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1 Introduction

Thermal conductivity of porous rocks depends on a large
variety of proper to rock parameters as well as external
influences. Thus, it can generate difficulties in determining
accurate thermal behavior of the rock. The rock parameters
which influence the thermal conductivity are principally the
porosity, the microstructure [1] and the mineral composi-
tion. However, these parameters, in turn, can be impacted
by external influences such as temperature and pressure.

An accurate determining of the thermal conductivity is
crucial in oil and gas engineering or in geothermal applica-
tion. For example, during thermal EOR or geothermal
application, the porosity and/or the microstructure of the
sedimentary rocks can vary due to the increase of tempera-
ture and pressure, and this modification must be quantified
to be accounted for the thermal behavior of rocks.

Many efforts have been done to estimate the thermal
conductivity of sedimentary rocks in parallel to the experi-
mental methods for its determination. These estimations
have always been the subject of intensive studies, and a
lot of data [2, 3] are obtained as well as models and method-
ologies to characterize the thermal conductivity of rocks
[4–7]. Moreover, this type of estimation is well-known by
other research communities. Indeed, we find the same formal
analogy between Fourier, Ohm’s law, Darcy’s laws and
thermal conductivity. For example, considering Darcy’s
laws, the same problem is well-known and termed “upscal-
ing” [8, 9] and consists in computation of the effective perme-
ability considering a heterogeneous rock. Classically, the
upscaling process can be related to percolation theory [10],
which describes connectivity of objects within for example,
a porous structure. We can also determine effects of this
connectivity on macroscale properties such as thermal
conductivity [11]. In particular, the fundamental contribu-
tions of Torquato who proposed strategies via rigorous
microstructure-property relations [1, 12].

Finally, many technics are based on a porosity
dependence and a link between the conceptual thermal

conductivity of the non-porous rock, kR, and the thermal
conductivity of the fluid saturated the porous rock kf. These
technics are simple to implement especially when there is
no precise information about the microstructure.

In order to predict accurately the thermal efficiency of
the geothermal installation or the oil recovery of a thermal
EOR process, such as, for example, Steam Assisted Gravity
Drainage (SAGD), very often the engineers invoke numer-
ical simulations. Numerous reservoir simulators [13–16]
allow to estimate the thermal conductivity as function of
porosity, but these solutions are often based on a mixing
laws which are quite simplistic models.

The purpose of this paper is to propose a better method-
ology to predict a thermal conductivity of reservoir rocks
depending on the porosity for a reservoir simulator which
satisfy the following conditions

– easy to implement in a software, precise and accurate,
– it should have finite values to avoid numerical problems

such as non-convergence,
– have ideally correct limits: lim

u!1
keffðuÞ ¼ kf and

lim
u!0

keffðuÞ ¼ kR,

– have a limited number of parameters in order to mini-
mize a required number of laboratory experiments.

First for all, we perform a review of many means or
methods available in the literature, starting by the classical
mixing laws and finishing by empirical and theoretical
methods. For each method, the limits for u ? 1 and
u ? 0 are examined and the corresponding parameters
are detailed.

Then, we compare these methods to experimental data.
Two experimental datasets are considered, water and air-
saturated rock of the same properties for the both cases
(sandstone). The purpose is to match these two datasets
using the same model. Indeed, in reservoir simulation (oil
and gas or geothermal), various fluids may flow in the same
rock (oil, gas, CO2, water, steam). Thus, it is crucial to
propose a model which yields correct thermal conductivity
independently on the fluids flowing in the pore volume.* Corresponding author: Christophe.preux@ifpen.fr
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2 Thermal conductivity of rock function
of porosity: a review

The heat transfer in the reservoir is mainly dominated by
conduction. Thermal conductivity is the property that
quantifies the ability of a geological formation for heat trans-
fer. There are three types of methods to define this conduc-
tivity of multicomponent systems, mixing laws, empirical
models and theoretical models. The following denotations
are used

– kR, the rock thermal conductivity,
– kf, the fluid thermal conductivity,
– u, the rock porosity.

2.1 Mixing laws

The mixing laws are very common and are also used for
Ohm’s law or Darcy’s laws effective parameters determina-
tion [8, 9]. But they don’t consider the structural character-
istics of rocks and, therefore, their applications can be
constrained.

First, consider the weighted arithmetic and harmonic
means, reviewed by Zimmerman [5] which are also known
as parallel, or linear, and series models, respectively. They
correspond to the classical Wiener’s bound used to compute
effective permittivity.

The weighted arithmetic or so-called parallel model is
written as

keff uð Þ ¼ ukf þ 1� uð ÞkR: ð1Þ
This model is available in the most of the reservoir simula-
tors such as Eclipse [14], Intersect [15] and Stars [16].

The weighted harmonic or so-called series model, is
given by

keff uð Þ ¼ u
kf

þ 1� u
kR

� ��1

: ð2Þ

It can be noticed that the parallel model yields the highest
values of thermal conductivity and the series model yields
the lowest ones [4]. It was also shown by Wiener, that these
two models represent upper and lower bounds on the effec-
tive conductivity [17].

Then, the mixing law is reviewed by Beck [18] as the
weighted geometric mean. It has no physical background
but seems to work better than the parallel and series means;
it is written as

keff uð Þ ¼ kR
kf
kR

� �u

: ð3Þ

This mean is also used by [5] and [18]. It can be noticed that
this mean is also available in Stars [16]. In this reservoir sim-
ulator, the formula is given in the logarithm form,

ln keffðuÞ ¼ ln kR þ u ln
kf
kR

� �
¼ 1� uð Þ ln kR þ u ln kf : ð4Þ

There is another mixing law, proposed by Hashin and
Shtrikman [19], which yields the bounds (HS bounds)
always tighter than the Wiener bounds

keff;min uð Þ ¼ kf þ 3kf kR � kfð Þ 1� uð Þ
3kf þ kR � kfð Þu ; ð5Þ

keff;max uð Þ ¼ kR þ 3kR kf � kR
� �

u

3kR þ kf � kR
� �

1� uð Þ : ð6Þ

In [20], the mean of both bounds is often used as best
approximation of rock bulk thermal conductivity:

keff uð Þ ¼ 1
2

keff;minðuÞ þ keff;maxðuÞð Þ: ð7Þ

Finally, a dispersive or extended Maxwell model proposed
by Zeb et al. [21] seems to have a solid physical basis [18].
The thermal conductivity of the porous rock is written as

keff uð Þ ¼ kR

2kR
kf

þ 1
� �

� 2u kR
kf
� 1

� �
2kR
kf

þ 1
� �

þ u kR
kf
� 1

� � : ð8Þ

However, it can be easily demonstrated that this formula-
tion corresponds to the upper Hashin–Shtrikman bound
keff, max(u). Therefore, in this paper, only HS bounds model
is referred.

To conclude, all presented mixing laws are tend to
expected values at the porosity limits, i.e., lim

u!1
keffðuÞ ¼ kf

and lim
u!0

keffðuÞ ¼ kR. Moreover, no additional parameter
is required to set these models. Notice that Hashin and
Shtrikman bounds are classical and appear also in the
computation of effective permeability of heterogeneous
porous media [22].

2.2 Empirical models

This section addresses a review of the existing empirical
models to determine the thermal conductivity of the porous
rock. These models determine the thermal conductivity
through the application of a regression technics. Generally,
they are limited to a particular type of rocks. The purpose is
to demonstrate the link in-between different models, empir-
ical or mixing laws, as well as verify that the conductivity
values at the porosity limits satisfy the expected values,
kf for u ? 1 and kR for u ? 0:

First, Asaad [23] proposes a thermal conductivity func-
tion obtained by the mean which is very similar to weighted
geometric model

keff uð Þ ¼ kR
kf
kR

� �cu

; ð9Þ

where c is an empirical exponent and its value can be fitted
using experimental data. When c = 1, this model becomes
identical to the weighted geometric mean model. Moreover,
"c > 0only one of the conditions at the porosity limits is
satisfied

lim
u!0

keffðuÞ ¼ kR: ð10Þ

Then, in [24] and [7], Sugawara and Yoshizawa propose a
model based on an adjustable parameter A

keff uð Þ ¼ 1�Að ÞkR þ Akf ; ð11Þ
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where

A ¼ 2n 2n � 1ð Þ�1� 	
1� 1þ uð Þ�n½ �: ð12Þ

with n (> 0) is an empirical exponent which needs to be
fitted using experimental data. Notice that if n = �1,
one obtains the weighted arithmetic mean (parallel
model). Moreover "n > 0,

lim
u!1

keffðuÞ ¼ kf and lim
u!0

keffðuÞ ¼ kR: ð13Þ

Zeb and Maqsood [4] used exponential decay trial to predict
thermal conductivity of consolidated porous media at room
temperature and normal pressure,

keff uð Þ ¼ kRe
�zu

kR
kf ; ð14Þ

where z is an empirical exponent which can be fitted using
experimental data of thermal conductivity keff and corre-
sponding values of u and kR as proposed by Zeb and
Maqsood [4]. This means that the thermal conductivity
of the non-porous rock is not given and is not a constant.
Notice that this conductivity, kR, is very difficult to
obtain because the existence of a non-porous rock with
the same mineral composition as a porous one is almost
impossible. However, for a reservoir simulator, only cor-
rect limits and a limited number of undefined parameters
are identified as most important.

Here, lim
u!0

keffðuÞ ¼ kR is directly verified. For u = 1, the

required limit condition is satisfied only if z ¼ kf
kR

ln kf
kR
,

which yields the weighted geometric mean.
A model proposed by Zeb et al. [21] for prediction of

thermal conductivity of porous consolidated igneous rocks
is written as

keffðuÞ ¼ 1
kR

þmu
kf

� ��1

ð15Þ

where m is an empirical coefficient and should be fitted
using experimental data of thermal conductivity keff and
corresponding values of u and kf. It means that the
thermal conductivity of the fluids is not given and is not
a constant.

For the zero porosity, the model verifies lim
u!0

keffðuÞ ¼
kR, as required. However, for u = 1 the condition

lim
u!1

keffðuÞ ¼ kf is fulfilled only if m ¼ kR�kf
kR

, i.e. when the

model degenerates toward the weighted harmonic mean.
This could represent a problem for a reservoir simulator
since kR is not easy to determine contrary to kf which can
be measured.

Veerendra and Chaudhary model for porous consoli-
dated materials [4, 25] for kR > kf is written as

keffðuÞ ¼ 1� uð ÞkH þ ukL � w
kR
kf

� �1=3

; ð16Þ

where kH ¼ kRebu and kL ¼ kfe�b 1�uð Þ with b ¼ kf
kR
� 1

� �
.

The term w kR
kf

� �1=3
is to account for a high thermal

conductivity ratio kR
kf
, w is an empirical coefficient which

is fitted using experimental data. According to Veerendra
and Chaudhary, there is a corrective term,

u 1� uð Þ ffiffiffiffiffiffiffiffiffiffi
kLkH

p
, which may be either added or subtracted

from the precedent equation. For the porosity limits, u= 0
and u = 1, the required conditions are verified if w = 0.

2.3 Theoretical models

This section addresses a review of the existing theoretical
models to determine the thermal conductivity of the porous
rock. These models are based on physical consideration such
as pore structures.

The first theoretical model to predict the thermal
conductivity of fluid saturated rocks is the Krupiczka model
[26]. It is a semi-empirical equation derived from the
numerical calculation of heat transfer through a bundle of
cylinders for the effective conductivity of a packed bed of
spheres, therefore, it is indexed in theoretical models,

keff uð Þ
kf

¼ kR
kf

� �a1þa2 loguþB log
kR
kf

� �
: ð17Þ

were the coefficients a1 ¼ 0:28, a2 ¼ �0:757 and B ¼
�0:057 are obtained for this particular case of packed
bed of spheres [26]. It should be noted that the required
condition at the zero porosity limit, lim

u!0
keffðuÞ ¼ kR,

cannot be satisfied for this model.
The last considered here model is based on the concept

of the porous rocks represented as a composite material
with the spheroidal non-connected pores. This formulation
represents some mathematical difficulties due to arbitrary
aspect ratio of the spheroidal inclusions. The solution has
been proposed by Fricke [27] for the electrical conductivity
[5] and can be successfully applied to the thermal conductiv-
ity. Thus, for small porosity, Fricke showed that the effec-
tive conductivity can be given by

keffðuÞ
kR

¼ 1� bu ð18Þ

with

b ¼ 1� r
3

4
2þ r � 1ð ÞM þ 1

1þ r � 1ð Þ 1�Mð Þ
� �

; ð19Þ

where r ¼ kf
kR

and M is a factor that depends on the pore
aspect ratio a. For the two regimes of oblate (a < 1)
and prolate (a > 1) spheroids, this factor is given by

a < 1 : M ¼ 2h�sin 2hð Þ
2 tan h sin hð Þ2 ; h ¼ cos�1 a

a > 1 : M ¼ 1
sin hð Þ2 �

cos hð Þ2
2 sin hð Þ3 ln

1þsin h
1�sin h ; h ¼ cos�1 1

a

:

There are three limiting cases which are distinguished by
Zimmerman [5] as thin cracks for a ? 0, spherical pores
for a = 0 and needle-like pores for a ? 1, with

a ! 0 : b ! ð1�rÞð1þ2rÞ
3r

a ¼ 1 : b ! 3ð1�rÞ
2þr

a ! 1 : b ! ð1�rÞð5þrÞ
3ð1þrÞ

:
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To consider rock with any value of porosity and, therefore,
to consider realistic rocks we must evoque the “effective
medium theory” for taking into account the interactions
of neighboring pores as explained by Zimmerman [5]. Then,
applying the effective medium theory proposed by Maxwell
[28], the actual Fricke model [27] can be written as

keffðuÞ
kR

¼ 1� uð Þ 1� rð Þ þ rbu
1� uð Þ 1� rð Þ þ bu

; ð20Þ

where r and b are defined as previously. This model is
tested in the next section.

The limit for the zero porosity verifies lim
u!0

keffðuÞ ¼ kR
and for u = 1, the model tends to kf as required. Moreover,
Fricke’s equation always satisfies the Hashin–Shtrikman
bound.

3 Comparison with laboratory data

To test all these models, the published experimental data is
used from samples of sandstone collected in five wells [3] in
Perth Basin, Western Australia and Soultz-sous-Forets
Basin, astern France using [2] to test thermal conductivity
calculation from P-wave velocity. Two sets of data are
available

– Measured thermal conductivity for dry sample,
kf = kair,

– Measured thermal conductivity for saturated sample,
kf = kwater.

According to Clauser and Huenges [29] and using
Esteban et al. [3], for water and air under room conditions
(1 bar and 22 �C), the corresponding thermal conductivity
is defined as

kair ¼ 0:025Wm�1K�1;

kwater ¼ 0:6Wm�1K�1:

These values are used together with the laboratory data
and summarized in Table 1.

The purpose is to match different models to the experi-
mental data. Independently on the fluid (air or water), the
value of the thermal conductivity of the rock kR is assumed
to be a unique constant within the same model. Thus, the
both datasets, air and water, are considered together to
search kR. Therefore, the matching methodology is con-
strained as follows.

First, an Objective Function (OF) based on least
squares errors is built

OF ¼
XN
i¼1

kAiri � keff ui; kair; kRð Þ
kAiri xi

 !2

þ
XN
i¼1

kwateri � keff ui; kwater; kRð Þ
kwateri xi

� �2

; ð21Þ

where N is a number of experimental entries. Each term is
weighted by xi which is assumed to be equal to one for all

the experimental data. To impose the convergence at the
two known points kAir and kwater for u = 1, their weight is
set to x = 0.1 (Tab. 1).

In order to get optimal model parameters to approach
the data, the OF is minimized using the Powell’s dog leg
minimization method.

Then, the standard deviation is used to estimate the
veracity of the results

SDE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2ðN � 1Þ

XN

i¼1
kAir
i � keff ui; kAir; kRð Þ� �2 þ kWater

i � keff ui; kWater; kRð Þ� �2� �s
:

ð22Þ
In order to bound a maximal thermal conductivity, the
study of Orlander et al. [30] for several sandstone outcrops
originate from Fontainebleau (France), Castlegate (USA),
Bentheim (Germany), Obernkirchen (Germany) and Berea
(USA), is used. A maximal thermal conductivity for
sandstone obtained by Orlander et al. [30] is near
8 Wm�1 K�1 for u ? 0. However, to release the parameter
restrictions, the bounds for kR are set to

kR 2 kAir ; 16½ �:

3.1 Analysis of mixing laws

The mixing laws are given as simple means, which depend
only on the thermal rock conductivity kR. As mentioned
before, the measure of kR is very difficult, thus, for each
model, kR is obtained in order to match as close as possible
the experimental data.

In Figure 1, the resulting mixing laws are compared to
the experimental data. The precision of each model is
characterized by the corresponding OF and the standard
deviation errors (SDEs) given in Table 2 together with
resulting thermal rock conductivity.

The worst fit is obtained with the weighted harmonic
mean. Moreover, the optimal value of kR corresponds to
the set maximal bound which implies a bad convergence
of the minimization.

Then, the Hashin and Shtrikman maximal and mini-
mal bounds and mean models also yield high OF and
SDE. The corresponding fitting curve for minimal bound
matches with the data for the saturated sample, while for
the non-saturated sample the minimal bound is found
extensively low compared to the data. Moreover, the
obtained optimal value of kR is higher than value proposed
by Orlander et al. [30]. The maximal bound match with
non-saturated sample data. The Hashin and Shtrikman
mean model yields small SDE, however the objective
function keeps high.

The weighted arithmetic mean has also a high error
compared to the experimental data. This model is a linear
correlation and it is not adapted for the used set of experi-
mental results which has a non-linear trend. It can be noted
that the SDE is very close to those of the Hashin and
Shtrikman mean model.

Finally, the best fit is obtained with the weighted geo-
metric mean model. It yields the smallest objective function
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and the standard deviation for the thermal conductivity
of rock kR = 6.74 Wm�1K�1. Moreover, this model yields
the required bounds for porosity limits, lim

u!1
keffðuÞ ¼ kf

and lim
u!0

keffðuÞ ¼ kR.

3.2 Analysis of empirical and theoretical models

The empirical and theoretical models are more complex
as the mixing laws. Additionally to the thermal conductiv-
ity of rock, these models have other fitting parameters.
Similarly to the mixing laws, these parameters can be deter-
mined through minimizing the objective function given
before or defined by the pore structure. The minimization
parameters should satisfy the following conditions.

– The Asaad model [23] tends to the weighted geometri-
cal mean when c = 1. Moreover, it was demonstrated
that the weighted geometrical mean yields the best fit
with the experimental data. Therefore, the empirical
exponent c of the Asaad model is assumed to be closed
to 1.

– The parameter n of the Sugawara and Yoshizawa
model [7, 24] is strictly positive and found in the range
from 0.01 to 10.

– Zeb and Maqsood model [4] found the values of the
empirical exponent z between 0.1 and 5.

– Zeb et al. [21] found the values of the model parameter
m in the range [0.1, 5].

– The parameter w of the Veerendra and Chaudhary
model is to account only for a high thermal conductiv-
ity ratio kR

kf
. Moreover, in order to maintain the condi-

tion on the thermal conductivity at porosity limits,
lim
u!1

keffðuÞ ¼ kf and lim
u!0

keffðuÞ ¼ kR, it should be close

to zero.
– For the Krupiczka model, we can think that the param-

eters values must be closed to those found by the
author, a1 ¼ 0:28, a2 ¼ �0:757 and B ¼ �0:057.

– The parameter M of Fricke model is a factor which
depends on the aspect ratio of the pore. For spherical
pore, M = 0. Consider that for the studied sample of
sandstone the pores are nearly spherical. Thus, the
parameter M should be found close to zero.

Table 1. Experimental data and weights; kairi and kwateri denote the effective conductivities for dry and saturated media,
respectively.

S. No. ui [–] Air Water Weight

kairi [Wm�1 K�1] kwateri [Wm�1 K�1] xi

G1 10275 0.13 3.48 5.54 1
G1 9756 0.135 3.25 5.29 1
G1 7529 0.142 3.15 4.93 1
G1 7525 0.147 2.69 4.64 1
G1 3354 0.15 2.52 4.01 1
G1 9761 0.15 3.14 5.12 1
G1 8138 0.154 2.45 4.2 1
G1 3353 0.158 2.83 4.31 1
G1 6414 0.158 2.98 5.1 1
G1 6408 0.164 3.01 4.96 1
G1 6412 0.164 2.86 4.89 1
G1 6416 0.164 2.5 4.32 1
6306COC 0.166 2.83 4.79 1
G1 6961 0.174 2.45 4.37 1
5701COC 0.177 2.45 4.3 1
G1 3356 0.188 2.77 4.22 1
G1 3348 0.193 2.44 4.2 1
G1 4746 0.198 1.97 4.13 1
SLZ64EPS 0.2 2.44 3.53 1
G1 6960 0.207 2.25 4.09 1
G1 3344 0.224 2.05 3.59 1
G1 6953 0.225 2.3 4.6 1
G1 3340 0.227 1.94 3.6 1
G1 1249 0.322 1.07 2.72 1
G1253 0.354 1.11 2.88 1
Add-on 1 0.025 0.6 0.1
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Fig. 1. Mixing laws obtained for the experimental data (Tab. 1).

Table 2. The Objective Function (OF), Standard Deviation Error (SDE) and resulting from the minimization of
thermal rock conductivity kR.

OF SDE kR [Wm�1 K�1]

Weighted arithmetic mean (1) 5.65 0.99 3.26
Weighted harmonic mean (2) 25.18 0.74 16
Weighted geometric mean (3) 0.41 0.30 6.74
Hashin and Shtrikman min bounds (5) 18.52 1.16 8.97
Hashin and Shtrikman max bounds (6) 23.26 0.94 3.59
Hashin and Shtrikman mean (7) 19.61 0.41 5.93
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Table 3. The Objective Function (OF), Standard Deviation Error (SDE), resulting from the minimization of thermal
rock conductivity kR and optimal parameters.

OF SDE kR
[Wm�1 K�1]

Parameters

Air Water

Sugawara and Yoshizawa model (11) 0.38 0.30 7.18 na = 6.29 nw = 2.89
Zeb and Maqsood model (13) 0.41 0.30 6.74 za = 0.02 zw = 0.22
Zeb, Gurmani, Ali and Maqsood model (15) 24.96 0.77 16. ma = 0.99 mw = 0.92
Veerendra and Chaudhary model
without correction (16)

3.92 0.87 3.98 wa = 2.5 � 10�6 ww = 1.3 � 10�13

Veerendra and Chaudhary model with
positive correction (16)

3.34 0.79 3.81 wa = 2.3 � 10�6 ww = 0

Veerendra and Chaudhary model with
negative correction (16)

4.69 0.97 4.16 wa = 2.7 � 10�6 ww = 0

Fig. 2. Empirical models obtained for the experimental results (Tab. 1).
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Table 3 summarizes the resulting optimal parameters as
well as the corresponding objective function values and the
SDEs. For all the models, the minimization parameters are
obtained in agreement with the required conditions. The
fits obtained for each empirical model are compared to
the experimental data in Figure 2.

The worst results are obtained with the Zeb and
Maqsood model and followed by Zeb, Gurmani, Ali and
Maqsood and Veerendra and Chaudhary models. Similarly

to the weighted harmonic mean, the Zeb, Gurmani, Ali and
Maqsood model yields the thermal rock conductivity equal
to the imposed upper bound, kR = 16, which means the
poor convergence of the solution. Then, the Sugawara
and Yoshizawa and Krupiczka models don’t yield a good
approximation as well. Moreover, at zero porosity limit,
the Krupiczka model has not a finite solution, therefore it
is not of interest for the present study. Indeed, a not finite
solution can bring a divergence of the reservoir simulator.

Table 4. The Objective Function (OF), Standard Deviation Error (SDE), resulting from the minimization of thermal
rock conductivity kR and optimal air and water parameters.

OF SDE kR [Wm�1 K�1] Parameters

Asaad model (9) 0.41 0.3 6.74 c = 0.99992
Sugawara and Yoshizawa model (11) 2.52 0.77 8.71 n = 6.69
Zeb and Maqsood model (14) 125.17 1.32 6.63 z = 0.22
Zeb, Gurmani, Ali and Maqsood model (15) 25.2 0.75 16 m = 0.95
Veerendra and Chaudhary model without correction (16) 3.92 0.87 3.98 w = 1.8 � 10�6

Veerendra and Chaudhary model with positive correction (16) 3.34 0.79 3.81 w = 1.7 � 10�6

Veerendra and Chaudhary model with negative correction (16) 4.69 0.97 4.16 w = 1.9 � 10�6

Krupiczka model (17) 2.93 0.59 7.13 a1 = 0.0015
a2 = �0.45

B = �7.31 � 10�5

Fricke model (20) 0.46 0.3 7.26 M = 0.024

Fig. 2. Continued.
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Fig. 3. Empirical models obtained with fluid dependent minimization parameters.

Table 5. Summary of the mixing laws and empirical/theoretical models analysis.

lim
u!0

keffðuÞ ¼ kR lim
u!1

keffðuÞ ¼ kf Fitting
parameters

Global fit
quality

(OF, SDE)

Mixing Laws Weighted Harmonic mean (2) Always Always Bad
Hashin and Shtrikman min (5) Always Always Bad
Weighted arithmetic mean (1) Always Always Bad
Hashin and Shtrikman max (6) Always Always Bad
Hashin and Shtrikman mean (7) Always Always Medium
Weighted Geometric mean (3) Always Always Good

Empirical models Assad (9) Always Under conditions c Good
Sugawara and Yoshizawa (11) Always Always A Medium
Veerendra and Chaudhary
with negative correction (16)

Under
conditions

Under
conditions

w Bad

Veerendra and Chaudhary
with positive correction (16)

Under
conditions

Under
conditions

w Bad

Veerendra and Chaudhary model
without correction (16)

Under
conditions

Under
conditions

w Bad

Zeb and Maqsood (14) Always Under conditions z Bad
Zeb, Gurmani, Ali and Maqsood (15) Always Under conditions m Bad

Theoretical models Krupiczka (17) No Under conditions {a1, a2, B} Medium
Fricke (20) Always Always M Good
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For these five models, it seems impossible to match the
data using common minimization parameters for saturated
(water) and non-saturated (air) cases.

Finally, the Asaad and Fricke models give the best
match with the experimental results. Applying the optimal
value of the Asaad model parameter c = 0.99992, this
model degenerates to the weighted geometric mean. The
errors obtained with Fricke model are insignificantly higher
than those of Asaad and geometric mean models. However,
it is the only model which has a strong physical background
compared to the others mostly pure mathematical models.

3.3 The empirical model with parameter dependent
on saturated fluids

Consider four empirical models which are revealed unsatis-
factory for the data approximation using unique parameters
independent on the fluid, the Sugawara and Yoshizawa,
Zeb and Maqsood, Zeb, Gurmani, Ali and Maqsood and
Veerendra and Chaudhary models. The Krupiczka model
is not considered here since it doesn’t yield the finite
thermal conductivity values at zero porosity limit. Suppose
that the fitting parameters are fluid dependent and kR
keeps a unique constant for water and air curves. Thus,
for the corresponding objective function there is one mini-
mization parameter more than before. The results are
summarized in Table 4.

As previously, the Zeb, Gurmani, Ali and Maqsood
model is not correctly converged since the resulting value
of kR is found on its upper limit, kR = 16. The Veerendra
and Chaudhary models are found the same for fluid depen-
dent parameters as for unique ones (Fig. 3).

Considering the fluid dependent parameters for
Sugawara and Yoshizawa and Zeb and Maqsood, allow to
obtain the better approximation of the data. The corre-
sponding objective functions and the SDEs are as small as
for the geometric mean (Tab. 4).

The dependency on type of fluid increases the number of
the model parameters. Moreover, in a reservoir simulation,
the algorithm must choose the good fitting parameter
function of saturated fluids in each cell. It becomes espe-
cially problematic when the rock is saturated with many
fluids (steam and water, for example). The fitting parame-
ter is available only for one fluid. Therefore, when the cell is
saturated of several fluids, the correlation is not available
anymore. Thus, the choice of the fluid dependent parame-
ters makes sense only if the rock is saturated of one fluid
and don’t evaluate with time (change porosity, saturation,
etc...).

4 Conclusion

The analysis of various models is summarized in Table 5.
Combining the model accuracy and required for the

numerical simulator conditions, the Fricke and Asaad mod-
els reveal to be the most appropriate. Both of them yield a
good precision (low OF and SDE), they have finite bounds
for porosity limits (u ¼ 0; 1) and require only one addi-
tional to kR fitting parameter.

For both models, at zero porosity, the condition
lim
u!0

keffðuÞ ¼ kR is always satisfied, and for porosity
u ¼ 1, the required condition lim

u!1
keffðuÞ ¼ kf is also

fulfilled.
It should be noted that the Asaad model is compara-

ble to the geometric mean, but an additional fitting
parameter makes the Asaad model more flexible which
may be interesting if dealing with another rock type, for
example.

Finally, it should be kept in the mind that the Fricke
model has a strong physical background compared to other
purely mathematical models. In view of the results, the
Fricke model seems to be the most suitable: correct limits,
only one parameter, very good matching and strong physi-
cal background.
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