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Abstract

We investigate the entrapment condition of initially spherical and ellip-

soidal bubbles in viscoplastic materials using direct numerical simulations.

For a spherical bubble, the entrapment condition depends on the balance

between the buoyancy force and the yield stress of the viscoplastic material.

For non-spherical bubbles, interfacial tension may yield the surrounding ma-

terial to minimize the surface energy of the bubble. The yielding of the

surrounding material also facilitates the rising motion of the bubble owing to

buoyancy. However, the bubble gets entrapped later if the stress exerted by

buoyancy force is less than the yield stress of the material. We evaluate the

yield-stress parameter for different bubble shapes and physical parame-ters,

and predict the critical yield-stress parameter for the entrapment of a bubble.

The effect of the viscosity ratio on the bubble entrapment condition is also

investigated.
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parameter.

Email addresses: edson.soares@ufes.br (Edson J. Soares), +55 27 33579500

5028 (Edson J. Soares)



1. Introduction

Bubble rise in a viscous liquid is a fundamental problem in fluid mechan-

ics. The problem is also important from the industrial application point of

view. In many applications, the surrounding is a viscoplastic fluid such as

processed foods, cosmetics, medicines, crude oil, to name a few (Tripathi et al.,

2015; Potapov et al., 2006; Sikorski et al., 2009). Understanding the bubble

rise dynamics through a viscoplastic material is of utmost importance for the

optimization of these industrial processes.

The first concept of viscoplastic fluid was proposed by Bingham (1922)

who states that viscoplastic materials behave like a solid when applied stress

is below the limit called yield stress, and behave like a fluid when the applied

stress is higher than the yield stress. Viscoplastic materials may entrap

bubbles indefinitely when the buoyant force is not sufficient to overcome

the material yield stress. Depending on the application, bubble entrapment

may be desirable or undesirable. For example, bubble mobility is desirable

in water treatment and fermentation, where its mobility may influence gas

diffusion, and consequently the efficiency of physical and chemical processes.

On the other hand, bubble entrapment is desirable in food processing, such

as chocolate, ketchup, and mayonnaise, in order to improve its taste. Bubble

entrapment is also desirable in the processing of cosmetics such as hair gels

and shampoos. A small amount of bubbles is also allowed in cement to

improve workability and freeze-thaw resistance, at the expense of reduced

compressive strength and concrete blisters. There are also situations in which

the presence of bubbles may be dangerous, as in the blowout of oil wells and
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the processing of solid fuels. Therefore, the entrapment condition of bubbles

in viscoplastic materials is of great interest.

The mobility of viscous drops and solid spheres through a viscoplastic

material also caught the attention of the community (Holenberg et al., 2011;

Beris et al., 1985). Beris et al. (1985) studied the motion of a solid sphere

through a viscoplastic material and defined the yield-stress parameter Yg

which is the ratio of yield strength and external force acting on the sphere.

In the case of free-falling solid sphere where the external force is gravity, Yg

can be written as

Yg =
3

2

τy
R∆ρg

, (1)

where τy is the yield stress of the viscoplastic fluid, ∆ρ is the density dif-

ference between the fluid and the solid particle, g is the acceleration due to

gravity, and R is the sphere radius. The authors estimated that the critical

value of the yield-stress parameter Ygc for the entrapment of solid spheres is

approximately 0.143. If Yg < Ygc, the particle moves, otherwise it is trapped

by the yield stress. The experimental data of Tabuteau et al. (2007) support

the prediction of Beris et al. (1985).

Later, the researchers investigating the rise of a bubble on a viscoplastic

fluid adapted the definition of Yg as the ratio of yield strength to the buoy-

ancy force exerted by the bubble. Several attempts have been made to find

the critical yield stress parameter using theoretical (Dubash and Frigaard,

2004), experimental (Dubash and Frigaard, 2007; Sikorski et al., 2009; Lopez

et al., 2018), and numerical (Tsamopoulos et al., 2008; Dimakopoulos et al.,

2013) tools. Using the theory of variational principles, Dubash and Frigaard
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(2004) estimated the value of Ygc as 0.866 for spherical bubbles. However, the

same authors later reported that this prediction provides sufficient but not

necessary conditions for bubble entrapment (Dubash and Frigaard, 2007).

