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Abstract This paper presents a new mathematical rep-

resentation of multiphase thermodynamic equilibrium

using so-called repartition coefficients. Combined with

a global mass formulation of multiphase Darcy flow in

porous media, it allows the derivation of a computa-

tionally efficient family of time schemes. The model ac-

counts for the mass conservation of an arbitrary number

of components flowing through an arbitrary number of

phases, coupled with thermodynamic equilibrium and

pore volume conservation. By separating the thermo-

dynamic equilibrium part from the flow part through

the repartition coefficients, the formulation removes the

need for any specific handling of phase appearance and

disappearance within the flow solver. Any “black box”

thermodynamic equilibrium solver can then be used to

compute the repartition coefficients, from EOS based

solvers to tabulated representation of the thermody-

namic equilibrium, each specific choice of thermody-

namic solver leading to a new scheme. Three numerical

experiments, from a simple beam to a real case, illus-

trate the good behavior of the approach.

Keywords thermodynamic equilibrium model ·
Multiphase flow modeling · Darcy flow · Porous media

PACS 47.10.A- · 47.56.+r · 64.75.Cd · 47.61.-t

Mathematics Subject Classification (2010) 65M08 ·
76T30

J. Coatléven
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1 Introduction

Porous media flows play a major role in many crucial

industrial application, from nuclear waste storage to oil

and gas production. The interest in such problems is

even renewed by environmental concerns such as long

term energy or carbon dioxide storage ([7]). To ensure

operational and economic security, more and more com-

plex chemical interactions must be considered requiring

to simulate complex compositional multiphase flows.

In particular, modeling thermodynamic equilibrium of

such fluids is becoming mandatory in contexts such as

CO2 sequestration where gas dissolution in water is es-

sential to understand and predict the behavior of CO2

injection. Another major example is the study of bio-

genic CH4 which represents around 20 % of global re-

sources of conventional gas and that is a great interest

for oil and gas companies due to the fact that this gas

is generated at shallow depths . The classical approach

involves a strong coupling between costly flash calcula-

tions (Mehra et al. 1983 [11]) and the flow solver which

has to deal with phase appearance and disappearance.

Those phase changes have in general a strong negative

impact on computational time and even worse on the

flow solver robustness (Voskov and Tchelepi, 2012 [19]).

Probably the most commonly encountered formulation

of the coupling between Darcy flow and thermodynamic

equilibrium models is the celebrated Coats’ formula-

tion (Coats, 1980 [3]), that uses the so-called “natural-

variables” as unknowns (pressure, saturations, phase

mole-fractions). This formulation maintains two sets

of active and inactive unknowns and equations, with

only the active ones appearing in the non-linear sys-

tem. When one phase disappears during a time step or

non-linear iteration, the corresponding saturation and
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phase mole-fractions variables are removed. Conversely,

when one phase appears, the corresponding variables

are added to the active set. This process is often referred

to as “active set” or “variable substitution” method,

and is the key ingredient of Coats’ formulation. How-

ever, it generates discontinuities in the non-linear ob-

jective function, leading to well documented difficul-

ties (see [1,12,20]) when attempting to use Newton-

Raphson algorithm to solve it. As it is a subject of

strong economic importance, many attempts can be

found in the literature to improve the management of

phase appearance and disappearance through modified

thermodynamic formulations. By no means will we try

to be exhaustive here, we thus refer the reader to the

recent paper of Voskov and Tchelepi (2012) [19], where

a comprehensive comparison of models of the literature

was performed. Let us nevertheless mention in particu-

lar the very interesting fugacity formulation of Lauser

et al (2011) [10], that was not considered in Voskov

and Tchelepi (2012) [19]. To solve their fugacity based

formulation they handle the phase appearance and dis-

appearance through complementarity conditions rather

than the usual variable switch, allowing to use a fixed

set of variables. Regardless of the chosen formulation,

let us also mention the very interesting operator based

linearization (OBL) technique of [18], used to circum-

vent the difficulty of solving the complex non-linear flow

problem. Its principle is to replace the non-linear oper-

ators and functions appearing in the numerical scheme

by a multi-linear interpolation in unknown space, thus

reducing the effective non-linearity of the problem to

be solved through Newton-Raphson’s method. It was

first applied to flow with thermodynamic equilibrium in

[18,9] and later extended to both thermodynamic and

chemical equilibrium in [8], using what we call here a

global mole formulation. Notice that the OBL approach

could be applied to the scheme we present here, poten-

tially further improving computational efficiency.

We introduce a new mathematical representation of

thermodynamic equilibrium using so-called repartition

coefficients. Combined with a global mass formulation

of multiphase Darcy flow in porous media, it allows the

derivation of a computationally efficient time scheme.

The model accounts for the mass conservation of an

arbitrary number of components flowing through an

arbitrary number of phases, coupled with thermody-

namic equilibrium and pore volume conservation. The

approach naturally covers phase appearance and disap-

pearance without impacting the structure of the flow

solver, by keeping the same set of unknowns and equa-

tions whatever the thermodynamic phase state is.

The paper is organized as follows. In a first section, we

recall the basics of thermodynamic equilibrium mod-

eling, and explain through the two most encountered

models in reservoir simulation how we can reformu-

late them as an abstract function. Section 3 introduces

the repartition coefficients that allows a new mathe-

matical description of this thermodynamic equilibrium

function. Section 4 presents a global mass formulation

of compositional multiphase Darcy flows that naturally

accounts for phase appearance and disappearance. Sec-

tion 5 presents a family of schemes that uses time ex-

plicit repartition coefficients to enhance robustness and

computational efficiency and that is in our opinion the

main contribution of the present work. Section 6 is

devoted to numerical exploration of the proposed ap-

proach, showing 3 illustration cases with increasing com-

plexity.

2 General representation of thermodynamic

equilibrium and repartition coefficients

In this section, we first explain how most of the usual

thermodynamic equilibrium models can be gathered un-

der a unified abstract vision of thermodynamics. The

idea in itself is relatively classical, as it basically con-

sists in formalizing the fact that thermodynamics can

be considered as a “black box” solver with fixed inputs

and outputs. The identification of a very general fam-

ily of inputs and outputs is the true contribution of this

section. As obvious as it may seem, by hiding the details

of each particular model this vision of thermodynamics

forces to reinvent the way to couple thermodynamics

and flow, in the sense that we cannot rely on the par-

ticular properties of any model and we have to use only

what is shared by all the usual models.

2.1 Notations

A chemical component is defined by its chemical com-

position, while a chemical species is defined by its chem-

ical composition and the phase under which it exists.

For instance, the component CO2 can be present in

both the aqueous and the gaseous phases, while aque-

ous CO2 and gaseous CO2 are two different species. For

a mixture with Nph phases labeled from 0 to Nph − 1,

and Ncomp components labeled from 0 to Ncomp−1, cor-

responding to Nspec species labeled from 0 to Nspec− 1

and defined as couples (i, α), we denote:

. T the temperature of the system

. Pα the pressure of phase α, P th = (Pα)0≤α≤Nph−1
being the vector of phase pressures
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. Pref is a reference pressure, equal to the pressure

of a reference phase (water in our numerical exper-

iments)

. Sα the saturation (or porous volume fraction) of

phase α

. ρα the mass density of phase α

. µα the viscosity of phase α

. θα the total molar fraction of α

. nα the mole number of phase α per unit volume

. nαi the mole number of species (i, α) per unit volume

. xαi the molar fraction of species (i, α) in phase α

. µαi the chemical potential of species (i, α) in phase

α

. ni the total mole number of component i per unit

volume

. zi the total molar fraction of component i

. Θα the total mass fraction of phase α

. mα the mass of phase α per unit volume

. mα
i the mass of species (i, α) per unit volume

. Xα
i the mass fraction of species (i, α) in phase α

. ηαi the mass repartition coefficient of component i

in phase α

. fαi the fugacity of of species (i, α) in phase α

. kαi the equilibrium coefficient of component i in phase

α, defined as the inverse of the fugacity coefficient

φαi
. δαi the presence index of component i in phase α

. Zi the total mass fraction of component i

. mi the mass of component i per unit volume

. Mmi the molar mass of component i

. Mmα the molar mass of phase α

. V α the Darcy velocity of phase α

. Pcithe critical pressure of component i

. Tcithe critical temperature of component i

. ωi the acentric factor of component i

. Φ the porosity

. Λ the permeability tensor

. R the perfect gas constant

We use mole numbers and masses per unit volume as we

always describe the thermodynamic equilibrium inside

a fixed volume. This allows to get rid of the volume

dependency and thus avoids using a factor V every-

where in order to ease the reading. As a consequence

we will often speak of mass and mole number instead of

mass per unit volume and mole number per unit volume

with a slight abuse of language. Notice that this has no

consequences on the results themselves provided all the

involved quantities remain coherent (i.e. all absolute or

all per unit volume).

We define the presence index δαi of a component i in

phase α by setting δαi = 1 if species (i, α) exists and

0 otherwise. The molar mass Mmi of each component

i is assumed to be a constant depending only on the

chemical composition, thus all species (i, α) share the

same molar mass Mmi . Of course, we assume that each

component i exists at least in one phase α under the

form of the species (i, α), in order that:

Nph−1∑
α=0

δαi ≥ 1 for all 0 ≤ i ≤ Ncomp − 1,

and thus each phase is represented by at least one species:

Ncomp−1∑
i=0

δαi ≥ 1 for all 0 ≤ α ≤ Nph − 1.

With a slight abuse of notations this allows to speak

for instance of a species (i, α) that does not truly exist,

by setting xαi = Xα
i = 0, nαi = mα

i = 0 if δαi = 0.

2.2 Some remarks on thermodynamic equilibrium

Denote Na
ph the number of non-existing (or absent)

phases, i.e. phases α for which θα = 0, and thus Nph −
Na
ph the number of actually existing phases, i.e. phases

α for which θα > 0. Denote Aph the set of the Na
ph ab-

sent phases and Pph the set of the Nph −Na
ph existing

phases. Roughly speaking, finding the thermodynamic

equilibrium always involve solving for each couple of

phases (α, β) ∈ P2
ph (i.e. both phases are truly present

in the system):

µαi = µβi for all 0 ≤ i ≤ Ncomp − 1 with δαi = δβi = 1,

(1)

where µαi is the chemical potential of species (i, α).

However the chemical potential, despite the fact that it

is the suitable quantity for describing the equilibrium

state of a system, is not the ideal quantity in prac-

tice as it depends on some integration constant (that is

only partially constant as it may depend on pressure,

temperature and even composition, depending on the

reference state). With only equilibrium reactions, for-

tunately the chemical potential can be replaced by fu-

gacities or related quantities, that are fully determined

and much easier to manipulate in practice.

To recall the definition of fugacity and the aforemen-

tioned related quantities, let us denote µ•,∗i (Pref , T ) the

chemical potential of the component i alone in perfect

gas state, at pressure Pref and temperature T . By def-

inition, fugacity fαi of species (i, α) is given by:

µαi = µ•,∗i (Pref , T ) +RT ln

(
fαi
Pref

)
,
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where R is the perfect gas constant. From Gibbs the-

orem, a perfect gas mixture being an ideal solution,

the chemical potential µ•i (Pref , T,x) of component i at

pressure Pref and temperature T in a perfect gas mix-

ture of molar composition x = (xα)0≤α≤Nph−1 is given

by, if xα = (xαi )0≤i≤Ncomp−1 is the composition of phase

α:

µ•i (Pref , T,x
α) = µ•,∗i (Pref , T ) +RT ln (xαi ) ,

and thus:

µαi = µ•i (Pref , T,x
α) +RT ln

(
fαi

xαi Pref

)
.

The fugacity coefficient φαi is then naturally defined as:

φαi =
fαi

xαi Pref
.

For practical reasons, we introduce the equilibrium co-

efficient kαi defined as the inverse of the fugacity coeffi-

cient φαi , i.e.:

kαi =
1

φαi
=
xαi Pref
fαi

.

Notice that (1) implies the equality of fugacities fαi and

fβi , which gives in terms of fugacity coefficients:

φαi x
α
i = φβi x

β
i ,

and then rewrites:

xαi
kαi

=
xβi

kβi
.

The more usual equilibrium constant (sometimes also
called partition coefficient) kαβi is then defined as:

kαβi =
kαi

kβi
=
φβi
φαi

=
1

kβαi
.

This equilibrium constant is the most frequently en-

countered quantity in the literature to describe the equi-

librium between only two phases. However, as we con-

sider more general situations here and in particular the

three-phase flow case where Nph = 3, it seems much

easier to use either the kαi ’s or the φαi ’s, to keep some

symmetry in the thermodynamic description.

Relation (1) is in fact one of the optimality conditions

corresponding to the minimization of the Gibbs free en-

ergy

G =

Ncomp−1∑
i=0

Nph−1∑
α=0

δαi n
α
i µ

α
i .

This minimization problem can be considered as the

most general description of thermodynamic equilibrium.

The other optimality conditions correspond to the con-

straints under which the minimization is performed, the

most important being that the quantity of each com-

ponent remains invariant and that relation (1) is only

valid for phases whose total fraction is strictly positive

(which also means phases with a physically admissi-

ble composition). The treatment of those constraints is

the origin of the major difficulties arising in solving the

thermodynamic equilibrium problem and many of its

combinatorial aspects. Model specialization basically

consists in choosing a particular form for the chemi-

cal potentials µαi , or equivalently for the fugacity, fu-

gacity coefficient or equilibrium coefficients. Because of

the inherent difficulty of solving the Gibbs energy min-

imization problem, specialized solvers associated with

each particular model have been developed, taking ad-

vantage of model specificity to accelerate calculations.

The inputs of those minimization problems are those

corresponding to the definition of the constraints and

the thermodynamic state parameters used in the con-

sidered model. In general, most chemical potential mod-

els require Pref and T , while the constraints (in partic-

ular the conservation of mass or matter) require at least

the total fractions of each component, either in moles

(denoted zcomp = (zi)0≤i≤Ncomp−1) or in mass (denoted

Zcomp = (Zi)0≤i≤Ncomp−1) defined by:

zi =
ni

Ncomp−1∑
j=0

nj

and Zi =
mi

Ncomp−1∑
j=0

mj

,

or directly the mole numbers (ni)0≤i≤Ncomp−1 or the

masses (mi)0≤i≤Ncomp−1. The expected outputs are the

phase molar fractions at equilibrium θeqph and the mo-

lar composition of each phase at equilibrium xeq. For

the reader’s better understanding, the two families of

models that are mostly encountered in the literature for

hydrocarbon phases equilibrium are recalled.

Equation of state models Equation of state (EOS) based

models are the most classical and probably the most

used models in the industry to describe hydrocarbon

phases. The most common equations of state for hy-

drocarbon phases are the cubic EOS of Redlich-Kwong

([14]), Soave-Redlich-Kwong ([15]) and Peng-Robinson

([13]), but more advanced models can be encountered,

especially when water vaporization or specific compo-

nent dissolution must be accurately modeled (e.g. the

Søreide and Whitson EOS [16]). For each phase α, we

assume that we are given an equation of state relat-

ing the thermodynamic state parameters (Pref , T, V
α
m),

where V αm denotes the molar volume of phase α, and
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the phase composition xα = (xαi )0≤i≤Ncomp−1. Gener-

ally speaking, it involves a relation of the form:

Eα(Pref , T,Zα,xα) = 0,

where the compressibility factor Zα of phase α is de-

fined by:

Zα =
PrefV

α
m

RT
.

From the solution of this equation, one deduces many

properties of phase α and in particular its fugacity and

fugacity coefficient, given by:

ln

(
fα,EOSi

xαi Pref

)
= lnφα,EOSi =

∫ P

0

Zα − 1

Pref
dPref

+

∫ Pref

0

1

Pref

∂Zα
∂xαi

−
Ncomp−1∑
j=0

δαj x
α
j

∂Zα
∂xαj

 dPref . (2)

Solving the equation of state formally means that we

are able to compute pointwise the compressibility fac-

tor Zα as a function of (Pref , T,x
α), and thus at least

implicitly we define through this equation and (2) a law

for the equilibrium coefficients kα,EOSi (Pref , T,x
α) (or

equivalently the fugacity coefficients).

Thus, in the case of EOS models, the thermodynamic

equilibrium problem can be reformulated as finding the

sets Aph and Pph and the associated composition vec-

tor x and phase fraction vector θph = (θα)0≤α≤Nph−1
such that for all (α, β) ∈ P2

ph and all 0 ≤ i ≤ Ncomp−1

such that δαi = δβi = 1:

xαi

kα,EOSi (Pref , T,xα)
=

xβi

kβ,EOSi (Pref , T,xβ)
,

that minimizes the Gibbs free energy and satisfies the

conservation of matter:

zi =
∑
α∈Pph

θαδ
α
i x

α
i . (3)

Then, if one denotes Aeqph, Peqph, θeqph and xeq the op-

timal solution, it is clear that it only depends on the

vector zcomp and the thermodynamic state parameters

(Pref , T ) (and of the model specific constant parame-

ters involved in the definition of the EOS, such as acen-

tric factors, mixing rules, etc...). Thus, denoting

Imth = (Pref ,P ph, T, zcomp),

it seems clear that solving this optimization problem

implicitly defines functions

θeqph(Imth) and xeq(Imth),

which are thus the outputs of our EOS model.

Imth
EOS based ther-
modynamic equi-

librium solver

θeqph(Imth)

xeq(Imth)

As a by-product, this also defines the laws of equilib-

rium coefficients taken at their equilibrium value, i.e.:

kα,eqi (Imth) = kα,EOSi (Pref , T,x
α,eq(Imth)), (4)

and thus we can consider if needed that the functions

kα,eqi (Imth) are also the outputs of our EOS based model.

To conclude this paragraph on EOS-based models, let

us mention that it is common practice to use a single

pressure Pref for all phases in the thermodynamic equi-

librium calculations as we have done here (it is generally

taken equal to the pressure of one of the phases, com-

mon choices are the aqueous phase or the oil phase).

The full pressure vector of the flow calculations and

which takes into accounts capillary pressures is used

mostly for equilibrium calculations when one wants to

fully couple thermodynamics and geomechanics. This

is most probably due to the fact that many capillary

pressure models commonly used are phenomenological

models optimized for modeling the flow but not so well-

suited for thermodynamic equilibrium calculations.

Equilibrium constants based models Those models are

much simpler than equation of state models from which

they are in fact often derived. The simplification re-

lies in the fact that they directly assume that we know

the values taken by the equilibrium coefficients when

the equilibrium is indeed reached, under the form of

functions kα,eqi . Notice that those functions are differ-

ent from the functions kα,EOSi defining the equilibrium

coefficients themselves in EOS models, as they corre-

spond to the value taken by these equilibrium coeffi-

cients when the equilibrium is indeed reached (equa-

tion (4)). In particular, they do not depend on interme-

diate variables such as phase compositions. The most

common model simply considers them as functions of

(Pref , T ). In particular, this is the case of classical liquid-

vapor (LV) equilibrium models for hydrocarbon phases,

which are described in an even more compact way by

directly using the equilibrium constants kαβ,eqi . In the

literature, the most commonly encountered correlations

are analytic or tabulated laws providing kLV,eqi as a

function of either (Pref , T ) or (lnPref , T
−1) (Vidal,

1997 [17], de Hemptinne et al., 2012 [6]). Those models

are fully justified in situations where the mixture to-

tal composition varies slowly over time and space, the

dependency of the equilibrium coefficients (or fugacity

coefficients) being in general relatively small, at least for
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the most usual hydrocarbon phases. For reservoir sim-

ulation and in particular production simulation where

the composition of the fluids in place is well-known,

such models are particularly well-suited. Similarly to

the case of EOS models, the thermodynamic equilib-

rium problem can be reformulated as finding the sets

Aph and Pph and the associated composition vector x

and phase fraction vector θph = (θα)0≤α≤Nph−1 such

that for all (α, β) ∈ P2
ph and all 0 ≤ i ≤ Ncomp−1 such

that δαi = δβi = 1:

xαi
kα,eqi (Imth)

=
xβi

kβ,eqi (Imth)
, (5)

that minimizes the Gibbs free energy and satisfies the

conservation of matter (3), which again implicitly de-

fines functions θeqph(Imth) and xeq(Imth), if one denotes

Aeqph, Peqph, θeqph and xeq the optimal solution.

Imth

Rachford-Rice equi-
librium coefficients

based thermodynamic
equilibrium solver

θeqph(Imth)

xeq(Imth)

This is nothing but a generalized Rachford-Rice prob-

lem, extended to more than two phases. As they are

part of the model, if needed the functions kα,eqi (Imth)

can again be considered as outputs of the equilibrium

coefficient based model.

2.3 Thermodynamic equilibrium as state laws

From the general perspective, and as the two above fam-

ilies of models emphasize, it seems legitimate to con-

sider the thermodynamic equilibrium calculation as a

“black box” solver of the form:

Imth
Thermodynamic

equilibrium solver
θeqph(Imth)

xeq(Imth)

If such a “black box” solver corresponds to a physically

acceptable model of thermodynamic equilibrium, the

output functions θeqph and xeq must satisfy some simple

properties. Indeed, the functions θeqph must obviously

satisfy:
Nph−1∑
α=0

θeqα (Imth) = 1,

and

θeqα (Imth) ≥ 0 for all 0 ≤ α ≤ Nph − 1.

In the same way, the functions xeq must satisfy for any

phase α
Ncomp−1∑
i=0

xα,eqi (Imth) = 1.

Thermodynamic equilibria are usually defined in terms

of molar quantities. However from the Darcy-flow per-

spective, it is more natural to express mass balance

rather than molar amounts balance, thus it is inter-

esting to convert those molar state functions into mass

state functions (see appendix A for details). This imme-

diately provides the equivalent mass “black box” solver:

IMth
Thermodynamic

equilibrium solver
Θeqph(IMth)

Xeq(IMth)

where the mass input is given by

IMth = (Pref ,P ph, T,Zcomp).

In the case where one prefers to directly use masses

instead of mass fractions, which is what we favor in

practice, denoting:

Ith = (Pref ,P ph, T,mcomp),

we can equivalently see such a mass thermodynamic

equilibrium as the alternative “black box” solver:

Ith
Thermodynamic

equilibrium solver
meq
ph(Ith)

Xeq(Ith)

the Zcomp being directly computable from the mcomp

by (the total mass being assumed to always be non-

zero):

Zi(Ith) =
mi

Ncomp−1∑
j=0

mj

.

As in the molar case, the output functions satisfy the

constraints:
Nph−1∑
α=0

meq
α (Ith) =

Ncomp−1∑
i=0

mi, (6)

and

meq
α (Ith) ≥ 0 for all 0 ≤ α ≤ Nph − 1. (7)

The functions Xeq must still satisfy for any phase α

Ncomp−1∑
i=0

Xα,eq
i (Ith) = 1. (8)
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3 Repartition coefficients

Many thermodynamic models underlying the above ab-

stract thermodynamic state functions require solving

costly non-linear problems. To completely avoid any

solver call when coupling thermodynamics with flow,

it is tempting to look for correlations to directly com-

pute θα and xαi . However, contrary to equilibrium co-

efficients, for which one can check that they generally

evolve slowly with composition, this cannot hold for

fractions, in particular for phase fractions. Indeed, even

in the simplest case of one phase with only one compo-

nent, we have θα = zi, and it is clear that when con-

sidering equilibrium the dependency in zi will still be

very strong as well as more non-linear. If one wants to

use tables to represent this kind of correlation, very fine

tabulations in terms of composition would be required

to keep reasonable precision on the thermodynamic be-

havior.

This reasoning is the basis from which the idea of repar-

tition coefficients was born, even if those coefficients will

ultimately have a much more general meaning, com-

pletely disconnected of the practical way chosen to com-

pute them. The idea is to try to extract the major part

of the composition dependency of the thermodynamic

state functions, which can ultimately ease the deriva-

tion of precise enough correlations.

We define the mass repartition coefficient ηαi of compo-

nent i in phase α by setting:

mα
i = ηαi mi. (9)

From this definition, we deduce:

mα =

Ncomp−1∑
i=0

mα
i =

Ncomp−1∑
i=0

ηαi mi.

Dividing by the total mass, we obtain:

Θα =

Ncomp−1∑
i=0

ηαi Zi.

In the same way, as soon as Θα > 0, we get:

Xα
i =

mα
i

mα
=
ηαi Zi
Θα

=
ηαi Zi

Ncomp−1∑
j=0

ηαj Zj

=
ηαi mi

Ncomp−1∑
j=0

ηαj mj

,

with the two previous formulae being still valid when

the mass of phase α is zero. Finally notice that:

mi =
∑
α

δαi m
α
i =

∑
α

δαi η
α
i mi,

and thus∑
α

δαi η
α
i = 1. (10)

It should be clear that starting from any model of ther-

modynamic equilibrium (EOS, etc...) one can always

define the corresponding equilibrium repartition coeffi-

cients law by setting for any 0 ≤ α ≤ Nph − 1 and any

0 ≤ i ≤ Ncomp − 1:

ηα,eqi (Ith) =

∣∣∣∣∣∣∣∣∣∣
Xα,eq
i (Ith)meq

α (Ith)

mi
if mi > 0

δαi∑Nph−1
β=0 δβi

otherwise.

(11)

Conversely, given an equilibrium repartition coefficient

law ηα,eqi (Ith), we define the corresponding thermody-

namic equilibrium state law by setting 0 ≤ α ≤ Nph−1:

meq
α (Ith) =

Ncomp−1∑
i=0

ηα,eqi (Ith)mi,

and for any 0 ≤ α ≤ Nph−1 and any 0 ≤ i ≤ Ncomp−1,

if meq
α (Ith) > 0

Xα,eq
i (Ith) =

ηα,eqi (Ith)mi

Ncomp−1∑
j=0

ηα,eqj (Ith)mj

,

and otherwise:

Xα,eq
i (Ith) =

δαi
Ncomp−1∑
j=0

δαj

.

Provided that (10) is satisfied, it is immediate to check

that (6)-(7)-(8) will automatically also be satisfied, lead-

ing to an admissible thermodynamic model. If needed,

the same can be done in terms of moles, defining the

molar repartition coefficient ηα,mi of component i in

phase α by setting:

nαi = ηα,mi ni,

and we get exactly the same relations as in the case of

mass quantities:

nα =

Ncomp−1∑
i=0

ηα,mi ni and θα =

Ncomp−1∑
i=0

ηα,mi zi,

and if θα > 0:

xαi =
nαi
nα

=
ηα,mi zi
θα

=
ηα,mi zi

Ncomp−1∑
j=0

ηα,mj zj

=
ηα,mi ni

Ncomp−1∑
j=0

ηα,mj nj

,

along with ∑
α

δαi η
α,m
i = 1.
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4 A global mass formulation for compositional

multiphase Darcy flow in porous media

4.1 Reference species equations

The molar balance of each chemical species (i, α) is

given by:

∂nαi
∂t

+ div

(
ραx

α
i

Mmα

V α

)
= Qαi +Req,αi , (12)

where:

. V α is the Darcy velocity of phase α, given by:

V α = −Λkrα
µα

(∇Pα + ραgez) , (13)

where Λ is the permeability tensor, krα the relative

permeability of phase α, g is the gravity accelera-

tion, the axis ez being directed upwards (we recall

that µα is the viscosity of phase α and ρα is the

density of phase α).

. Qαi is the source term for species (i, α)

. Req,αi is the reaction rate corresponding to the ther-

modynamic equilibrium for species (i, α)

Those equations are complemented by the saturation

closure relation:
Nph−1∑
α=0

Sα = 1,

and a pressure equation for each phase

Pα = Pref + Pcα, (14)

where Pref is the reference pressure, equal in general

to the pressure of one of the liquid phases (here we use

the water phase but the oil phase is another classical

choice), and Pcα is the capillary pressure law for phase

α, describing the pressure difference between phase α

and the reference phase (thus if the reference phase is

denoted αref , we have by definition Pcαref = 0). Of

course the system is finally complemented by a ther-

modynamic equilibrium model, as described in section

2.

4.2 Component equations

As the components are conserved quantities for ther-

modynamic equilibrium, it is natural to rewrite the full

conservation system in terms of those components only.

Summing the species equations on all phases, we obtain:

∂ni
∂t

=

Nph−1∑
α=0

∂nαi
∂t

= −
Nph−1∑
α=0

div

(
ραx

α
i

Mmα

V α

)
+

Nph−1∑
α=0

Qαi +

Nph−1∑
α=0

Req,αi .

As the total mole number of components remains un-

changed by the equilibrium reactions, we have by con-

struction:
Nph−1∑
α=0

Req,αi = 0.

The overall system can thus be rewritten ∀ 0 ≤ i ≤
Ncomp − 1:

Nph−1∑
α=0

∂nαi
∂t

+ div

(
ραx

α
i

Mmα

V α

)
−Qαi = 0. (15)

We denote Qmi the molar source of component i defined

by:

Qmi =

Nph−1∑
α=0

Qαi ,

and

ρm,α =
ρα
Mmα

,

the molar density of phase α. With those notations, we

naturally obtain for 0 ≤ i ≤ Ncomp − 1:

∂ni
∂t

+

Nph−1∑
α=0

div (ρm,αx
α
i V α) = Qmi . (16)

Notice that:

xαiMmi

Mmα

=
nαiMmi

nαMmα

=
mα
i

mα
= Xα

i ,

thus we get

ραx
α
i

Mmα

=
ραx

α
iMmi

MmiMmα

=
ραX

α
i

Mmi

,

and thus multiplying equation (16) by Mmi , we get the

mass balance equation of component i:

∂mi

∂t
+

Nph−1∑
α=0

div (ραX
α
i V α) = Qi, (17)

where we have denoted

Qi = Qmi Mmi

the mass source term for component i.
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4.3 A global mass formulation

The key idea of the global mass formulation is to com-

bine the mass balance equation of the components with

the abstract functional rewriting of the thermodynamic

equilibrium introduced in section 2. In other words, we

consider that the thermodynamic equilibrium model is

given as a function with inputs

Ith = (Pref ,P ph, T,mcomp),

and outputs:

(Xα
i )0≤i≤Ncomp−1,0≤α≤Nph−1 and (mα)0≤α≤Nph−1.

Thus, we assume that we have at our disposal the fol-

lowing functions, ∀ 0 ≤ i ≤ Ncomp − 1 and ∀ 0 ≤ α ≤
Nph − 1:∣∣∣∣∣Ith −→ Xα,eq

i (Ith)

Ith −→ meq
α (Ith).

(18)

Then, we have to rewrite the flow model in such a

way that the thermodynamic equilibrium only appears

through the above functions. To this end, it suffices to

remark that for any phase α, if Φ denotes the porosity,

then:

mα = ραΦSα,

and thus the global mass formulation for Darcy flow in

porous media is given by:

∂mi

∂t
+

Nph−1∑
α=0

div (ραX
α,eq
i (Ith)V α) = Qi, (19)

ραΦSα = meq
α (Ith), (20)

Nph−1∑
α=0

Sα = 1, (21)

Pα = Pref + Pcα ∀ 0 ≤ α ≤ Nph − 1, (22)

with V α is the Darcy velocity of phase α:

V α = −Λkrα
µα

(∇Pα + ραgez) ,

and of course the usual laws providing the densities, vis-

cosities, relative permeabilities and capillary pressures

of each phase, along with the source terms.

The functions (18) are assumed to be given by a ther-

modynamic module, and can take in practice almost

any form. Without any impact on the global mass for-

mulation, they could be computed through Gibbs en-

ergy minimization, equation of state models, Rachford-

Rice simplified models, or given explicitly as analytic

functions, tabulated functions, response surfaces, etc...

One of the major advantages of this so-called global

mass formulation compared with the classical Coats

formulation (Coats, 1980 [3]) is that the equation sys-

tem is independent of the appearance/disappearance

of phases, that are simply handled by the values of the

meq
α functions. The disappearance of a phase α indeed

simply corresponds to the fact that meq
α takes the value

zero. Thus, the set of equations is always the same,

whatever the thermodynamic context.

5 A robust and efficient time scheme for

coupling thermodynamics and Darcy flows

5.1 Time semi-discrete global mass formulation

We assume that the time interval [T0, T ] is subdivided

into NT − 1 > 0 sub-intervals [tn, tn+1], with:

T0 = t0 < t1 < · · · < tn < · · · < tNT−2 < tNT−1 = T.

Our time scheme is based on the classical Euler implicit

scheme, except for the way we evaluate the functions

meq
ph and Xeq. More precisely, we consider, denoting:

∆tn = tn+1 − tn:

mn+1
i −mn

i

∆tn

+

Nph−1∑
α=0

div
(
ρn+1
α Xα,eq

i (Inth,I
n+1
th )V n+1

α

)
= Qn+1

i ,

(23)

where we have denoted

V n+1
α = −Λkr

n+1
α

µn+1
α

(
∇Pn+1

α + ρn+1
α gez

)
,

ρn+1
α ΦSn+1

α = meq
α (Inth,I

n+1
th ), (24)

Nph−1∑
α=0

Sn+1
α = 1, (25)

Pn+1
α = Pn+1

ref + Pcn+1
α ∀ 0 ≤ α ≤ Nph − 1. (26)

The slight abuse of notation on meq
ph and Xeq is in-

tended to suggest that we evaluate the thermodynamic

functions meq
ph and Xeq with a mixing of the explicit

Inth and implicit In+1
th thermodynamic inputs. Correctly

choosing which part of Ith is explicit or implicit de-

pends on which thermodynamic solver underlines the

functions meq
ph and Xeq, and is the key ingredient to

obtain robust and efficient schemes. An essential con-

dition is that:

Nph−1∑
α=0

meq
α (Inth,I

n+1
th ) =

Ncomp−1∑
i=0

mn+1
i .
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Indeed, all the semi-implicit choices satisfying the above

constraint will lead to schemes preserving the expected

physical bounds by construction (this is a direct conse-

quence of the positivity of the meq
α functions). Com-

pletely defining a scheme now consists in explaining

how we define and evaluate the functions meq
ph and

Xeq. Using the repartition coefficients based formula-

tion, we will see that one can derive an original familiy

of schemes which remain robust and efficient indepen-

dently of the chosen thermodynamic equilibrium model

(EOS, equilibrium coefficients, etc...).

Once the functions meq
ph and Xeq are properly defined,

the numerical scheme consists in solving equations (23)

to (26) for the pressure unknowns

(Pn+1
ref , (P

n+1
α )0≤α≤Nph−1),

the saturation unknowns

(Sn+1
α )0≤α≤Nph−1,

and the component mass unknowns:

(mn+1
i )0≤i≤Ncomp−1,

i.e. Ncomp + 2Nph + 1 unknowns (the full set being de-

noted Y ), corresponding to the Ncomp mass balance

equations (23) , the Nph (24) phase conservation equa-

tions, the saturation closure equation (25) and the Nph
capillary pressure equations (26). We of course assume

that densities, relative permeabilities, capillary pres-

sures and source terms are given through functions ρdatα ,

krdatα , Pcdatα and Qdati of the problem unknowns Y , and

can correspond to any usual model (for instance Brooks

and Corey models for the relative permeabilities and

capillary pressures, mixing laws for the phase densities,

Peaceman’s well model for the source term, etc...).

We are now going to detail the different schemes we

have obtained considering different options for comput-

ing the thermodynamic functions meq
ph and Xeq. Some

will require tabulations as functions of (Pref , T,Zcomp),

and to this end we will consider two kinds of interpo-

lations: type I consists in a fully linear interpolation in

all variables, while type II is a linear interpolation in

(Pref , T ) and piecewise constant in Zcomp. This second

kind of interpolation leads to substantial computational

and memory savings, at the expense of a decreased pre-

cision. On Table 1, we display a summary of the tested

schemes.

5.2 Repartition coefficients based time semi-explicit

scheme

This family of schemes is in our opinion the main con-

tribution of the present work, as it leads to robust and

efficient numerical schemes in practice. The key idea is

very simple: we use explicit repartition coefficients and

implicit component masses, and reconstruct the phase

masses and compositions using formulae of section 3.

In other words, we define for any 0 ≤ α ≤ Nph − 1:

meq
α (Inth,I

n+1
th ) =

Ncomp−1∑
i=0

ηα,eqi (Inph)mn+1
i , (27)

and for any 0 ≤ α ≤ Nph−1 and any 0 ≤ i ≤ Ncomp−1:

Xα,eq
i (Inth,I

n+1
th ) =

ηα,eqi (Inph)mn+1
i

Ncomp−1∑
j=0

ηα,eqj (Inph)mn+1
j

. (28)

The above formula defines in fact a family of schemes:

given the values Inph, one still has to choose a thermo-

dynamic model like the ones described in section 2 to

fully define the way the repartition coefficients are com-

puted in practice. Notice however that as we use only

the explicit thermodynamic input for the ηαi ’s, then the

only non zero derivatives with respect to Y n+1 of the

functions meq
ph and Xeq defined through (27) and (28)

come from the dependency in mn+1
i of the above for-

mulae (27) and (28) and not from the thermodynamic

solver, from which only values are requested. Thus, it

can truly be used as a black box solver. We consider

here several ways to compute the explicit values of the

repartition coefficients. At first, we consider a solver

based on EOS based thermodynamic equilibrium sub-

problems:

Inph
EOS based

thermodynamic
equilibrium solver

ηeq,EOS

Scheme S1 : (27)-(28) with ηα,eqi (Inth) = ηα,EOSi (Inth),

where ηeq,EOS denotes the repartition coefficients ob-

tained by applying (11) to the solution of the EOS

based thermodynamic equilibrium problem. Scheme S1

requires solving an EOS based sub-problem each time

the repartition coefficients ηα,eqi are evaluated. How-

ever, as they are evaluated for the explicit input Inth,

this can be done once per time step of the flow, and

not at each iteration of the flow non-linear solver. Us-

ing those pre-computed values for the repartition coef-

ficients, one then uses the analytic relations (27)-(28)

to evaluate the functions meq
ph and Xeq during the flow

non-linear solver iterations, without any further call to

a thermodynamic solver. No tabulated data is needed
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Table 1 Definition of the tested schemes

Tabulated data Method for ηeq(Inth)

S1 None EOS on Inth
S2 Keq(Inth), type I Rachford-Rice on Keq(Inth) and Zncomp

S3 Keq(Inth), type II Rachford-Rice on Keq(Inth) and Zncomp

S4 ηeq(Inth), type I Interpolation

S5 ηeq(Inth), type II Interpolation

for this scheme, however the usual properties of com-

ponents (molar mass, critical temperature, critical pres-

sure, acentric factor, etc...) are required for computing

the associated EOS. We do not elaborate any further on

the algorithm used in practice to solve the EOS based

sub-problem, as we use a classical accelerated succes-

sive substitution (Mehra et al., 1983 [11]). Since it is

EOS-based, scheme S1 should be considered here as the

most complete and accurate version of the use of repar-

tition coefficients, and in our numerical experiments

we will consider it as our reference scheme. The next

four schemes we introduce now are in fact attempts to

speed up the online evaluation of the repartition coef-

ficients, regarding the expensive call to the EOS solver

of S1. To derive them we gradually simplify and in

principle accelerate the handling of the thermodynamic

sub-problems underlying the evaluation of the explicit

repartition coefficients ηα,eqi .

The next two schemes replace the EOS based ther-

modynamic sub-problem by an equilibrium coefficient

based one, with tabulated equilibrium coefficients where

Inph

Equilibrium
coefficient based
thermodynamic

equilibrium solver

ηeq,RR,I

or
ηeq,RR,II

ηeq,RR,I and ηeq,RR,II denote the repartition coeffi-

cients obtained by applying (11) to the solution of the

equilibrium coefficient based thermodynamic model with

tabulated equilibrium coefficients of type I or II. The

explicit values Kα,eq,I
i (Pnref , T

n,Zncomp) for type I or

Kα,eq,II
i (Pnref , T

n,Zncomp) for type II of the equilibrium

coefficients are used in the formally identical mass coun-

terpart of (5) (see appendix A), while the explicit frac-

tions Zncomp computed frommn
comp are used in the mass

counterpart of (3) (again, see appendix A). Scheme S2

uses tabulated equilibrium coefficients of type I

Scheme S2 : (27)-(28) with ηα,eqi (Inth) = ηα,RR,Ii (Inth),

while scheme S3 uses tabulated equilibrium coefficients

of type II

Scheme S3 : (27)-(28) with ηα,eqi (Inth) = ηα,RR,IIi (Inth).

In the same way as scheme S1, schemes S2 and S3 re-

quire solving a thermodynamic equilibrium sub-problem

each time the repartition coefficients ηα,eqi are evalu-

ated. Again, as they are only evaluated on the explicit

input Inth this can be done once per time step and the

stored values are finally used during the non-linear flow

solver iterations to compute the functionsmeq
ph andXeq

through (27)-(28). The next two schemes directly use

tabulated repartition coefficients, of type I (denoted

ηα,Tab,Ii ) for scheme S4

Scheme S4 : (27)-(28) with

ηα,eqi (Inth) = ηα,Tab,Ii (Pnref , T
n,Zncomp),

and of type II (denoted ηα,Tab,IIi ) for scheme S5

Scheme S5 : (27)-(28) with

ηα,eqi (Inth) = ηα,Tab,IIi (Pnref , T
n,Zncomp).

As the functions ηα,eqi are tabulated for schemes S5 and

S1, no call to a thermodynamic solver occurs during the

flow simulation.

As our numerical experiments on those five schemes

confirm, the underlying black box thermodynamic equi-

librium model has no major impact on the behavior of

the flow non-linear solver. Indeed, at each time step, the

repartition of the components among phases is fixed.

Thus, phase appearance and disappearance is in some

sense fixed at the beginning of the time step (at least

from the flow solver perspective). If the global mass

formulation underlying our schemes might be surpris-

ing for readers more familiar with Coats’ formulation,

the idea underlying it is not particularly new in the lit-

erature. First traces of such a formulation date back to

1983 (Young and Stephenson, 1983 [21], Collins et al.,

1992 [4]), and its molar counterpart is used for instance

in [18,9]. The true originality of our formulation relies in

fact on one hand on the way we have chosen to represent
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the thermodynamic equilibrium through repartition co-

efficients and on the other hand on the fact that we use

equations (20) to define the saturations. Indeed clas-

sical global formulations, using molar as well as mass

unknowns, that can be found in the classical literature

directly impose the saturations by transforming equa-

tions (20) into laws Seqα fixing the saturations, or by

an equivalent process. We have of course experimented

with this classical version for the definition of the sat-

urations, and unsurprisingly we have recovered the re-

sults of Voskov and Tchelepi (2012) [19], that is the non

convergence of the Newton solver as soon as the petro-

physical model becomes quite complex. This is the rea-

son why, even if both versions are formally identical, we

have chosen to keep the saturations as unknowns in the

system and not defined them as laws. This has indeed

a tremendous impact on the non-linear solver behav-

ior, and is the key to achieve robustness for the global

mass formulation. This can be easily explained by the

fact that the saturations variations control the relative

permeability and capillary pressure variations for most

common petrophysical models, thus they consequently

control the main non-linearities of Darcy flux. Keeping

the saturations as unknowns and controlling them with

the usual relaxation strategies allows to control the flux

variations throughout the non-linear solver iterations

and thus greatly improves the convergence properties

of the overall method.

6 Numerical exploration

In the following, we consider thermodynamic systems

with three phases, the aqueous phase (or water phase),

the liquid hydrocarbon phase (or oil phase) and the

gaseous hydrocarbon phase (or gas phase). We also as-

sume that Peng-Robinson’s EOS is a suitable model for

each phase. In all the considered test cases, the source

term is given by classical Peaceman’s wells.

When tabulated values for either Keq or ηeq are re-

quired by a scheme, they are of course generated in a

preprocessing step by solving the EOS model on a wide

range of inputs (Pref , T,Zcomp). We use a regular grid

that ranges from 0.0 to 1.0 for the Zcomp, from 274.15

K to 625.15 K for the temperature and from 1.0 MPa

to 161.0 MPa for the reference pressure, with 11 points

in each Zi direction, 8 for the temperature and 33 for

the reference pressure. As we keep only the cells of the

underlying Cartesian tabulation mesh that intersect the

hyperplane
∑
i Zi = 1, with 4 components this gives ta-

bles with 640 992 entries for type I and 229 944 for type

II, while with 5 components this leads to 3 003 792 en-

tries for type I and 758 208 for type II. If one discards

the tabulated data loading time that will be negligible

on test cases of industrial interest, we naturally expect

scheme S1 to be the most computationally expensive as

it requires solving the EOS sub-problem once per time

step, while schemes S2 and S3 only require to solve the

simpler Rachford-Rice non-linear sub-problem once per

time step. Finally, schemes S4 and S5 do not require

any non-linear solver call to compute the thermody-

namic equilibrium functions and are thus expected to

be the most computationally efficient ones. However,

we will see that this is only true if the test case is large

enough.

After choosing one or the other of the above time dis-

cretizations, it is necessary to correctly define a space

discretization. As the goal of the present paper is to de-

scribe a new way to write the coupling between thermo-

dynamics and flow and the corresponding time scheme,

we have chosen to limit ourselves to the TPFA finite

volume scheme (Eymard et al., 2000 [5]), that is only

valid on permeability tensor orthogonal meshes. To ease

the numerical experiments, we thus consider only diag-

onal and isotropic permeability tensors, thus the mesh

only need to be orthogonal in the classical sense and

we can resort to Cartesian meshes. Remark that this

is by no means a restriction of the presented approach,

our new time schemes could be combined with any ad-

vanced space scheme for diffusion-convection operators,

without any major difference. However as we mainly

aim at exploring the ability of the new scheme to effi-

ciently cope with thermodynamic complexities such as

phase appearance/disappearance and species exchanges

between phases, we felt that we could limit ourselves to

such a simplified mesh setting without loosing general-

ity. For both the reader’s convenience and the sake of

completeness, we recall in appendix B the details of the

TPFA space discretization of our global mass formula-

tion.

6.1 Beam test case

Initial state The first illustration case is a simple beam

with a 1D behavior. It measures 100 meter-long with

20 cells and 30 meter-depth with 3 cells. This system

mimics a sandstone reservoir whose porosity is 0.33 and

permeability 10−11 m2 , covered with a shale layer that

plays the role of a cap-rock, whose porosity is 0.4 and

permeability 10−14 m2. This beam is buried 800 meter-

depth. The thermal regime is defined through a simple

geothermal gradient of 0.025 K/m with a surface tem-

perature of 291.15 K (18oC), moreover at initial state

the system is at hydrostatic pressure. Boundary con-

ditions are no flow for lateral and top boundaries and
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Injection well Production well

Water-Oil contact

-800

-830

0 100

Shale Sandstone

Fig. 1 First illustration case geometry, mesh and wells posi-
tions

hydrostatic pressure for the bottom.

The relative permeabilities of the system are defined

with the following relation:

krα(Sα) =

(
Sα − Skrmin
Skrmax − Skrmin

)nkr
.

The capillary pressures of the system are defined with

the following relation:

Pcα(Sα) = Pce +∆Pc

(
Sα − SPcmin
SPcmax − SPcmin

)nPc
.

The different parameters (Skrmin, Skrmax and nkr for rela-

tive permeabilities and Pce, ∆Pc, S
Pc
min, SPcmax and nPc

for capillary pressures) for both facies and the three

phases can be found on Table 2. Notice that we use

a primary drainage capillary pressure curve, typical of

basin modeling, to assess the behavior of the scheme

with such a stiff datum. Please note that, water phase

being in our case the reference phase, PcW = 0. An

Table 2 Parameters for petrophysical laws. W, O, G stand
respectively for water phase, oil phase and gas phase

Sandstone Shale

W O G W O G

Skrmin 0.2 0.02 0.02 0.2 0.02 0.02

Skrmax 0.98 0.8 0.8 0.98 0.8 0.8

nkr 2 2 2 2 2 2

Pce (MPa) / 0 0 / 5 6

∆Pc (MPa) / 4 4 / 30 30

SPcmin / 0 0 / 0 0

SPcmax / 0.8 0.8 / 0.8 0.8

nPc / 10 10 / 10 10

injection well is located at the left of the beam and

a production well is located at the right of the beam.

The geometry, mesh and wells positions can be seen

on Fig. 1. Both wellheads reach the surface. The initial

state is defined through hydrostatic equilibration and

a water-oil contact located 826 meters depth. All the

thermodynamic properties of the components are de-

scribed on Table 3. In this system, the component H2O

is only allowed to go in the water phase, and all the

other components are allowed to go in both gas and oil

phases.

Table 3 Thermodynamic properties of the 4 components

Tci [K] Pci [MPa] ωi Mmi
[g/mol]

H2O 647.096 22.064 0.344 18

CH4 190.56 4.6 0.0111 16.04

C2-C5 353.6 4.432 0.139 41.9

C6+ 823 1.8 0.55 300
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Fig. 2 Fluid saturations in the production well for scheme
S1 as a function of time

Dynamic state From the beginning and during the whole

simulation (300 days), the injection well injects a gas

constituted of 100 % of CH4 at a pressure of 10.05 bar,

the production well producing all fluids arriving at the

right of the beam.

On Fig. 2, the three fluid saturations are plotted as

a function of time for scheme S1. From the beginning

of the simulation to 75 days, the well produces water
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Fig. 3 Oil saturation as a function of time in the production well. In dashed black, for scheme S1; in blue, schemes using type
I interpolation (schemes S2 and S4); in red, schemes using type II interpolation (schemes S3 and S5). In all the situations,
the schemes using type I interpolation give smoother results than the schemes using type II interpolation

and oil, the oil fraction decreases while the water frac-

tion increases. At 75 days, a gas phase appears and is

then produced leading to a drop of oil saturation. At

the end of the simulation, the three fluids are produced

together. This result will be the reference in order to

compare the other schemes.
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Fig. 4 Speed up factor for the 5 schemes compared to scheme
S1: a value below 1 means a longer run, a value higher than
1 means a speed up

Fig. 3 shows the importance of the interpolation

model: in all the cases, a smoothing of the results can be

observed when type I is used, avoiding the presence of

the small peaks that appear for type II interpolation,

which decreases the accuracy of the results. Moreover,

scheme S5, for which type II interpolation is used for

representing ηeq(Inth), shows bigger peaks than scheme

S3 where this is the Keq(Inth) which are tabulated.

This is consistent with the fact that Keq(Inth) are less

dependent on the composition than ηeq(Inth). Never-

theless, for all the schemes, the same global trend is

observed.

Fig. 4 shows the evolution of computational time for

the simple beam test, taking scheme S1 as the refer-

ence. It is important to notice that due to the very small

computational time, the comparison might be biased:

in fact, the loading of the tabulated data, in particu-

lar in the case of type I the interpolation, is not neg-

ligible regarding the effective computational time for

such a small test case. This is most probably the rea-

son why scheme S1 is the most efficient one on this

small test case, despite the fact that the four other

schemes were introduced as attempts to improve the

computational efficiency. Comparing types I and II in-

terpolation, for scheme S2 and S3 we obtain the ex-

pected result, in the sense that scheme S3 which uses

the cheaper type II interpolation is faster that scheme

S2 that uses type I which is a full interpolation in all

the variables. However, we do not retrieve this result for

schemes S4 and S5, as scheme S4 is faster than scheme

S5. This is counter-intuitive as type I consists in a full

interpolation in all the variables, and probably reveals

the impact of the oscillations observed on figure 3 on



On an efficient time scheme for multiphase compositional Darcy flows in porous media 15

the computational time. Illustrating the impact of the

interpolation quality on the behavior of the solution is

in fact the main interest of this very simple test case.

6.2 Synthetic trap test case

Injection well Production well

-800

-1000

0 300

Shale Sandstone

Water-Oil contact

Fig. 5 Second illustratrion case geometry, mesh and wells
positions

Initial state The second illustration case is a system

with a truly 2D behavior. It is 300-meter long and 200-

meter deep with 20 cells in each direction. The top of

the model is buried at 800 meters depth. It is consti-

tuted of the 2 same facies as the previous illustration

case to mimic two traps: a sandstone reservoir whose

porosity is 0.33 and permeability 10−11 m2 with a shale

layer whose porosity is 0.4 and permeability 10−14 m2,

but this time with a more complex geometry that mim-

ics two anticlinals. The petrophysical properties of both

facies can be found on Table 2. Fig. 5 illustrates the

geometry of the system showing the location of both

facies. Both wellheads reach the surface.

An injection well is located at the top of deepest anti-

clinal (in the first sandstone layer) and it injects pure

methane. A production well is located at the top of the

shallowest anticlinal (in the first sandstone layer) and

produces all fluids arriving. Their positions are shown

on Fig. 5. The thermal regime is the same as for the

previous illustration case. The initial state is defined

through hydrostatic equilibration and a water-oil con-

tact located at 916 meters depth. The same composition

is considered (see Table 3).

Scheme S2 Scheme S3

Scheme S4 Scheme S5

Scheme S1

Fig. 6 Gas saturations ar the end of the simulation for the
second illustration case
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Fig. 7 Speed up factor for the 5 schemes compared to scheme
S1: a value below 1 means a longer run, a value higher than
1 means a speed up
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Dynamic state From the beginning and during the whole

simulation (600 days), the injection well injects a gas

constituted of 100 % of CH4 with a pressure of 10.05

bar, the production well producing all kind of fluids

that arrive in the shallowest trap. The gas saturations

at the end of the simulation for all schemes are repre-

sented on Fig. 6. All the results remain quite close to

each other. In particular schemes S4 and S5, that uses

tabulated repartition coefficients, remain accurate de-

spite the fact tabulations are coarse. The study of com-

putational times (Fig. 7) shows that this time schemes

S3 and S4 do provide a speed up regarding scheme S1,

however schemes S2 and S5 still take more time than

scheme S1. Comparing type I and type II interpola-

tion, we obtain the same as for the previous illustra-

tion case : type II is indeed faster when it is used for

tabulating equilibrium coefficients, but not when it is

directly used for tabulating repartition coefficients.

6.3 SPE10 test case

Fig. 8 Top view of the third illustration case permeability
distribution with a log scale and the wells positions: 4 pro-
duction wells are located at the corner of the model and 1
injection well is located at the center

Initial state The last illustration case is based on the

upper layer of SPE model 2 which consists of part of a

Brent sequence. This model is widely used in literature

and the reader can easily find a description of this case

([2,19]). The mesh is similar to the model provided by

SPE but it is coarsened with a factor 2 in both direc-

tions, giving 110 x 30 cells. The upscaling of porosities

is an arithmetic mean and the upscaling of permeabil-

ities is a geometric mean. The thickness of the layer is

70 m, such as in Voskov and Tchelepi (2012) [19]. Five

wells are located on the model: one injection well at (255

m,255 m) and one production well in each corner. On

table 4, we display the petrophysical parameters used

for this test case, while Fig. 8 shows the permeability

distribution and the location of the five wells.

Table 4 Parameters for petrophysical laws. W, O, G stand
respectively for water phase, oil phase and gas phase

SPE10

W O G

Skrmin 0.2 0.02 0.02

Skrmax 0.98 0.8 0.8

nkr 2 2 2

Pce (MPa) / 0 0

∆Pc (MPa) / 4 4

SPcmin / 0.02 0.02

SPcmax / 0.8 0.8

nPc / 4 4

Dynamic state From the beginning and during the whole

simulation (400 days), the injection well injects 40 vol%

of water and 60 vol% of gaseous CO2 with an imposed

bottom hole pressure of 68.948 MPa. The production

wells produce all fluids that arrive. The water-oil con-

tact is located at the reservoir bottom, i.e. 3778.8064

m. The same PVT as in previous cases (see Table 3) is

considered with the addition of CO2. Thermodynamic

properties of CO2 are:

. TcCO2
= 304.2 K,

. PcCO2
= 7.383 MPa,

. ωCO2
= 0.2236,

. MmCO2
= 44.01 g/mol.

At the beginning of the simulation, the model is homo-

geneously filled with 34 vol% of oil and 66 vol% of wa-

ter. On Fig. 9, the gas saturations for all schemes at the

end of the simulation are shown. We can see that around

the injection well, where gas and water are injected,

the gas saturation highly increases, consequently wa-

ter and oil saturations decrease. The gas never reaches

the production wells, so they produce only water and

oil. With the exception of scheme S5, the same behav-

ior is observed for all schemes (see Fig. 9), with some

differences near the gas saturation front reflecting the

fact that repartition coefficients of scheme S1, the most

precise ones, are approximated for all other schemes.

Scheme S5 however shows relatively large differences.

In particular, the oil region of the other schemes is here
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replaced by a mixture of oil and gas phases. Compar-

ing it to scheme S4, which only differs by the qual-

ity of the interpolation confirms that the use of both

a coarse tabulation and a coarse interpolation is the

source of the problem. Looking at computational times

Scheme S2 Scheme S3

Scheme S4 Scheme S5

Scheme S1

Fig. 9 Gas saturations ar the end of the simulation for the
SPE10 test case
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Fig. 10 Speed up factor for the 5 schemes compared to
scheme S1: a value below 1 means a longer run, a value higher
than 1 means a speed up

on Fig. 10, on this larger test case we clearly see that

tabulated repartition coefficients of schemes S4 and S5

provide a clear speed up compared to online calls to

the EOS solver of S1 or the Rachford-Rice solver of

S2 and S3 for computing them. Scheme S3 again pro-

vides a speed up, while scheme S2 still fail to achieve

this, which reveals that S2 is definitively not a good

option. However, the results of Fig. 9, strongly empha-

size that some care should be taken when choosing the

table’s refinement, as here we have some noticeable dif-

ference between schemes S4-S5 and scheme S1, con-

trary to our previous tests. Nevertheless, refining the

tables or using more advanced way to represent the

repartition coefficients (for instance response surfaces

or neural networks) undoubtedly allows to recover pre-

cise results while maintaining the computational speed

up.

6.4 Concluding remarks on numerical experiments

To conclude this numerical exploration, let us men-

tion that a comprehensive performance study of the

proposed approach would require a comparison with a

state-of-the-art solver using Coats’ formulation. Such a

solver being quite complex to implement and optimize,

contrary to our approach that is much simpler in this

regard, we would have to resort to available advanced

reservoir simulators. Those software being in general

also highly optimized, for such a comparison to be fair

we need to implement our new scheme with as much op-

timization ideally within one of those software, rather

than using the basic prototype code used here to per-

form our numerical experiments. Otherwise, most of the

performance differences could arguably be considered

as a consequence of differences in implementation, pro-

gramming language, etc... We felt that the available re-

sults as well as their simpler formulation will be enough

to motivate an implementation of the new repartition

coefficients based scheme in an existing reservoir simu-

lator, and this is the reason why we have chosen to post-

pone such a performance comparison to once this imple-

mentation will have been carried on. With any chance,

a comparison with alternative formulations such as the

fugacity formulation of Lauser et al. (2011) [10] could

then also be performed. Nevertheless, if one chooses to

use the repartition coefficient based semi-explicit time

scheme, combined with some kind of fast interpolation

for the ηeq,n, we expect a considerable speed up when

compared to the usual Coats’ formulation involving nu-

merous on the fly EOS solver calls and complex phase

appearance/disappearance handling.
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7 Conclusion

After observing that generic thermodynamic equilib-

rium models admit a reformulation leading to a global

mass formulation of their coupling with Darcy flow, we

have introduced the notion of repartition coefficients.

They allow the derivation of a new and efficient nu-

merical scheme whose thermodynamic precision seems

to only depend on the precision of the repartition co-

efficients themselves. Numerical experiments illustrate

the robustness of the approach, as well as the potential

speed up of using coarse representations of the reparti-

tion coefficients rather than online calls to EOS solvers.

Future works concern the extension of the repartition

coefficients and associated numerical scheme to the more

challenging case of reactive equilibrium, as well as a

rigorous numerical analysis of the method. Replacing

the very basic tabulations used in the present paper

to speed up computations by more advanced represen-

tations of the repartition coefficients such as response

surfaces or neural networks is also the subject of active

research.

References

1. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. El-
sevier, London (1979)

2. Christie, M., Blunt, M.: Tenth spe comparative solu-
tion project: A comparison of upscaling techniques. SPE
Reservoir Simulation Symposium, 11-14 February, Hous-
ton, Texas (2001)

3. Coats, K.H.: An equation of state compositional model.
SPE Journal, Vol. 20(5) (1980)

4. Collins, D., Nghiem, L., Y.-K.Li, Grabonstotter, J.E.: An
efficient approach to adaptive implicit compositional sim-
ulation with an equation of state. SPE Reservoir Engi-
neering, Vol. 7(2), pp. 259-264 (1992)
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A thermodynamic conversions

By definition, one has

mαi = nαi Mmi
.

Then

nαi =
mαi
Mmi

= mα
Xαi
Mmi

,

and consequently

nα =

Ncomp−1∑
j=0

mαj

Mmj

= mα

Ncomp−1∑
j=0

Xαj

Mmj

,

and thus xαi =
nα
i

nα
becomes

xαi =

Xαi
Mmi

Ncomp−1∑
j=0

Xαj

Mmj

.

In the same way, starting from

mαi = nαi Mmi
= nαx

α
i Mmi

,
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we obtain

mα =

Ncomp−1∑
j=0

nαjMmj
= nα

Ncomp−1∑
j=0

xαjMmj
,

and thus Xαi =
mα
i

mα
becomes

Xαi =
xαi Mmi

Ncomp−1∑
j=0

xαjMmj

.

Thus for the molar masses of phases, depending whether we
have molar fractions or mass fractions at our disposal, we can
use either:

Mmα
=

Ncomp−1∑
i=0

xαi Mmi
,

or

Mmα
=

Ncomp−1∑
i=0

Xαi

Ncomp−1∑
j=0

Xαj

Mmj

=
1

Ncomp−1∑
j=0

Xαj

Mmj

,

as
∑Ncomp−1
i=0 Xαi = 1.

In the same way, for phases we have, if mtot denotes the total
mass and ntot the total mole number of the system

ntot =

Nph−1∑
α=0

nα and mtot =

Nph−1∑
α=0

mα,

and nα = mα

Mmα

give for θα = nα
ntot

and Θα = mα

mtot
:

θα =

Θα

Mmα

Nph−1∑
β=0

Θβ

Mmβ

and Θα =
θαMmα

Nph−1∑
β=0

θβMmβ

.

For the total fractions of components,

ntot =

Ncomp−1∑
j=0

nj and mtot =

Ncomp−1∑
j=0

mj ,

and mi = niMmi
lead for zi = ni

ntot
et Zi = mi

mtot
to:

zi =

Zi

Mmi

Ncomp−1∑
j=0

Zj

Mmj

and Zi =
ziMmi

Ncomp−1∑
j=0

zjMmj

,

finally, the mass equilibrium coefficients are defined through:

Xαi
Kαi

=
Xβi

Kβi
.

Indeed, as:

xαi =

Xα
i

Mmi

Ncomp−1∑
j=0

Xαj

Mmj

=

Xα
i

Mmi

Ncomp−1∑
j=0

xαj
Ncomp−1∑
k=0

xαkMmk

= Xαi

Ncomp−1∑
k=0

xαk
Mmk

Mmi

,

we deduce that we can convert from molar to mass by setting
(their is no uniqueness as only the coefficient ratios play a
role in the above identity):

Kαi =
kαi

Ncomp−1∑
j=0

xαj
Mmj

Mmi

.

Notice that by construction:

xαi
kαi

=
Xαi
Kαi

,

which means that mass equilibrium is formally identical to
molar equilibrium.

B Full discretization using TPFA finite volumes

Meshes and notations We assume that the computational
domain Ω is an open polygonal subset of Rd, d = 2 or 3, such
that

Ω =

Nlayer−1⋃
i=0

Ωi where Ωi ∩Ωj = ∅ if i 6= j,

where the sets (Ωi)0≤i≤Nlayer−1 are also open polygonal sub-

sets of Rd, in which the geological properties are assumed to
evolve continuously (in general, they correspond to geologi-
cal layers). We recall the usual notations describing a mesh
M = (T ,F) of Ω. T is a finite family of connected open dis-
joint polygonal subsets of Ω (the cells of the mesh), such that
Ω = ∪K∈TK. For any K ∈ T , we denote by |K| the measure
of |K| and by ∂K = K \K the boundary of K. F is a finite
family of disjoint subsets of hyperplanes of Rd included in Ω
(the faces of the mesh) such that, for all σ ∈ F , its measure
is denoted |σ|. For any K ∈ T , there exists a subset FK of
F such that ∂K = ∪σ∈FKσ. Then, for any σ ∈ F , we de-
note by Tσ = {K ∈ T | σ ∈ FK}. Next, for all K ∈ T and
all σ ∈ FK , we denote by nK,σ the unit normal vector to
σ outward to K. The set of boundary faces is denoted Fext,
while interior faces are denoted Fint. We complement the
mesh by a family of points P = ((xK)K∈T , (xσ)σ∈Fext) in-

dexed by the cells and boundary faces such that xK ∈ K̊ for
any K ∈ T and xσ ∈ σ and any σ ∈ Fext. If Tσ = {K,L},
we assume that xK 6= xL. If σ ∈ FK , we denote dK,σ the
distance between xK and σ. Finally, we assume that for any
0 ≤ i ≤ Nlayer − 1, there exists Fi ⊂ F such that:

∂Ωi =
⋃
σ∈Fi

σ,

thus the mesh is assumed adapted to the geological disconti-
nuities.

To any continuous variable p(x, t), we associate a family of
discrete variables (pnK)K∈T ,0≤n≤NT

such that pnK is in prin-
ciple an approximation of p(xK , tn). As we consider the TPFA
finite volume approximation, to ensure this approximation
property we assume that the mesh is (ΛK)K∈T - orthogo-
nal, with (ΛK)K∈T is the discrete permeability tensor. More
precisely, there exists a family of straight lines (DK,σ)σ∈FK ,
with DK,σ orthogonal to σ with respect to the scalar product

induced by Λ−1
K , such that
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– For any K ∈ T ,
⋂
σ∈FK DK,σ = xK

– For any σ ∈ Fint with Tσ = {K,L}, DK,σ ∩ σ = DL,σ ∩
σ 6= ∅

– For any σ ∈ Fext with Tσ = {K}, DK,σ ∩ σ 6= ∅.

TPFA Finite volume scheme for porous media flow
For simplicity, we assume that the boundary conditions are
homogeneous Neumann boundary conditions everywhere, i.e.
no flow can leave the computational domain. In this case, the
discrete mass balance equations of each component 0 ≤ i ≤
Ncomp − 1 become, for any K ∈ T and any 0 ≤ n ≤ NT − 1:

Qn+1
i,K = |K|

mn+1
i,K −mni,K

∆tn

+
∑

σ∈FK∩Fint

Nph−1∑
α=0

|σ|ρn+1
α,σ X

α,eq,n,n+1
i,σ V n+1

α,K,σ, (29)

where we have denoted:

V n+1
α,K,σ =

λK,σλL,σ

λK,σdL,σ + λL,σdK,σ

krn+1
α,σ

µn+1
α,σ

∆n+1
P,K,σ,

with
λK,σ = ΛKnK,σ · nK,σ,

and

∆n+1
P,K,σ = Pn+1

α,K − P
n+1
α,L + ρn+1

α,KLg(zK − zL),

and also

ρn+1
α,KL =

1

2
(ρn+1
α,K + ρn+1

α,L ).

The upwind relative permeabilities are given by:

krn+1
α,σ =

∣∣∣∣∣ krα(Sn+1
α,K ) if ∆n+1

P,K,σ ≥ 0

krα(Sn+1
α,L ) if ∆n+1

P,K,σ < 0.

In the same way, the upwind mass fractions are defined by:

Xα,eq,n,n+1
i,σ =

∣∣∣∣∣X
eq,α
i (Inth,K ,I

n+1
th,K) if ∆n+1

P,K,σ ≥ 0

Xeq,αi (Inth,L,I
n+1
th,L) if ∆n+1

P,K,σ < 0,

as are ρn+1
α,σ and µn+1

α,σ . Finally Qn+1
i,K is given by the usual

Peaceman’s well source term. The discretization of the re-
maining equations is immediate. We have, for all K ∈ T

ρn+1
α,KΦKS

n+1
α,K = meqα (Inth,K ,I

n+1
th,K), (30)

Nph−1∑
α=0

Sn+1
α,K = 1, (31)

Pn+1
α,K = Pn+1

ref,K + Pcn+1
α,K ∀ 0 ≤ α ≤ Nph − 1. (32)


