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Data-driven model development to predict the aging of a Li-

ion battery pack in electric vehicles representative 

conditions. 

Rémy Mingant, Martin Petit, Sofiane Belaïd, Julien Bernard 

 

HIGHLIGHTS 

- A generic aging model of lithium-ion batteries has been developed and presented. 
 

- This model is independent of the aging mechanism's knowledge. 
 

- The calibration of the model is easy and fully automated. 
 

- The model has been validated on several profiles including PHEV. 
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An empirical generic Li-ion aging model, compatible with a large number of aging mechanisms 
without their a priori knowledge has been developed as well as a calibration methodology allowing 
its fast and automated parameter setting. This model has been applied to simulate the aging 
behavior of a 26 Ah cell. To train this model, a large aging test campaign has been conducted 
dedicated to both calibration and validation purposes. This one takes into account calendar, cycling, 
and their combinations. Based on the design of the aging campaign it is able to account for the effect 
of State Of Charge, temperature and current on aging. As its calibration is based on an automated 
process, it can be trained automatically and does not need expert knowledge for operation. 
Simulation data are validated to a 2% error in comparison to experimental data and is then validated 
for automotive applications. 



1 Introduction 
 

Nowadays, energy storage is a key technology area, with battery systems integrated into portable 

and security devices, in electric vehicles, and for green energy storage applications. Lithium-ion 

batteries are especially interesting because of their high energy and power density. Indeed, a Li-ion 

battery is one of the keys components of an electric vehicle. Its performance over time is sensitive to 

usage and environmental conditions, therefore remaining an obstacle to EV technology development 

[1]. This would eventually affect the price of a vehicle through the warranty expense for car 

manufacturers. Therefore, the development of tools to more accurately predict the degradation of 

Li-ion batteries during real-world use is critical. Over the last ten years, several partner organizations 

have been evaluating the aging of commercial Li-ion batteries through French research projects, i.e. - 

SIMSTOCK[2], SIMCAL [3], and MOBICUS [4].  

The state of health (SoH) of a battery can be defined differently depending on the electrical behavior 

studied: battery state of energy and state of power. Hence, in our study, we will focus on the energy 

fading which is mainly proportional to battery capacity. SOH will be defined by the following 

equation: 

𝑆𝑂𝐻 =
𝑄𝑎𝑐𝑡

𝑄𝑛𝑜𝑚
 

(1) 

where Qact is the actual capacity measured [Ah], andQnom, the nominal capacity [Ah] of the battery. 

With this definition, the SoH of a battery can be considered as a fuel tank which its volume is 

decreasing as a function of time, thermal and electric constraints [5–7]. 

Over their lifespan, batteries suffer from progressive degradation with reduced capacity, cycle life, 

and safety due to chemical changes to the electrodes. We can distinguish two types of aging: either 

from normal use (Cycle Aging) or just over time (Calendar Aging). The latter is known from the 

literature to depend on the battery state of charge (SoC) and temperature (T), whereas Cycling Aging 

depends on SOC, temperature, and current input [8]. 

Battery degradation mechanisms are complex phenomena and hard to fully comprehend. Analyses of 

these mechanisms are time-consuming and require large aging campaigns on a large number of cells. 

Furthermore, the constant evolution of battery chemistries doesn’t simplify the task.   

Laboratories determine SOH using a full charge and discharge cycle. This process is energy inefficient 

and difficult to apply in ”online” applications because of the time needed to measure the capacity 

(>1h). 

Thus, the aging of batteries remains a non-trivial field in which further research is needed in the 

areas of: 

- Diagnostics: tools to rapidly diagnose the SOH of batteries, 
- Modeling: models to predict the SOH of a battery depending on the application, 
- Optimization: algorithms to optimize the SOH of a battery in use. 
 

 



In this manner, battery SOH is a key indicator, since it can be used, firstly, to diagnose a battery in 

use: online tools implemented on battery management systems (BMS) can estimate the SOH of a Li-

ion battery in use using temperature, current, and voltage sensors [9–12]. These tools use digital 

methods such as extended Kalman filtering or signal treatments in order to diagnose SOH. A 

comparison of different methodologies is presented in the review of Barai et al[13]. The majority of 

these diagnostic tools do not account for physical degradation mechanisms. Nonetheless, a certain 

number of studies have developed some methodology [14] based on differential analysis which can 

diagnose precisely the aging mechanism of a battery. As an example, Dubarry et al [15], use 

differential voltage which can estimate a loss of lithium inventory (LLI) and the loss of active material 

on the positive and negative electrodes at the lithiated or delithiated state. Such methods can be 

used for estimating the extent of Li-ion battery aging. Some other methods are based on entropy 

measurement [16] and also based on mechanical stress [17]. The latter are nevertheless laboratory 

technics and need costly equipment and more time than online tools, but results are more precise. 

Secondly, for battery sizing: batteries aging models have been largely developed and can be 

separated into two main categories. On one hand, some physical models need high computational 

power and take into account electrochemical behavior such as electrolyte degradation, or active 

material loss. Simulation models have been developed [18–20] based on the growth of solid 

electrolyte interphase (SEI) that consumes the available lithium at the anode (positive/negative 

electrode). On the other hand, there are empirical models. These models are much diversified and 

need less computational power than physical models. Some rely on simple laws based on a power 

law and Arrhenius kinetics [21–23], mathematical functions, [24, 25], whereas others require 

electrical dynamics to predict the SoH [26]. For such models, an aging campaign on batteries is 

required to fit aging model parameters. These models are well suited for calendar aging as well as 

cycling aging for temperatures ranging between 20 and 60°C. For cycling aging at low temperatures, 

aging mechanisms such as Li plating on the anode [27–29] are known to take place. Some models 

account for theses mechanisms [4, 30–33]. Nonetheless, some aging mechanisms remain unknown 

and seeing that battery chemistries are continuously evolving, these mechanisms might remain 

elusive in the meantime. For almost all these models, calibration with battery aging campaign 

datasets is an issue due to the incomplete understanding of mechanisms, and the non-linearity of the 

models. In recent papers [34–36], data-driven aging models show good versatility independently of 

aging mechanism knowledge. This kind of model can also predict the minimal dataset needed to the 

training phase. Hence, the aging campaign could be dynamically reduced by removing operating 

conditions. 

In light of these issues, this paper presents a new data-driven model that: 

- is easy to calibrate (automatable): based on a set of representative data from an aging 
campaign, 

- accurately predicts battery SoH even for complex aging profiles, 
- self-adaptable to new mechanisms. For example, low-temperature aging mechanisms are 

automatically taken into account, 
- computationally fast. 

Our model has been implemented in a system simulation platform, Siemens PLM’s software 

Simcenter AmesimTM [37] which integrates electro-thermal battery models. Such systems not only 

allow the use of complex simulators in predicting battery behavior in close-to-real-world conditions 

but can also be used to develop strategies to extend their lifespan [21].  



2 Experimental 
 

The studied battery was a prismatic PHEV-1 26 Ah with a Nickel Manganese Cobalt Oxide (NMC) 

cathode and a graphite anode. The characteristics of this battery are presented in Table 1. 

Table 1: Characteristics of the cells used in the study 

 PHEV-1 

cell Mass [kg] 0.7 

Chemistry NMC/C 

Tmin [°C] -40 

Tmax [°C] 60 

Capacity [Ah] 26 

Min voltage [V] 2.8 

Nominal voltage  [V] 3.7 

Max voltage [V] 4.15 

Max charge current [A] 50 

Max discharge current [A] 98 

 

Brand new batteries were used for the tests and stored at a medium state of charge (SoC) at low 

temperature (5°C). Before the characterization tests, the batteries were preconditioned with 5 

charges and discharge cycles at C rate. For each aging condition, three cells were used to ensure the 

reproducibility of the results.  

2.1 Test equipment  

Aging tests [38] were performed on different test platforms within the MOBICUS consortium detailed 

in the acknowledgments. For electrical characterization tests, VMP3 potentiostats and bench tests 

type Digatron or ARBIN were used. During cycling tests, batteries were placed in climatic chambers to 

control their surrounding atmosphere and permit sufficient air convection to avoid self-heating 

effects. 

Six types of tests were carried out in this study: 

- A calendar test set was cells are placed on a climatic chamber at a defined SOC and 

temperature. This test aims to calibrate the initial model. 

- A cycling test set was cells were placed on a climatic chamber and cycled to +/- 5% of their 

average SoC, in order to cycle in a SoC range of 10%, this aim of this test was also to calibrate 

a model. 

- Calendar tests set were the initial SoC of the cell is set and the temperature of the climatic 

chamber varying to simulate seasons, and another one were the temperature is set and SOC 

varying between two states of charge. The purpose of these tests is to validate the model on 

calendar situation. 

- A mixed cycling and calendar aging profile test. 



- A PHEV aging test to validate the model with a combination of calendar and cycling aging. 

Capacity fade and resistance growth were characterized by a check-up protocol described below. 

 

2.2 Check-up protocols 

Characterization tests were carried out every 6 weeks (5 weeks of aging, 1 week of characterization. 

This included: 

- Capacity tests begin with a full charge at C/2 to the maximum cut-off voltage followed by a 

constant voltage charge to a current of C/20. Next, the cell is fully discharged at a constant 

current of C/10 to the minimum cut-off voltage. Finally, the cell is fully charged at a C/10 

current to the maximum voltage, followed by a constant voltage phase to a current of 

C/20. 

- The MOBICUS pulse characterization process, which can be summarized as follows: 

discharge (charge) 10s with 4C constant current, rest time for 2min, discharge (charge) 

10% of the standard capacity of the battery with constant current, hold for 30 min, and 

repeat the process to discharge cut-off voltage (a maximum of 10 repetitions). 

Subsequently, the process is repeated on the charge. 

 

 

2.3 Design of experiment 

Figure 1 presents a summary of the aging process presented in this paper. Apart from PHEV test 

where 16 cells have been tested on a module, each test was carried out on 3 cells in order to ensure 

repeatability. Cells aged at rest state are represented in purple whereas cell aged under current 

loading are represented in blue. Calendar and cycling tests are used for model calibration, and 

present respectively: 

- Calendar aging of cells on a shelf under a predefined SoC and temperature. 

- Cycling test with predefined currents and SoC. 

All the other aging tests were used to validate the model calibrated using calendar and aging tests. 

The aim of thermal cycling and SOCV tests was to validate the behavior of the model in calendar 

conditions with respectively temperature and SoC which can vary as a function of the time, indeed, in 

the calendar calibration dataset, there is no variation of temperature and SoC. 

In addition Calendar/Cycling and PHEV accelerating aging tests are used to validate the model with 

complex aging profiles melting calendar and cycling mechanisms. Hence, 72 % of cells are used to 

calibrate the model and 28 % for the validation. 

 

 



 

Figure 1: diagram of tested cells on this study 

Calibration tests 
 

Simple calibration tests have been designed in order to represent most battery aging stress factors 

while being not to computationally expensive for long term simulation during parameter 

optimization. In these tests, aging stress factors are to be kept as constant as possible in order to 

decorrelate their effects. 

Calendar aging tests 

The test matrix of conditions for calendar aging is presented in Table 2. This matrix is inspired by 

SIMCAL project [3] and uses a large range of temperature data (0 – 60°C) and SoC (0 – 100%) data for 

model calibration.  

Table 2: Test matrix of calendar aging 

SoC [%]\T [°C] 0 25 45 60 

0   X  
30 X X X X 

65  X X X 

80 X X X X 

100 X X X X 

 

Battery conditions were electrically monitored once a month for 18 months. The SoC was then set at 

25°C by a discharge at C after a full charge of the battery. Thereafter, batteries were placed in the 

climatic chamber at the corresponding aging temperature, without any electrical monitoring. 

As illustrated in Figure 1 these results are to be used in order to calibrate the calendar part of the 

aging model. 

Cycling aging tests 

The test matrix of conditions for cycling aging is presented in Table 3. This matrix is also inspired by 

the SIMSTOCK project and uses a large range of temperature data (0 – 45°C) and SoC (30 – 90%) data 

for model calibration. Cells were cycled to +/- 5% of their average SoC, in order to cycle in a SoC 

130 cells

Calibration
93 cells

Validation
37 cells

Calendar
48 cells

Cycling
45 cells

PHEV cycling
16 cells

SOCV
3 cells

Thermal 
cycling
6 cells 

Calendar / 
cycling
12cells



range of 10%. As indicated in Table 3, the relative influence of the charge and discharge current (IC 

and ID respectively), to obtain a more complete matrix of data. 

As illustrated in Figure 1 these results are used in the calibration of the cycling aging. Thanks to the 

plan of experiments, the model should be able to account for the temperature, SoC and charge and 

discharge rates (from 1/3C to 3C) impacts on aging.  

Table 3: Test matrix of cycling aging (𝐼𝐶;𝐼𝐷) 

T (°C) SOC (%) IC[C] ID[C] 

0 30 3 1 
80 3 3 

80 1 3 

90 1 1 

25 30 1 3 

30 3 1 

65 1 1 

65 3 3 

80 3 1 

90 1 3 

45 30 1 1 

30 3 3 

30 1/3 1/3 

65 3 3 

80 1 3 

Validation tests 

Thermal cycling aging tests 

 

Thermal cycling aging tests were conducted to validate the calendar aging model with more realistic 

operating conditions (varying temperature). This aging test aimed to represent calendar aging during 

daily and seasonal variation as represented in Figure 2. Two thermal profiles were applied to the 

cells.  

- The first one (cold season) consisted of one step at 0°C for 12h followed by another step at 

30°C for 12h. This profile was repeated 80 times (80 days) followed by a check-up test  

- The second one (hot season) was conducted with 30°C and 60°C steps. This profile was 

also repeated 80 times (80 days) followed by a check-up test.  

These two seasons were looped 3 times to represent 3 years (accelerated). 



 

Figure 2: Evolution of daily temperature on the cold season (left), and simplified seasonal variation of 

the temperature (right) for thermal cycling aging tests 

 

 

State of Charge Variable (SoCV)  

Another campaign of calendar aging tests called SoCV , consisting of aging cells between 2 SoC values 

(80 and 30%) at 45°C was carried out. The protocol is detailed as: 

• 11 weeks at 45°C and SoC= 30%  

• 1 week check-up 

• 5 weeks at 45°C and SoC= 80%  

• 1 week check-up 

• 5 weeks at 45°C and SoC= 80%  

• 1 week check-up 

 

These steps are repeated for the entire test duration. This test is used to validate the calendar aging 

of the cell and especially the fact that the variation of State of Charge of the cell does not prevent the 

good agreement between experiments and the model. 

Calendar/cycling tests 

A hybrid calendar/cycling aging test, which alternates the calendar and cycling phases, was carried 

out to simultaneously validate both the calendar and cycling model. These tests comprise a cycling 

period at 3C in charge and discharge, in a +/- 5% range of an average SoC, followed by normal 

calendar aging. To represent 2 cycles a day, the steps aggregate for one loop is a 12h. Test 

parameters are listed in Table 4. 

The aim of this test is to check that calendar and cycling aging can be cumulated when they happen 

consecutively. 

 

 



Table 4: Operating conditions of Calendar/cycling tests (Ct= Cycling Time, total time=12h) 

SoC [%]\T [°C] 25 45 

65 Ct=2, 6h Ct=2h 

80 Ct=2, 6h Ct=2h 
 

PHEV accelerating aging 

A scenario with a daily use equivalent to 4 successive WLTC (Worldwide harmonized Light vehicles 

Test Procedures) was chosen. The power profile to be applied to the battery was obtained by a 

Simcenter Amesim PHEV vehicle simulator with the inputs of WLTC profiles. Then, this power profile 

was followed by a fast charge and a rest period of 4 hours. The complete cycle lasts 6 hours (Figure 

3), with an acceleration factor of 4, i.e. 6 hours = 24 hours. The temperature profile in Figure 4 

reproduces the temperature of the city of Nice in 2015. An offset of 5°C was also added to accelerate 

aging. This procedure was applied on a battery module with 16 cells in series. 

This test aims at assessing the validity of the model in realistic conditions combining a realistic duty 

cycle and rest phases. 

 

Figure 3: Evolution of the battery SoC during a 6 hours cycle 

 

Figure 4: Temperature of the city of Nice in 2015 



3 Model equations and calibration method 
 

3.1 Model equations 

The main objective of these comprehensive databases is the development of aging laws using an 

empirical approach. Laws and approaches depend on the partners and their research objectives [21]. 

Currently, the basic modeling approach of Simcenter Amesim has been described in [21]. In this 

approach, calendar aging depends on temperature and SoC, whereas cycling aging depends on 

temperature and cycling rate. Depending on the operating conditions and model parameters, the 

calendar aging capacity loss rate is applied when the cell is at rest or during discharge. The cycling 

aging capacity loss rate is used when the cell is in charge (I>0) at a sufficient rate. The equations of 

this model are presented eq (2) and (3): 

 

kcal = Bcal exp (−
Eacal

RT
) 

dQloss
cal

dt
= zcal. 𝑘𝑐𝑎𝑙 . (

Qloss

kcal

)
1−

1
zcal

 

(2) 

 

kcyc = Bcyc exp (−
Eacyc + α|I|

RT
) 

dQloss
cyc

dt
=

|I|

3600
. zcyc. kcyc. (

Qloss

kcyc

)

1−
1

zcyc

 

 

(3) 

 

Where 𝑄𝑙𝑜𝑠𝑠
𝑐𝑎𝑙 and 𝑄𝑙𝑜𝑠𝑠

𝑐𝑦𝑐
are the loss capacity during the calendar phase and cycling phase respectively 

is the normalized capacity loss (%), Bcal and Bcyc  are pre-exponential factors depending on SoC, 

Eacal and Eacyc are the activation energies (J.mol-1), which evaluates the dependency of the calendar 

or cycling aging on temperature T(K), and zcal and zcyc are dimensionless constants for calendar and 

cycling aging respectively.  

The temperature dependence for both calendar and cycling aging carried out through the application 

of the Arrhenius-rate laws, which predicts a faster capacity fade at high temperatures. Figure 6 

shows that fast capacity fades are evident at high temperature under calendar aging, although the 

capacity fade is far higher at 0°C compared to 25 and 45°C. Such behavior is possibly related to cold-

induced aging phenomena such as Li-plating that are not taken into account in the initial model.  

As a consequence, the model from [21] has been generalized as a generic model (4): 

𝑑𝑄𝑙𝑜𝑠𝑠
𝑔𝑒𝑛

𝑑𝑡
= 𝑧𝑔𝑒𝑛 . 𝐵𝑔𝑒𝑛 .  (

𝑄𝑙𝑜𝑠𝑠
𝑔𝑒𝑛

𝐵𝑔𝑒𝑛

)

(1−
1

𝑧𝑔𝑒𝑛
)

 

(4) 

 



In this expression Bgen is a dimensionless pre-factor that depends on I, SoC and T, t is the aging time 

(s), and zgen is a dimensionless constant.  

The block diagram showing the calibration algorithm is presented in Figure 5. On this figure, one can 

observe that the first step is to be fit with calibration dataset on a linearized model using least-

squares linear regressions in order to select a first set of relevant parameters. This first step aims to 

be computationally fast to select multiples parameters. Then the first set of parameters is then used 

in the generic model to be fitted with the same calibration data with a non-linear least squares 

regression. This model is slower than the previous one, but is more efficient to dissociate charge and 

discharges phases, and the use is closer to the aging tests on cells. Once the model fitted, the P-

values calculated by the algorithm enable to identify one non-relevant parameter (value with the 

maximum P-value) which is removed. The fit and the statistic filtering steps are looped until max P-

value is lower than 0.01. Finally, where all parameters are relevant, calibration parameters can be 

used on the generic model for the comparison with validation dataset. 

 

 

Figure 5: Block diagram of calibration algorithm  

 

 

3.2 Aging model calibration 

The identification of model parameters has been performed through R software facilities[39] on the 

calendar and cycling aging data. Aging conditions have been reproduced on a numerical model using 

the DeSolve R package and LSODA solver to evaluate 𝑄𝑙𝑜𝑠𝑠
𝑔𝑒𝑛

 from eq 4. A non-linear regression 

algorithm (Levenberg-Marquardt) has been used to fit the parameters. 

The resulting 𝐵𝑔𝑒𝑛 and 𝑧𝑔𝑒𝑛 are polynomial equations with: 

Bgen = 𝐵1 + 𝐵2. T2 + 𝐵3 . T + 𝐵4. 𝐼𝑑𝑐ℎ + 𝐵5. 𝐼𝑐ℎ + 𝐵6.
1

𝑇²
+ 𝐵7. T. 𝐼𝑐ℎ + 𝐵8 . 𝐼𝑐ℎ . 𝑆𝑜𝐶

+ 𝐵9. 𝐼𝑑𝑐ℎ .
1

𝑇
+ 𝐵10. 𝐼𝑑𝑐ℎ . 𝑇. 𝑆𝑜𝐶 + 𝐵11. 𝐼𝑑𝑐ℎ .

1

𝑇
. 𝑆𝑜𝐶 

(5) 



 

And 

𝑧𝑔𝑒𝑛0 = 𝑧1 + 𝑧2. 𝑇2 + 𝑧3.
1

𝑇
. 𝑠𝑜𝑐 + 𝑧4. Ich 

(6) 

Where 𝐼𝑐ℎ and𝐼𝑑𝑐ℎare, respectively, the current value when I>0 and I<0 (default value is 0). 

On the model, 𝑧𝑔𝑒𝑛0 have been saturated between 0.5 and 1 by the mean of a hyperbolic tangent 

function: 

𝑧𝑔𝑒𝑛 =
tanh(2. zgen0)

2
+ 0.5 

(7) 

 

The coefficients matrix of the estimated parameters is summarized in Table 5. This table lists the 

estimated coefficient and its standard error, t-value, a t-test associated with testing the significance 

of the “Estimate” column, Pr(>|t|), the p-value of the t-test (the proportion of the t distribution at 

that df which is greater than the absolute value of your t statistic). The asterisks following the 

Pr(>|t|) provide a visually accessible way of assessing whether the statistic met various criterions 

(*** for Pr(>|t|)<0.001, ** for Pr(>|t|)<0.01, … ). As we can see in the last column, all values are 

lower than 0.01 so each parameter is deemed useful to describe the model. 

Table 5: statistical study of fitted parameters on aging model training. 

 Estimate Std. Error t value Pr(>|t|)  

𝑩𝟏 -5,63E-01 7,62E-02 -7,39E+00 6,50E-13 *** 

𝑩𝟐 -3,23E-06 4,37E-07 -7,39E+00 6,70E-13 *** 

𝑩𝟑 2,54E-03 3,44E-04 7,39E+00 6,59E-13 *** 

𝑩𝟒 2,20E-03 4,09E-04 5,38E+00 1,16E-07 *** 

𝑩𝟓 8,03E-04 1,76E-04 4,57E+00 6,11E-06 *** 

𝑩𝟔 8,14E+03 1,10E+03 7,40E+00 6,32E-13 *** 

𝑩𝟕 -2,70E-06 6,00E-07 -4,50E+00 8,51E-06 *** 

𝑩𝟖 -2,03E-07 7,67E-08 -2,64E+00 8,48E-03 ** 

𝑩𝟗 -6,83E-01 1,25E-01 -5,48E+00 6,77E-08 *** 

𝑩𝟏𝟎 -6,55E-08 9,30E-09 -7,05E+00 6,50E-12 *** 

𝑩𝟏𝟏 6,02E-03 8,45E-04 7,13E+00 3,84E-12 *** 

𝒛𝟏 1,31E+00 5,28E-02 2,48E+01 5,93E-88 *** 

𝒛𝟐 -1,12E-05 4,28E-07 -2,63E+01 1,35E-94 *** 

𝒛𝟑 1,55E-01 1,00E-02 1,55E+01 5,85E-44 *** 

𝒛𝟒 1,31E-02 1,74E-03 7,54E+00 2,42E-13 *** 

 

  



 

Once these parameters obtained equations 5 to 7 can be fed into equation 4 which is a text 

parameter from Simcenter Amesim battery model. The Figure 6 shows the results cycling aging for 

each temperature, in comparison with 3 models predictions. On this figure, cycling aging results are 

separated on 3 plots as a function of the room temperature. It can be seen that the largest lost 

capacity is shown in the plot at the lowest room temperature, and for the highest charge rates. This 

behavior can be explained by cold induced phenomena such as lithium plating aging mechanism. It 

can be noted that the 3C/3D condition seems to be less impacting than 3C/1D given the slope of the 

results. This is undoubtedly due to the cell temperature which is higher at high charging rate, and 

which improves the electrochemical kinetic properties, preventing the negative potential to drop 

below 0 V vs Li+/Li necessary for the li-plating mechanism.  

Regarding 25 and 45 °C plots, the same behaviors are observed. The higher the current the higher 

the capacity loss is. Furthermore by comparing the cycling aging at 45 °C with the same 3C/3D 

condition, it appears that the SoC has an impact on aging since capacity loss is higher at 65 % SoC 

compared to 30 % SoC. 

In Figure 6 the improvement brought about by the different steps can be seen: 

- The first model presents the results from the first set of parameters with the linear model. 

The standard error of this model is 2.46 %, and some tests at low temperatures and high 

SoC presents larger errors than 8 %. In addition, at 45 °C all curves appear to be straighter 

than the other simulations which present fewer errors. 

- The second model is fitted with the same parameters than the previous one but by means 

of the generic model. The standard error is 1.69 %, and as for the previous model, the test 

at 0°C and 90 % SoC shows a 7 % error. The other tests present better fit properties with 

fewer errors. 

- The last model presents the best results with a standard error of 1.44 %, all calibration 

data are well fitted on this representation. This model is the one which is described 

following this paper. 



 

Figure 6: Capacity loss plots for cycling aging tests with 3 fits levels of calibration process 

Calibration comparison with reference model 

Calendar aging : 

 

Figure 7 shows the battery capacity simulation vs. experimental results for calendar aging. In this 

figure, one can observe that the higher are the temperature and the SoC, the higher the capacity loss 

is. This behaviour is due to the degradation of the electrolyte whose kinetics will be all the greater 

the higher the cell temperature and voltage (thus the SoC). The calibration simulations from the 

reference model and the generic model are mostly in agreement with the experiments, except for 

the shapes of the aging curves at 60°C. This is probably due to the extreme aging conditions, where 

an irreversible aging mechanism predominates and is not accounted for during the beginning of the 

aging. 



 

Figure 7: Simulations vs. experimental results for calendar aging. 

 

Cycling aging: 

 
For power cycling aging, the model results are presented in Figure 8. In this figure, one can observe 
differences between the reference and the generic model. Indeed, where test temperature is less 
than or equal to 25 °C, the reference model shows larges differences (up to 30 % capacity loss error) 
between experimental and simulation (low temperatures mechanisms are not taken into account in 
this model). This reference model is better at 45 °C with less than 5% capacity loss error. Generic 
model results show good accuracy for all temperatures with less than 3% capacity loss error.  
 
Given the low accuracy of the reference model on calibration data, only generic model results are 
presented on the rest of the paper. 

 



 

Figure 8: Simulation vs. experimental results for cycling aging 



4 Results and Discussion 
 

This section presents a comparison between simulation results and experimental data from the 

validation data set which have not been used for the model calibration step. The simulation results 

presented were obtained using an Amesim model and temperatures and current profiles (including 

for SoC setting) were applied exactly as cells tests. This part aims to validate the model and 

investigate the limits of its application.  

Figure 9 shows the battery capacity simulation vs. experimental results for calendar aging with a SoC 

variation. As expected, the capacity loss is more significant at high SoC in calendar aging. However, 

the experimental data show regeneration of the capacity at 30% of SoC. This phenomenon is not 

considered by the model (monotonous equation) which explains the gap between experimental data 

and simulation data at this value of SoC. Regardless, the capacity loss is well predicted by the model 

in general. 

 

Figure 9: Simulation vs. experimental results for calendar aging with a SoC variation 

 

Figure 10 shows the battery capacity simulation results vs. experimental results for calendar aging 

with a temperature variation at 65 and 100% SoC. In these simulation, the temperature profiles as a 

function of time were directly fed as inputs of the Simcenter Amesim battery model. The 

experimental data show a capacity increase (regeneration) when the temperature is cycled between 

0°C and 30°C, especially at 100% of SoC. The model does not take this phenomenon into account, 

which explains the gap between experimental data and simulation data. At 65% of SoC, the 

regeneration is not significant, and so the model fits well with experimental results.  

Figure 11 shows the battery capacity simulation results for the mix of calendar and cycling aging tests 

at 65% and 80% of SoC. In these simulations, a simple lumped thermal model has been used in order 

to predict the cell temperature which can vary under current solicitations. Using the signal library of 

Simcenter Amesim, current cycling and rest phases of the experiment were reproduced in the model. 



The capacity loss is better predicted by the model when cycling time is 2h. for other cycling times, 

the model overestimates the capacity loss. This could be explained by a difference between the 

simulator and the experimental protocol. The model is validated for calendar and cycling aging.   

 

 

Figure 10: Simulation vs. experimental results for calendar aging with a temperature variation 

 

 

Figure 11: Simulation vs. experimental results for calendar/cycling aging with a SoC variation 

 

Figure 12 shows PHEV accelerated aging results after 6 months of cycling, corresponding to a usage 

scenario of 2 years. On this plot, the time axis includes PHEV cycling and also check-up and rest time. 

The battery capacity decreased by 8%, and its internal resistance remained stable. To validate the 

aging model, the reference test was simulated completely taking into account all the rest and check-



ups. Cell temperature was simulated based on a lumped approach where the external temperature 

was the temperature setpoint of the climatic chamber as a function of time. Cell thermal parameters 

such as heat tranfer coefficient, thermal capacity were fitted against experimental data so that cell 

model temperature fits the experiment temperature throughout the experiment. PHEV cycling has 

been performed by using elements from Simcenter Amesim signal library and rest phase have also 

been added in order to account for periods of time when the test was stopped and also check-ups 

phases. In Figure 12, capacity losses estimated by our model (for a cell located at the center of the 

module) and measured battery are compared. The model gives a good estimation of the capacity 

losses, even in the case of a complex test involving dynamic cycling phases, continuous charge, 

calendar phases, and a strong variation of the outside temperature (seasonal cycles).  

 

Figure 12: Capacity loss of the 8th cell - measurement vs. simulation 

 

Hence, the generic model is more accurate than the reference one because it can adapt different 

aging mechanisms without preliminary be implemented by physicians.  

A validation test has been done on several profiles and showcases good accuracy even with PHEV 

profile. Indeed, on other studies [34–36], validation is only done on simple constant charge and 

discharge profiles which are similar to the training dataset.  

So as to train the generic model, it is however necessary to provide a large training dataset showing 

the largest operating conditions possible. Where operating conditions are too different from the 

training dataset, the model is not able to predict with accuracy the aging degradation of a battery.  

In order to develop a model without conducting a specific aging campaign, training data could be 

provided by electric vehicles in operation via GSM communication. 



5 Conclusions 
 

The purpose of this study was to calibrate and test a data-driven battery aging model for an NMC/C 

Li-ion battery technology. The model approach is based on an empirical law depending on current, 

temperature, state of charge, and time. An algorithm was used to calibrate this model by R software 

using non-linear least square algorithm functions. The model appears to apply to a range of 

situations rather satisfactorily, including low-temperature aging, without prior mechanistic 

knowledge, which is not reflected in other state-of-the-art models. In a similar vein, a large range of 

battery chemistry aging can also be simulated using this approach.  

Experimental data for calendar and cycling aging, and their combination, were validated by model 

simulation outputs.  This kind of model could be extended to a large panel of empirical models when 

a time series model has to be described as a function of defined or measured parameters. 

Such a model could be used to minimize the aging of a battery as a function of the application, for 

example by identifying the best management strategy with smart charges or smart cooling 

management. 

The ease to calibrate this model makes it also possible to implement an auto adaptive model in a 

Battery Management System to diagnose battery state and forecast its second life application. 
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