The theoretical studies are performed using simplified assumptions, such as

predefined bubbles and yield surface shapes, and predefined velocity field

(Dubash and Frigaard, 2004; Wang et al., 2019; Lou et al., 2020).

The entrapment condition is also expressed as a function of Bingham num-

ber in a few earlier studies (Dubash and Frigaard, 2004, 2007; Tsamopoulos

et al., 2008; Dimakopoulos et al., 2013), where the characteristic strain rate

of the Bingham number is calculated from the buoyancy effect. Indeed, the

Bingham number is nothing but the yield stress parameter Yg of Eq. (1) with-

out a factor of 3/2. Sikorski et al. (2009) reported that the equivalent radius

of the bubble is not the best suitable length scale in the case of a deformed

bubble. They used the radius of the maximum cross-sectional plane normal

to the flow, Rmax, to calculate the value of Yg. Since Yg is a representation of

the ratio between the yield stress to the buoyant stress, the authors defined

Yg as

Yg =
3

2

R2
maxτy

R3∆ρg
. (2)

The equivalent radius of a spherical bubble was used in the denominator

to express the buoyancy force, whereas maximum radius, Rmax, was used in

the numerator to find the resistance offered by the yield stress. This param-

eter differs from Yg given in Eq. (1) by a factor of (Rmax/R)2. Sikorski et al.

(2009) estimated this critical parameter from their experimental results as

Ygc ≤ 0.50±0.04. However, the experimental data of Lopez et al. (2018) esti-
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mates the value of Ygc to be approximately 0.13 using the definition Eq. (2),

and varying in between 0.15 to 0.45 when using the definition Eq. (1). This

dramatic difference between the two experimental observations is not clear

and might be a consequence of experimental condition or change in other

rheological properties as the concentration of the Carbopol suspension was

not the same. The difficulties involved in the experimental characterization

of real fluids make such investigations very complex and challenging (Dubash

and Frigaard, 2007; Frey et al., 2015; Lopez et al., 2018; Pourzahedi et al.,

2021).

Numerical simulation of bubble rise in a viscoplastic medium is also chal-

lenging because of the discontinuous viscosity function. Moreover, the yield

region and bubble shape need to be determined as a part of the solution.

Tsamopoulos et al. (2008) obtained steady-state solutions for the rising of

bubbles in a Bingham fluid using the Papanastasio model (PM) (Papanasta-

siou, 1987). They reported that the critical entrapment limit, Ygc, varies from

0.214 to 0.321 as a monotonic function of the Bond number Bo (=ρ1gR2/σ), 

where ρ1 is the density of the viscoplastic material and σ is the surface ten-

sion coefficient. The regularized viscosity models allow creeping flow in the

unyielded zone and one needs to be careful in finding the entrapment con-

dition. As explained in Tsamopoulos et al. (2008), the criteria based on

second invariant of the stress tensor (‖τ‖ ≤ τy for unyielded material and

‖τ‖ > τy for yielded material) provides a better interpretation of the results.

Dimakopoulos et al. (2013) compared the earlier results of Tsamopoulos et al.

(2008) with steady-state solutions using the Augmented Lagrangian Method

(ALM). They found that the entrapment criteria given by Tsamopoulos et al.
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(2008) gave a good estimative of the entrapment condition when the regu-

larization parameters were high. Also, they studied the rising of bubbles in

both Herschel-Bulkley and Bingham fluids and reported that the entrapment

conditions are independent of the consistency and power-law indexes of the

fluid. The entrapment condition depends on τy which is in agreement with

Dubash and Frigaard (2004). Their results show that Ygc varies in the range

0.194−0.217 but the increase is not a monotonic function of the Bo. First Ygc 

increases with an increase in Bo, and later, Ygc starts decreasing with the

increase in Bo. These results were obtained using a steady-state ALM for-

mulation and the computational cost in ALM is high. Later, Dimakopoulos et

al. (2018) proposed a numerical method called the Penalized Augmented

Lagrangian Method (PALM) which has shown to be a fast converging and

efficient algorithm compared to ALM and is capable of tracking the yield sur-

face and predicting the flow field of viscoplastic fluids accurately. Tripathi et

al. (2015) performed transient numerical simulations using the volume of fluid

method and demonstrated that in large yield stress and weak surface tension

regime, the bubble rise is transient (or oscillating). Tsamopoulos et al. (2008)

reported that the ratio between Ygc for spherical bubbles (in-finitesimal

viscosity ratio) and solid spheres (infinite viscosity ratio) is equal to 1.5, the

same ratio of the terminal velocity of a solid sphere to that of a spherical

bubble under the same buoyancy force. However, they did not make any

comment on the entrapment condition at the intermediate viscosity ratio.

Despite the abundance of literature on the topic, there are many chal-

lenges which are far from being completely understood, especially the depen-
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dence of the value of the critical yield-stress parameter (Ygc) on the initial

shape of the bubble and the viscosity ratio. We attempt to understand the

condition for bubble entrapment in a viscoplastic fluid using time-dependent

numerical simulations. The Bingham model is used to mimic the yield stress

characteristics of the viscoplastic material. The rest of the paper is organized

as follows. Section 2 describes the problem formulation, where the computa-

tional domain, boundary conditions, governing equations, and dimensionless

numbers are presented followed by validation of the numerical model. In

Sec. 3, the results are presented and discussed. Finally, we draw up the

conclusions in Sec. 4.

2. Problem Formulation

We investigate the entrapment condition of spherical and deformed bub-

bles in a Bingham material using direct numerical simulations in an axisym-

metric geometry. In this section, first, we present the computational domain

along with the boundary and initial conditions. Then we present the gov-

erning equations and the important dimensionless parameters. Finally, we

present the validation tests performed to check the solver accuracy and grid

dependency.

2.1. Computational domain

A representative diagram of the computational domain is shown in Fig. 1.

Axisymmetric simulations are performed in a cylindrical coordinate system

(r, z) where the axis of symmetry lies along the z-axis (the right boundary).

The simulations are performed in a square domain of height H = 25 D, where

D is the equivalent diameter of a spherical bubble having the same volume
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as that of the bubble. The origin of the coordinate system lies at the bottom 

right corner of the domain as shown in Fig. 1. At the start of the simulations, 

the bubble center is located at a distance zi = 5 D from the origin. The 

computational domain is sufficiently large to avoid any boundary effects. 

The surrounding viscoplastic fluid (represented as Fluid 1) is modeled using 

the Bingham constitutive equations while the bubble (represented as Fluid 

2) is a Newtonian fluid. Gravity acts on the negative z-direction. Initially, 

both fluids are at rest. We have initialized the bubble with different aspect 

ratios a/b (a is the axis length in the z-direction and b is axis length in the r 

direction) in the range 0.5 to 2.0. In Fig. 1, the bubble aspect ratio is equal to 1 

corresponding to a sphere (a = b = D). We apply free-slip boundary conditions 

with no mass penetration for the velocity field at the bottom, left, and top 

boundaries. The Neumann boundary condition for the pressure field is applied 

at these boundaries.

2.2. Governing equations

In the present simulations, the fluids are considered incompressible. The 

governing mass and momentum conservation equations are given as

∇ · u = 0, (3)

ρ

[
∂u

∂t
+ u · ∇u

]
= −∇P +∇ ·

[
µ
(
∇u +∇uT

)]
+ fσ − ρg. (4)

Here, u (ur, uz) is the velocity field, where ur and uz are the velocity compo-

nents in the radial (r) and axial (z) directions, respectively; P is the pressure
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field; g = gez where g is the the acceleration due to gravity and ez is the

unit vector in the z-direction; ρ is the density field; µ is the viscosity field; t

is time; fσ is the local density of capillary force per unit volume and is equal

to fσ = σκnδs where σ is the surface tension coefficient, κ is the mean curva-

ture of the interface, δs is the Dirac delta function which is zero everywhere

except at the interface and n is the unit normal to the interface.

Here, the bulk fluid is viscoplastic (Fluid 1) and the bubble is a Newtonian

fluid (Fluid 2). The respective densities of the two fluids ρ1 and ρ2 are

constants. The viscosity µ2 of the bubble is constant while the viscosity of

the bulk viscoplastic phase µ1 is modeled using the regularized version of

the Bingham constitutive law given as (Bingham, 1922; Frigaard and Nouar,

2005; Allouche et al., 2000; Balmforth et al., 2014)

µ1 = µp +
τy

‖γ̇‖+ ε
. (5)

Here, µp is the plastic viscosity of the viscoplastic material; τy is the yield

stress of the viscoplastic material; ‖γ̇‖ =
√

(1/2)γ̇ : γ̇ is the Frobenius norm

of the strain rate tensor, γ̇ . The regularization parameter ε is calculated as

ε =
τy
Nµc

, (6)

where µc = µp+τy/γ̇c is the characteristic viscosity based on the characteristic

strain rate γ̇c (defined later) and N is a dimensionless parameter whose value

is large. We carry out a convergence test to optimize the value of N which

is presented in Sec. 2.4.

The two phases are separated by the volume fraction α whose value is

taken as 1 and 0 for fluid 1 and fluid 2, respectively. The advection equation
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for the volume fraction field is solved to track the interface separating the

two fluids.
∂α

∂t
+ u · ∇α = 0 (7)

The density ρ and viscosity µ are then calculated based on volume fraction

in each grid cell as

ρ = ρ1α + ρ2(1− α), (8)

µ =
1

α
µ1

+ 1−α
µ2

. (9)

We consider harmonic mean for viscosity since in the case of high-viscosity 

contrast, the harmonic mean of viscosity work better than the arithmetic 

mean (Tryggvason et al., 2011). We have tested the simulations for both 

means which are presented in Sec. 2.4. We do not observe any consid-

erable difference in the simulation results except the solution/convergence 

time. The yielded (unyielded) regions are separated based on the von Mises 

criterion given as ‖τ‖ > τy (‖τ‖ ≤ τy), where ‖τ‖ is the magnitude of the 

deviatoric stress tensor.

2.3. Non-dimensional parameters

The following scalings are used to non-dimensionalize the governing equa-

tions and boundary conditions:

(r̄, z̄) = (r/D, z/D), ū = u/U, t̄ = t/tc, P̄ = P/ρ1U
2,

µ̄ = µ/µc, ρ̄ = ρ/ρ1, ¯̇γ = γ̇/γ̇c
(10)

The characteristics velocity U is defined as U =
√

(ρ1 − ρ2)gD/ρ1, the

characteristic time tc is defined as tc = D/U , the characteristic strain rate γ̇c

is defined as γ̇c = 1/tc = U/D, and the characteristic viscosity µc is defined
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as µc = µp + τy/γ̇c. It is worth noting that µc includes the contribution of

the yield-stress, as recommended by Thompson and Soares (2016). Using

this scaling we get the following dimensionless parameters that describe the

problem of interest.

Ar =
√
ρ1∆ρgD3/µc,

Bo = ∆ρgD2/σ,

P l = τy/(τy + µpγ̇c),

µr = µ2/µc,

ρr = ρ2/ρ1.

The Archimedes number, Ar, represents the relative importance of the 

buoyancy force to the viscous force, while the Bond number, Bo, represents 

the relative importance of the buoyancy force to the capillary force. The 

Plastic number, P l, indicates the plastic nature of the fluid and its value 

ranges from 0 to 1. P l = 0 indicates that the yield stress is zero (Newtonian 

fluid) while P l = 1 indicates that the fluid is completely plastic (infinite 

yield stress) and remains undeformed. Since the viscosity of Fluid 1 is not 

constant, we define the viscosity ratio, µr, as the viscosity of Fluid 2 over the 

characteristic viscosity, µc. The density ratio ρr = ρ2/ρ1 is fixed (=0.01) in all 

the simulations.

The momentum equation can be represented in terms of these dimension-

less parameters as

ρ̄

[
∂ū

∂t̄
+ ū · ∇ū

]
= −∇P̄ +

1

Ar
∇ ·
[
µ̄
(
∇ū +∇ūT

)]
+

1

Bo
κ̄nδs − ρ̄ez. (11)

In Eq. (11), the Plastic number is hidden inside the term µ̄ = 1/(α/µ̄1 +

(1− α)/µ̄2) where the µ̄1 is given as
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µ̄1 =
µ1

µc
= (1− Pl)

[
1 +

Pl

(1− Pl)(¯̇γ + Pl
N

)

]
. (12)

2.4. Code validation

The numerical simulations are performed using the open-source solver 

Basilisk (Basilisk; Popinet, 2009, 2015; Lagrée et al., 2011). The viscoplastic 

model of Basilisk solver has been successfully used for complex flows by 

different researchers (Lagrée et al., 2011; Deka et al., 2019, 2020).

The mesh is dynamically adapted as a function of the volume fraction, 

the velocity field, and the yield surface. Figure 2 exemplifies how the mesh is 

adapted, where the image has been mirrored on the z-axis. All simulations 

start with a uniform mesh of refinement level1 6 in the whole domain, with 

local refinement around the bubble at the maximum level as shown in Fig. 2 

(a). In Fig. 2 (a), the maximum refinement level is 12. Figure 2 (b) shows 

the dynamically adapted mesh at t̄  = 10.0 for the same condition presented by 

Dimakopoulos et al. (2013), Ar = 33.33, Bo = 200, P l = 0.83, µr = 0 and ρr = 

0 (the viscosity and density of the gas phase in the bubble were neglected). It 

can be seen in Fig. 2 (b) that the mesh is refined at the bubble interface, on the 

yield surface, and on the regions where there is a velocity gradient.

The dimensionless velocity profile of the bubble center of mass with di-

mensionless time is shown in Fig. 3 for maximum mesh refinement level of

1The number of cells per dimension is given by 2n, where n is level of refinement. For

example, if a 2D square domain is discretized with a refinement level 8, each direction will

contain 256 cells, then the whole domain will contain 65,536 cells.

12



9, 10, 11, 12, and 13 with N = 106 considering the harmonic mean of vis-

cosity (continuous lines) and one case with the arithmatic mean of viscosity 

(dashed line). The minimum level for dynamic mesh adaption is kept con-

stant at level 4. It can be seen in Fig. 3 that the velocity profile does not 

change considerably when changing the maximum level of refinement from 12 

to 13; however, the computational time increases considerably. Additionally, 

a mesh maximum refinement level of either 9, 10, or 11 does not capture the 

fluids interface accurately (a skirt forms in the bubble back). Hence, a max-

imum refinement level of 12 is chosen to perform the numerical simulations. 

We did not observe any effect of the minimum refinement level on the flow 

field. It is also evident in Fig. 3 that the velocity profile is in good agreement 

for both harmonic and arithmetic mean of viscosity implying that the results 

are almost independent of the way the jump of viscosity is computed. The 

maximum refinement level in the simulations (level 12) corresponds to a cell 

size of approximately 6.103 × 10−3 D.

Next, we check the value of N to optimize the computational time without 

compromising the accuracy. Figure 4 presents the bubble shape (red line), 

yielded (white) and unyielded (black) regions for N = 103, 104, 105, and 106. 

For N = 106 the external yield surface is in qualitative agreement with the 

predictions of Beris et al. (1985) (Figure 1 of authors). The velocity profile of 

the bubble center of mass with time is shown in Fig. 5 for different values of

N . Since the result with N = 106 does not change much from the result with 

N = 107, whether the computational time is higher in the later we perform 

the simulations with N = 106.

Finally, we validate the solver by reproducing the experimental results of
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Wegener et al. (2010) for Newtonian fluids. The terminal velocity of toluene 

drops of different diameters rising in water is calculated and compared with 

the experiments. We observe a very good agreement between the simulation 

results and experiments as depicted in Fig. 6. The decrease in terminal 

velocity after a maximum velocity is due to changes in the drop shape. We 

also reproduce the steady-state solution of Dimakopoulos et al. (2013) (Fig. 

7), who simulated rising bubbles using the Augmented Lagrangian Method to 

model the Bingham fluid. The dimensionless parameters are Bo = 200, Ar = 

33.33, P l = 0.83, µr = 0.001 and ρr = 0.01. As evident in Fig. 7, the agreement 

with the ALM is reasonable for both yielded/unyielded region and the bubble 

shape. It is to be noted that our definitions of Bo and Ar differ from that of 

Dimakopoulos et al. (2013) since we use the bubble diameter instead of its 

radius. Moreover, our representation of Archimedes number is the square root 

of the one considered by them. Furthermore, we define the Archimedes 

number based on µc = µp + τy/γ̇c to include the yield-stress contribution on 

viscosity while Dimakopoulos et al. (2013) used µp.

3. Results and discussion

In this section, we discuss the entrapment condition of spherical and non-

spherical bubbles. We cover a wide range of the governing dimensionless

parameters in numerical simulations. First, we discuss the entrapment crite-

ria used to find whether a bubble is static or mobile.

3.1. Bubble entrapment criteria

We consider that the bubble is mobile when a complete envelope of

yielded material appears around it. This is similar to the criteria proposed by
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Tsamopoulos et al. (2008) who considered that the bubble is arrested when

the external yield surface merges with the unyielded material around the

bubble equator. In order to determine the critical Plastic number Plc and

the critical yield-stress parameter Ygc for bubble entrapment, we employ a

method similar to the root-finding Bisection method. We vary Pl in discrete

intervals for a given Ar until the difference between the minimum value of

the Plastic number for which the bubble is static, and the maximum value

for which the bubble is mobile is less the 5 %. Plc is taken as the average of

these two values, and it has an error margin of about ±2.5 %.

Figure 9 shows the bubble interface and the yielded/unyielded regions for

Ar = 5, Bo = 1, µr = 0.001 and Pl = 0.25, 0.32, 0.33 and 0.34 at t̄ = 0.2.

The initial shape of the bubbles is spherical. At this particular instant,

although the bubbles have not reached a steady state, the development of a

complete (Fig. 9(a) and (b)) or an incomplete (Fig. 9 (c) and (d)) envelop of

yielded material is clearly visible. For low values of Pl, the yielded envelope

spans far from the bubble surface (Fig. 9 (a)), and as Pl increases, the

yielded envelope size decreases and an unyielded region appears on the bubble

equator (Fig. 9 (b)). The gap between the unyielded material on the bubble

equator and the outer unyielded surface decreases with the increase in Pl.

At large Pl, the outer and the equatorial unyielded surfaces merge indicating

no resultant movement of the bubble (Fig. 9 (c)), although yielded regions

are found above and below the bubble (which are expected to be oscillation

effect). If Pl is increased further, no yielded region is observed around the

bubble (Fig. 9 (d)). We do not see any considerable change of the yielded

regions with time. Therefore, Figs. 9 (a) and (b) depict two rising bubbles,
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while Fig. 9 (c) and (d) depict two static bubbles. For this special case, 

the maximum value of P l for which the bubble is mobile and the minimum 

value of P l for which the bubble is static are 0.32 and 0.33, respectively, and 

therefore we interpret the critical plastic number as P lc = 0.325.

3.2. Entrapment condition of spherical bubbles

The driving force for bubble rising is the buoyancy force, and the energy 

budget for the work done by this force is shared among the yield stress, 

viscosity, surface tension, and inertia. For an entrapped spherical bubble, 

the buoyancy force is not able to overcome the resistance of the yield stress. 

Therefore, it is expected that the entrapment condition for a spherical bubble 

is governed solely by the yield-stress parameter, Yg, which may be written as 

Yg = 3P l/Ar. The critical yield-stress parameter Ygc may also depend on µr, as 

demonstrated by Tsamopoulos et al. (2008) and Sikorski et al. (2009) for 

bubbles (zero viscosity ratio) and solid particles (infinite viscosity ratio). 

Moreover, according to Tsamopoulos et al. (2008) and Dimakopoulos et al.

(2013), Ygc varies with Bo. However, in their work, every entrapped bubble 

had a different shape and the change in Ygc could also be due to the bubble 

shape. Therefore, we perform a systematic investigation to know the Bond 

number and the viscosity ratio effects for bubbles of the same initial shape. We 

present and discuss our results for spherical bubbles in the present section and 

for non-spherical bubbles in Section 3.3.

We first construct a critical entrapment map for spherical bubbles as a 

function of P l and Ar, with the former ranging from 0.01 to 0.96, and the 

latter ranging from 0.1 to 15. For a given Ar, if P l > P lc, where P lc(Ar) 

is the critical Plastic number for bubble entrapment, the bubble is static,

16



otherwise it will rise. For P l = 0.0, the surrounding fluid is Newtonian and 

bubbles will always move, and, for P l = 1.0 the material behaves like a 

solid and the bubbles do not move. In between these two limits, we find 

the critical Ygc. Here, the Bond number is set as 1, and the viscosity and 

density ratios are set as 0.001 and 0.01, respectively. Figure 10 shows the 

results of the numerical simulation in a P l−Ar map. Here, the green squares 

represent mobile bubbles while the red squares represent entrapped bubbles. 

The boundary between the entrapped and mobile regimes can be represented 

by a linear relationship of P l and Ar, given by Ygc = 3P lc/Ar ≈ 0.195. Since 

the bubbles are spherical, calculating Ygc using either Eq. (1) or Eq. (2) gives 

the same result.

The critical Ygc as a function of Ar is plotted in Fig. 11 for Bo = 1 and µr = 

0.001 along with several other data obtained from the literature. Our results 

agree with that of Dimakopoulos et al. (2013) and Tsamopoulos et al.(2008) 

who extimated the values of Ygc as 0.196 and 0.210, respectively. Both results 

are for Bo � 1, and therefore, it is expected that the bubbles have a spherical 

shape. The numerical results deviate from the theoretical prediction of 

Dubash and Frigaard (2004) (Ygc = 0.87) and experimental results of Sikorski 

et al. (2009) (Ygc = 0.50) and Lopez et al. (2018) (Ygc = 0.13). The bubbles are 

non-spherical in the experiments of Sikorski et al. (2009) and Lopez et al. 

(2018) and Ygc is calculated using Eq. 2. We have already mentioned that the 

discrepancy between the two experimental investigations may be because of 

the difficulties in the experimental characterization of the rheological 

properties. The discrepancy may also come owing to the difficulties in 

estimating the entrapment condition experimentally. The real
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fluids also have elastic characteristics. Recently, Pourzahedi et al. (2021) have 

demonstrated that the geometrical differences of the bubble shape in the 

experiments (Sikorski et al., 2009; Lopez et al., 2018) and numerical 

simulations (Tsamopoulos et al., 2008; Dimakopoulos et al., 2013) come from 

the elastic nature of fluid which is not present in the simple rheological models 

considered in the numerical simulations. Our numerical model also does not 

consider the elastic nature of the fluid. Nevertheless, the data obtained from 

the present computations as well as from the literature suggest that Ygc is 

independent of Ar for spherical bubbles.

To check the effect of the Bond number, we perform numerical simulations 

by changing the value of Bo for a spherical bubble. The simulations are 

performed for Bo = 0.01, 0.1, 100, 250 and 1000, Ar = 1 and 5, and µr = 

0.001. Figure 12 presents Ygc as a function of Bo for Ar = 1 and 5, along 

with the results of Tsamopoulos et al. (2008) and Dimakopoulos et al. (2013). 

The average value of Ygc in the present simulations is approximately 0.200 

with a maximum deviation of 10 %. Such a small variation of Ygc over five 

orders of magnitude variation of Bo suggests that Ygc barely depends on the 

Bo for a spherical bubble. The larger deviation of Ygc in Tsamopoulos et al.

(2008) is therefore expected to be because of the change in the shape of the 

bubble.

Figure 13 shows the variation of Ygc as a function of µr. The simula-tions 

are performed for three values of Ar = 1, 5, and 10 and Bo = 1. To understand 

the viscosity ratio effect we perform the simulation for different viscosity 

ratios: µr = 0.001, 0.01, 0.1, 1, 10, 20, 50, 100, 150 and 200. The critical yield 

stress parameter Ygc decreases with the increase in the viscosity
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ratio. However, the decrease is very small for lower values of viscosity ratios. 

For instance, Ygc change from 0.194 to 0.191 when µr is changed from 0.001 

to 10, which is negligibly small compared to the four orders of magnitude 

variation of µr. However, the critical yield-stress parameter decreases consid-

erably at higher viscosity ratios. For µr = 50, the Ygc value is approximately 

0.177 and 0.180 for Ar = 10 and 5, respectively. The change in the Ygc is a 

result of the change in the interfacial stress at the surface of the bubble as the 

bubble becomes more rigid at a higher viscosity ratio. With further increase 

in the viscosity ratio (µr = 200 in our simulations), the critical value of Ygc 

approaches the asymptotic limit 0.143, which is the yield stress parameter 

for a rigid solid sphere reported in Beris et al. (1985).

The above parametric study suggests that, for a spherical bubble, the 

entrapment condition primarily depends on competition between the buoy-

ancy and yield stress. If the buoyancy force is not sufficient to overcome the 

yield stress, a spherical bubble will remain entrapped. The critical value of 

the yield stress parameter Ygc for the entrapment of a spherical bubble is ap-

proximately constant at lower viscosity ratio (Ygc ≈ 0.20 ±0.02). At a higher 

viscosity ratio, the critical yield stress parameter decreases and approaches 

the asymptotic limit of Ygc for a solid sphere.

3.3. