaction level, higher values of C  will result in higher values of 218 

cp . By analogy with parameter E  of Smith’s law (16), higher values of C  would result in 219 

higher porosity values for a given basin depth. 220 

This expression is limited to representing the porosity trend of a single exponential 221 

compaction law as it has been derived in the case of 0=b . To circumvent this limitation and 222 

based on the same reasoning of eq. (14), an exponent m  is applied in an attempt to properly 223 

represent the general Schneider’s law (17) used by the sedimentary basin code: 224 

m

r

r
c Cp 









−

−
=



0ln  (22) 

The resulting hardening law (22) is used in the present work to represent the porous 225 

material behavior in the mechanical code. It can be verified that +→cp  when r → , 226 

excluding the possibility to have porosities lower than the residual value. The verification of 227 

the model is presented in section 4. 228 

3 Computational aspects 229 

The mechanical problem is solved by means of the finite element method. The solution of 230 

the problem is achieved by solving at each instant of time a specific boundary value problem 231 

formulated on the geometrical domain   of the considered material system. It is defined by 232 

the field, constitutive and complementary equations, and completed by the initial values of all 233 

field variables together with the boundary conditions that should be prescribed on the 234 

boundary   of  . 235 

3.1 Formulation of the mechanical problem 236 

Disregarding inertial effects, the momentum balance equation for the porous continuum 237 

reads: 238 

0div =+ g  (23) 

where g  is the acceleration of gravity and ( ) fs  +−= 1  is the density of the fluid 239 

saturated porous medium, with 
s  and 

f  corresponding to the mass densities of the solid 240 

and fluid phases (Coussy, 2004). 241 

The discretized form of the mechanical problem is obtained from weak formulation of the 242 

equilibrium equation at time ttt +='  (unknown configuration) employing piecewise linear 243 

functions for the displacement U  (Zienkiewicz and Taylor, 2000). The updated Lagrangian 244 

scheme (Bathe, 1996) is used to calculate the finite element solution between the 245 

configuration at time t  (updated reference configuration) and that at time 't . The unknown 246 

variables are then updated at each time step t . 247 
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Denoting by x
t

 the coordinate vector of a sediment particle at time t , the boundary value 248 

problem is formulated in terms of displacement U  of the particle between t  and 't : 249 

xxU
tt

−=
'

 (24) 

The pore-pressure field obtained from the basin code is discretized in time according to the 250 

mechanical scheme. The pressure variation at points similar within the porous material reads: 251 

( ) ( ) ptxpxpP ttt ''
=−=  (25) 

The variation of the stress tensor is defined as: 252 

 '' ttt
t=−  (26) 

The Eulerian strain rate tensor d
t '

 and the rotation rate tensor 
't

 are approximated by: 253 

 
s

tt
U

t
d 


=

1'
 (27) 

 
a

tt
U

t



=

1'
 (28) 

The hypothesis of infinitesimal transformation is adopted by respecting the condition 254 

1U
t

 for each time step. In fact, the norm of the displacement gradient is verified for 255 

each converged step and, if it does not respect a required criterion, the corresponding time 256 

step is automatically subdivided and recalculated in order to ensure this condition. As a 257 

consequence, the geometrical nonlinearities can be disregarded in the numerical procedure. 258 

Accordingly, the resulting expression of the state equation for time 't  is: 259 

  1:
~

''
PUC

s

tepttt
−+=   (29) 

where 
ep

C
~

 accounts for the consistent tangent stiffness operator. 260 

The mechanical problem is then solved for time 't  by substituting eq. (29) in the weak 261 

form of the equilibrium eq. (23), considering 
~~

'
CC

tt
 ,  tt '

, tt  '  and tt  ' . 262 

These approximations imply that the only nonlinear term in the formulation concerns the 263 

fourth order tensor 
ept

C
~

'
 due to the plastic evolution of the porous material. It is worth 264 

mentioning that the local integration of the plastic strains is performed based on a 265 

generalization of the fully implicit return mapping algorithm proposed by Nguyen (1977). 266 

3.2 Tangent operator 267 

In order to enhance the convergence rate of the iterative solution of the mechanical 268 

problem, the consistent tangent stiffness operator must be derived (Crisfield, 1991). 269 

Disregarding the terms involving the spin rate tensor, the state equation reads: 270 

( )p
ddC −= :'

~
  (30) 

Taking the first order approximation of the plastic strain rate flow rule: 271 
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':
'' 2

2







 



+




=

gg
d

p
 (31) 

Substituting the strain rate (31) in eq. (30) gives: 272 


















−=

'
:'

~ 


g
dR   (32) 

where the fourth-order tensor 
~
R  is defined as: 273 

1

2

2
1

~~ '

−

−


















+=




g
CR  (33) 

The plastic consistency condition 0=f  reads: 274 

0':
'

=







+




= 





 c

c

p

p

ff
f  (34) 

Eqs. (32) and (34) allow to obtain the plastic multiplier  : 275 













−













=
c

c

p

p

fg
R

f

dR
f

'
::

'

::
'

~

~

  (35) 

To symmetrize the fourth order tensor that will be used to construct the mechanical 276 

stiffness matrix, an additional scalar is introduced (Luo et al., 2013): 277 

dR
f

dR
g

::
'

::
'

~

~














=  (36) 

Multiplying and dividing eq. (35) by  : 278 






















−













=







c

c

p

p

fg
R

f

dR
g

'
::

'

::
'

~

~

  (37) 

Finally, by substituting   in (32): 279 

dC
ep

:'
~

=  (38) 

where the symmetric tensor of the consistent tangent moduli reads: 280 
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
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3.3 Coupling the mechanical and basin codes 281 

Once the mechanical problem is solved as described in section 3.1, its solution has to be 282 

transmitted to the basin code. The objective is to integrate the porosity change induced by 283 

horizontal deformations in the sedimentary basin model. This is achieved by means of an 284 

iterative coupling scheme presented in Fig. 2 and briefly described in the remaining part of 285 

this section. 286 

The basin history is defined in the standard basin code by a sequence of geological events. 287 

The coupling strategy considers these events as the time periods for which the staggered 288 

solution between the basin and mechanical codes should be repeated until convergence is 289 

reached. During these periods, each code has its own time discretization and independent 290 

porosity evaluation. Therefore, the convergence criterion used for the iterative coupling is 291 

based on the porosity difference between the two codes. 292 

For a given geological event n, the first calculation is performed by the basin code. The 293 

pore-pressure P  obtained at the end of the geological event is transmitted to the mechanical 294 

code and applied to eq. (29) to solve the equilibrium problem. The porosity distribution M  295 

resulting from the 3D geomechanics solution is then compared to the porosity values B  296 

obtained from the simplified compaction law of the basin simulator. If the porosity difference 297 

BM  −=  is lower than a user defined tolerance, the numerical simulation proceeds to 298 

the next event. Otherwise, a corrective term v  is applied to correct the inconsistency 299 

between the porosity computed from both codes and the event is computed again. This type of 300 

predictor-corrector approach is well known for coupling geomechanics to reservoir simulation 301 

(Mainguy and Longuemare, 2002). 302 

Keeping in mind that the basin code evaluates porosity change as a function of the vertical 303 

effective stress pvv += '  through eq. (17), the corrective term v  integrates the effects 304 

of the deformation field obtained in the mechanical code. For the ith iteration of the staggered 305 

procedure, the vertical stress considered in the basin code reads: 306 

iviviv ,,1,  +=+  (40) 

Depending on the permeability distribution of the basin, the corrective term v  will 307 

affect the porosity and/or the pore-pressure fields in the basin code. The scheme is repeated 308 

up to porosity convergence. 309 
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 310 
Fig. 2. Iterative coupling scheme for a geological event. 311 

4 Verification of the material model 312 

This section illustrates the capability of the constitutive model to reproduce the same 313 

porosity evolution of the basin code when submitted to gravitational compaction. The 314 

verification procedure is based on the solution of a representative elementary volume of the 315 

porous material subjected to a prescribed uniaxial strain parallel to the vertical direction ve , 316 

i.e. oedometric compression. The REV represents a macroscopic particle of the sediment 317 

material undergoing compaction during burial. 318 

4.1 Oedometric compression problem 319 

Fig. 3 presents the geometry and loading of the model. The problem is treated in drained 320 

conditions (no excess pore-pressure). In its initial configuration, the REV is a parallelepipedic 321 

domain 0  of height 0h  and horizontal sides 0l . The response of the REV to increasing 322 

values of displacement   is supposed to simulate the stress and deformation of particles 323 

located at increasing depths of a sedimentary basin. 324 

 325 

 326 
Fig. 3. Geometry and loading of the model. 327 

Starting from ( ) 00 ==t , the loading process consists in prescribing a continuously 328 

increasing displacement function  . The initial state of stress is natural, ( ) 00 ==t . The 329 

mechanical response of the REV is determined at any stage of compaction level 0h . Under 330 

oedometric conditions, the homogeneous strain rate reads: 331 

vv ee
h

h
d 

−
−=

0

0

1 


 (41) 
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For a prescribed deformation rate d , the problem consists in solving the set of equations 332 

presented in sections 2.1 and 2.2 together with eq. (22) of section 2.4. The hardening law 333 

indicates that 0=cp  when 0 = . This means that for any displacement 0 , the REV 334 

undergoes elastoplastic deformation. Developing the plastic consistency condition 0=f : 335 

0':
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= p

p

c

c
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p

p

ff
f  


 (42) 

The rate of the Jacobian of plastic transformation is given by: 336 

p

pp dJJ tr=  (43) 

Introducing eqs. (1), (7) and (43) in eq. (42) allows deriving the plastic multiplier  : 337 
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Finally, substitution of eqs. (7) and (44) in eq. (43) leads to the following nonlinear 338 

differential equation that governs the evolution of pJ : 339 
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 (45) 

A closed-form solution to this differential equation has been formulated in Brüch et al. 340 

(2016) for the case of an associated plastic flow rule with linear expressions for the yield 341 

surface and hardening law. However, this cannot be achieved for the present constitutive 342 

model and a numerical procedure is necessary for this purpose. 343 

The strategy adopted herein to evaluate pJ  is to discretize the problem in time and to 344 

numerically integrate eq. (45), then solving the resulting nonlinear problem explicitly. Once 345 

the plastic Jacobian is determined for time t , the constitutive and complementary variables 346 

can be accordingly updated. The increasing displacement   is applied until porosity reaches 347 

its minimum value. Given the fact that the model assumes 0= t

p JJ , the displacement 348 

needed to reach residual porosity is given by the following equation: 349 

( ) 








−

−
−=

r

r h





1

1
1 0

0
 (46) 

Finally, a calibration procedure has to be carried out for each lithology of the geological 350 

model in order to find the parameters C  and m  of the hardening law (22) that best fit the 351 

burial trend described by Schneider’s law (17). This optimization process has been 352 

implemented in the mechanical code as a preprocessing step by applying an automatic 353 

procedure based on the least squares method by repeatedly solving eq. (45) for different sets 354 

of parameters. 355 
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4.2 Sandstone and shale models 356 

Sandstone and shale lithologies have been chosen to illustrate the constitutive model 357 

behavior and the results of the calibration procedure based on the oedometric compression 358 

test. The material parameters for the basin compaction law (17) are presented in Table 1. 359 

 360 

Table 1: Basin compaction law parameters. 361 

Parameter Sandstone Shale 

( )% r  1 4 

( )% a  14 12 

( )MPa aE  17 4 

( )% b  30 44 

( )MPa bE  43 16 

 362 

Table 2 gives the elastic and plastic parameters of the 3D poromechanical constitutive law, 363 

where 
0E  and 

0  respectively denote the initial Young modulus and Poisson’s ratio of the 364 

material. The plastic parameters M , N  and 
tp  are taken constant. The M  and N  values 365 

correspond to a friction angle of 30° and to a dilatancy angle of 10°, respectively . The initial 366 

and residual porosities come from the basin compaction law, with bar  ++=0 . The 367 

values of C  and m  to be used in the hardening law (22) are obtained from the automatic 368 

calibration procedure based on the REV solution of section 4.1. 369 

 370 

Table 2: Poromechanical law parameters. 371 

Parameter Sandstone Shale 

( )MPa 0E  9000 4000 

0  0.32 0.26 

M  1.2 1.2 

N  0.37 0.37 

( )MPa tp  0.25 0.25 

( )% 0  45 60 

( )% r  1 4 

( )MPa C  28.77 11.12 

m  1.09 1.17 

 372 

The relation between porosity and vertical effective stress resulting from the oedometric 373 

test is presented in Fig. 4 for both lithologies. The porosity values obtained from the basin 374 

compaction law (17) are given as reference for the same range of stress. The results confirm 375 

the ability of the constitutive model to provide similar porosity trends as those of the standard 376 

basin simulator when the sediment material is submitted to oedometric conditions. 377 

 378 
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 379 
Fig. 4. Porosity versus vertical effective stress. 380 

According to eq. (46), the displacement   applied to the VER corresponds to 44.4% and 381 

58.3% of deformation for the sandstone and shale materials, respectively. These deformation 382 

levels emphasize the need to appropriately handle the problem of sedimentary basin 383 

compaction in the framework of large irreversible strains. 384 

5 Illustrative case 385 

The iterative coupling scheme between 3D geomechanics and the standard basin code has 386 

been used by petroleum exploration teams as a tool to better understand the geological history 387 

of sedimentary basins in complex conditions. A recent work has been published by Berthelon 388 

et al. (2021) demonstrating the importance of considering horizontal deformations to reliably 389 

model the pore-pressure evolution of the Neuquén basin in Argentina. 390 

In this work, a synthetic case has been chosen to illustrate the coupled procedure in a three-391 

dimensional framework. The main advantage of working with a simplified scenario is that it 392 

makes it easier to investigate the constitutive model behavior and its impact on the evolution 393 

of the sedimentary basin. The geological scenario concerns a large period of sediment 394 

deposition and gravitational compaction followed by a tectonic phase leading to the 395 

development of a characteristic buckle fold at the center of the model. The results obtained by 396 

means of the coupled scheme are compared to those of the classical basin code before and 397 

after tectonics. 398 

5.1 Problem statement 399 

The deposition history of the sedimentary basin is given by the following geological 400 

events: 1) a sandstone compartment is deposited in the first 20 My at constant rate of 144 401 

m/My, 2) in the sequel, shale seal rocks are deposited during 30 My at 53 m/My, 3) finally, a 402 

sandstone overburden is deposited in the last 40 My with an average rate of 58.5 m/My. 403 

During these sequences, all stratigraphic units are disposed parallel to the horizontal plane. 404 

Furthermore, both compartment and overburden are considered to be formed by the same 405 

sandstone lithology. 406 

Immediately after the deposition sequences, the basin is submitted to a lateral shortening of 407 

4% during 4 My at constant rate. According to the geological scenario of the basin code 408 

during this phase, a central region of the basin is progressively uplifted as a result of the 409 

tectonics-induced deformation. As a consequence, a superficial thickness of the basin is 410 

partially eroded. 411 
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The geometry is defined in the horizontal plane xy  by a 50x50 km square. In the vertical 412 

direction z , the basin is composed by 20 stratigraphic units: 8 layers for the compartment, 8 413 

layers for the seal rocks and 4 layers for the overburden. The model is discretized by 414 

100100  8-node hexahedral elements in the horizontal plane for a total of 200,000 elements. 415 

The present day geometry of the basin is shown together with its lithology distribution in 416 

Fig. 5, where the sandstone formations are drawn in blue and the shale rocks in red. Only a 417 

quarter of the basin is presented due to the existence of two vertical planes of symmetry 418 

intersecting each other at the center of the model. One can also observe the erosion process of 419 

the superficial layer, starting at the limbs of the fold and reaching nearly 500 m of total 420 

erosion at the hinge. 421 

 422 

 423 
Fig. 5. Present day geometry and lithology distribution (vertical exaggeration: 3x). The red arrow indicates the 424 

tectonic loading applied in the x direction. 425 

In the mechanical code, the boundary conditions are applied as follows. During a non-426 

tectonic period, nodes of the bottom surface are fixed and the lateral sides of the model have 427 

their normal direction restrained. During a tectonic sequence, the loading is simulated as an 428 

imposed deformation rate. This is achieved by applying at each time step a linear 429 

displacement field at the boundaries of the model corresponding to the desired kinematics. 430 

In the basin code, the water table coincides with the top surface of the model during all the 431 

simulation. The bottom and lateral surfaces are impermeable. For the sake of simplicity, the 432 

thermal problem assumes an imposed temperature of C10=T  at the top surface of the 433 

model combined with a prescribed vertical temperature gradient of kmC30=T . 434 

5.2 Material data 435 

The sandstone and shale data correspond to those of section 4.2. In addition, the mass 436 

density of the solid phase for the sandstone is 
3kg  2675 ms = , and for the shale is 437 

3kg  2645 ms = . Water is considered to be the only fluid saturating the porous material 438 

with its mass density given by (Coussy, 2004): 439 









−


= T

K

p f

f

ff  3exp0  (47) 

where 
3

0 kg  1000 mf =  is the reference fluid density, MPa  2200=fK  is the fluid bulk 440 

modulus, 
-15 C 107 = −f  is the fluid thermal dilation coefficient and T  is the temperature. 441 

The fluid viscosity is given by the following equation, with f  in sMPa  and T  in degree 442 
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Celsius (Schneider, 1993): 443 

( ) 120080785.21

101

2

6

−++


=

−

TT

f  (48) 

The permeability tensor reads (Schneider et al., 2000): 444 

fkaK =  (49) 

where fk  is the intrinsic permeability coefficient and a  is the anisotropy tensor defined as: 445 

( ) nnnttttt eeaeeeeaa ++= 2211  (50) 

with ta  and na  respectively being the anisotropy coefficients related to the orthogonal 446 

tangential directions, 1te  and 2te , and normal direction ne  with respect to the layering plan of 447 

the rock in its local coordinate system. 448 

The intrinsic permeability coefficient fk  of the porous medium is modeled through 449 

Kozeny-Carman formula: 450 

( )22
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k f
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( )22

5
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
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=

S
k f

 if %10  (52) 

where S  is the specific surface area of the porous medium. The sandstone permeability tensor 451 

is taken isotropic with 1== nt aa  and 
15 m 104 -S = . For the shale material, 1=ta , 452 

02.0=na  and 
17 m 105 -S = . These parameters have been chosen to make the sandstone 453 

material highly permeable during the whole simulation so that any overpressure development 454 

results from the low permeability shale layers. In addition, shale rocks permeability may be 455 

strongly anisotropic due to the presence of bedding, resulting in permeability values in the 456 

vertical direction magnitudes lower than in the horizontal direction (Pan et al., 2015). These 457 

microstructural effects are represented in the model by the adopted na  coefficient. 458 

It should be emphasized that the Kozeny-Carman formula for porosity-permeability 459 

relation is mostly applicable to sediment particles with spherical structures. It is known that 460 

such approach fails to accurately predict the permeability of shale-like rocks for which an 461 

appropriate phenomenological or micromechanics-based model should be considered (Ma, 462 

2015; Revil and Cathles, 1999). However, such approach may be acceptable in the context of 463 

a synthetic sedimentary basin model. 464 

5.3 Results: gravitational compaction 465 

As burial proceeds and the basin deforms under oedometric conditions, all stratigraphic 466 

units remain parallel to each other. As a consequence, the resulting poromechanical fields at a 467 

given depth are constant with respect to the horizontal directions and a single profile is 468 

enough to illustrate their distribution in the basin. In the following part, the results of the 469 

gravitational compaction period are presented for the coupled as well as for the standard 470 

approaches. 471 

The porosity, overpressure and effective stress profiles are presented in Figs. 6, 7 and 8, 472 

respectively. The top and the bottom of the seal rocks are located at m 2047−=z  and 473 
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m 2703−=z . It can be readily observed that both approaches provided the same results. 474 

This validates the requirement of the present constitutive model to represent the same 475 

behavior of the basin code under oedometric conditions, so that the iterative coupling scheme 476 

may affect the standard code simulation only when needed, i.e., when the horizontal 477 

deformations are not negligible. 478 

 479 

 480 
Fig. 6. Porosity profiles (gravitational compaction). 481 

 482 
Fig. 7. Overpressure profiles (gravitational compaction). 483 

 484 
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 485 
Fig. 8. Effective stress profiles (gravitational compaction). 486 

5.4 Results: tectonic loading 487 

The impact of tectonics on the present day state of the basin is analyzed in this section. It 488 

concerns an imposed deformation of 4% in the x  direction for a period of 4 My at constant 489 

rate. The basin profiles given hereafter refer to the center of the model. The porosity, 490 

overpressure and effective stress profiles are shown in Figs. 9, 10 and 11, respectively. The 491 

top and the bottom of the seal rocks are located at m 1076−=z  and m 1732−=z . 492 

As expected, the results obtained from the coupled code are significantly different from 493 

those provided by the classical basin code alone as the latter is not capable of taking 494 

horizontal deformations into account. As a consequence, the basin code porosity distribution 495 

is higher than the coupled one, except for the top compartment and bottom seal rocks which 496 

resulted in similar porosity values. However, the mechanics of porosity loss in these zones 497 

differs for each simulation. In the coupled case the porosity reduction results from tectonics, 498 

whereas for the standard one it results from dissipation of the excess pore fluid pressure 499 

cumulated during the sedimentation phase. 500 

This can be verified by comparing Figs. 7 and 10, where the overpressure in the sandstone 501 

compartment has reduced from 7.7 MPa to 1.3 MPa in the standard simulation. The opposite 502 

has happened in the coupled calculation, where the tectonic loading has increased the 503 

overpressure up to 23.3 MPa. As a consequence, the resulting vertical effective stress profiles 504 

are particularly different between the two cases. 505 
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 506 
Fig. 9. Porosity profiles (tectonic loading). 507 

 508 
Fig. 10. Overpressure profiles (tectonic loading). 509 

 510 

 511 
Fig. 11. Effective stress profiles (tectonic loading). 512 
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The maximum compressive horizontal effective stress 
H'  and the minimum compressive 513 

horizontal effective stress h'  cannot be compared between the two simulations since they 514 

only exist in the coupled code. A three-dimensional geomechanics model is of interest for 515 

industrial applications as it allows to identify critically stressed zones and to evaluate seal 516 

rocks integrity. One way of doing this is to analyze the distribution of the stress ratio 517 

( )tppq −− '  to verify the proximity of the stress state to the M  line of the yield surface (6). In 518 

that matter, a change in the plastic regime from ductile failure (compaction) to brittle failure 519 

(dilation) can be used as a preliminary criterion to predict the possibility of shear-induced 520 

fractures in the basin (Bemer et al., 2004). 521 

The stress ratio along the center of the model is shown in Fig. 12 for the coupled solution 522 

before and after tectonics. It can be observed that during the burial phase a constant value of 523 

0.42 is obtained for the whole basin. Nevertheless, the tectonic deformation has led the 524 

bottom of the shale seal rocks and the sandstone formation at the hinge of the fold to present 525 

stress ratio values higher than 2.1=M . Two different brittle behaviors are likely to occur for 526 

the rocks in these two locations: for the lower shale rocks, the brittle behavior results from 527 

pore-pressure build up in undrained conditions, whereas for the surface sandstones the brittle 528 

behavior is related to a lack of confinement stress required to resist the shear efforts acting on 529 

the top of the basin. 530 

 531 

 532 
Fig. 12. Stress ratio ( )tppq −− '  profiles before and after tectonics. 533 

In what follows, the investigation of the constitutive model behavior will focus on the 534 

evolution of the lower shale rock which presented a stress ratio higher than the M  value in 535 

Fig. 12 as the integrity of seal rocks is of major interest in sedimentary basin modeling. An 536 

effective way to understand this failure mechanism is by drawing a stress path as shown in 537 

Fig. 13 for the element in the base of the shale layer located at the center of the basin model. 538 

The plastic yield surfaces before and after tectonics are also represented. From the moment 539 

when the lower seal rock has been deposited until the end of the deposition period, the stress 540 

path follows a straight line defining the porous material burial trend. As the lateral loading 541 

starts, the deviatoric stress increases, while the mean effective stress decreases as a 542 

consequence of the pore-pressure build up. The stress path follows the plastic yield surface 543 

and slightly crosses the M  line, leading to shear-induced dilation. 544 

 545 
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 546 
Fig. 13. Stress path of the lower seal rock. 547 

To support the understanding of the basin physics and how it impacts the seal formation, 548 

the corresponding pore fluid, lithostatic and hydrostatic pressures are given in Fig. 14. It can 549 

be observed that during its first 50 My, the pore-pressure in the bottom shale rock is almost 550 

hydrostatic. The overpressure development accelerates after My 24−=t  during the last 20 My 551 

of the overburden deposition phase, when the shale rocks become sufficiently impermeable to 552 

behave as a compartment seal. At My 4−=t  the tectonic shortening starts and the pore-553 

pressure significantly increases. At the same time, the erosion process takes place in the 554 

uplifted part of the basin, resulting in a constant decrease of the lithostatic and hydrostatic 555 

pressures. This phase is characterized by two opposite phenomena: the pore-pressure increase 556 

due to tectonics and its decrease associated to the lowering level of the water table. It is 557 

interesting to note that the maximum overpressure in the bottom shale rock occurs at 558 

My 2−=t , corresponding to 23.9 MPa. 559 

 560 
Fig. 14. Pore fluid, lithostatic and hydrostatic pressures evolution in the lower seal rock. 561 

The extension of brittle failure in the basin can be quantified by means of the equivalent 562 

von Mises strain 
p

eq  that occurs at the dilatant side of the Cam-Clay model: 563 

=
2

1

d:
3

2
t

t

p

d

p

d

p

eq tdd  (53) 

where 
p

d
d  corresponds to the deviatoric part of the plastic strain rate occurring between times 564 

1t  and 2t . This quantity can be used as a first approach to visualize the potential distribution 565 

of natural fracturing in the basin as illustrated in Fig. 15, where 0p

eq  indicates that the 566 
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porous material has undergone shear-induced dilation. This is the case for a large region of 567 

the bottom seal rocks and small regions of the top compartment and top overburden 568 

sandstones. 569 

 570 

 571 
Fig. 15. Present day equivalent shear strain of the basin (vertical exaggeration: 3x). 572 

The present day equivalent shear strain of the bottom seal rocks is presented in Fig. 16. 573 

The extent of the brittle failure region is 4.5 km in the x  direction and 11.5 km in the y  574 

direction. It can be observed that the highest values occur at the limbs of the fold, with its 575 

maximum located 7 km away from the center of the model. As discussed in Figs. 12, 13 and 576 

14, the distribution of the brittle failure deformation in these rocks results from the multiple 577 

phenomena occurring during the tectonic phase of the basin. 578 

It is important to note that the consolidation pressure cp  remains the only hardening 579 

parameter of the plastic model. The other parameters defining the size and shape of the yield 580 

surface, tp  and M , are taken as constants, as well as parameter N  defining the plastic flow 581 

rule. This simplified approach is justified by the fact that the major concern at the present 582 

moment corresponds to the ductile behavior (compaction) of the constitutive model. 583 

Nevertheless, considering additional hardening laws such as the evolution of parameter tp  584 

would affect the brittle behavior of the model, resulting in a different distribution of the 585 

equivalent shear strain in Figs. 15 and 16. Such aspects remain to be addressed in a future 586 

version of the model. 587 

 588 

 589 
Fig. 16. Present day equivalent shear strain of the bottom seal rocks. 590 

 591 
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The same physics reported in this section have been obtained in the real case study of the 592 

Neuquén basin due to successive tectonic shortening phases related to the Andean subduction 593 

(Berthelon et al., 2021). A large zone of brittle failure has been observed in the low 594 

permeability Vaca Muerta formation resulting from the tectonic phase, with higher shear 595 

strain values at the edges of the western fold of the model. 596 

In addition, similar material behavior has been observed by other authors such as Maghous 597 

et al. (2014) and Obradors-Prats et al. (2017). These authors worked on synthetic models to 598 

investigate the influence of lateral loadings in sedimentary basins by applying different rates 599 

of horizontal deformation under different states of basin consolidation. 600 

It is important to note that this synthetic case has been developed to provide purely 601 

oedometric deformation during the whole deposition phase of the basin. For this reason, all 602 

stratigraphic units of the geological model are expressly deposited parallel to the horizontal 603 

plane. In real case basins this is not likely to occur and non-negligible horizontal deformations 604 

may occur even in the absence of tectonics. 605 

 606 

6 Conclusions 607 

The paper presented a poromechanical constitutive law specifically devised to couple 3D 608 

geomechanics to classical sedimentary basin modeling. Based on the premise that the standard 609 

basin simulator provides consistent results for gravitational compaction, a new hardening law 610 

has been developed to make the mechanical code reproduce the same burial history of the 611 

basin code when submitted to oedometric conditions. Moreover, this turned out to be a good 612 

coupling strategy as it requires the mechanical solution to correct the basin code simulation 613 

only when horizontal deformations are not negligible, thus optimizing the iterative solution. 614 

Referring to tectonics, the synthetic scenario of section 5 has revealed the lack of capacity 615 

of the standard basin code to deal with complex geological conditions. For such situations, the 616 

geomechanics coupling has proven its relevance to integrate horizontal deformations in the 617 

numerical simulation. The results of section 5.4 have shown that the lateral loading has led to 618 

significant overpressure build-up in the sandstone compartment, which in consequence 619 

resulted in a large surface of brittle failure in the shale seal rocks. 620 

Although initially developed to serve hydrocarbon exploration teams, the proposed 621 

workflow may have an important role for the energy transition as the usage of the subsurface 622 

extends to other industrial applications such as CO2 storage and geothermal energy. For such 623 

activities, a reliable basin simulation based on a comprehensive geomechanical framework 624 

may provide valuable information regarding critically stressed zones, seal rock integrity and 625 

fault stability. In addition, the resulting poromechanical fields can be used to define initial and 626 

boundary conditions of reservoir models. 627 

Further developments are still ongoing to extend the geomechanics contribution in basin 628 

modeling. Regarding the constitutive model, the impact of brittle failure on rock permeability 629 

is an important issue to be addressed, as well as the incorporation of a chemo-mechanical 630 

coupling to account for fluid-rock interactions occurring at the microstructural level of the 631 

porous material. In what concerns the mechanical code, a new strategy of multi-domain 632 

parallel computation capable of dealing with large displacement contact problems is under 633 

development in order to simulate geological fault systems. 634 
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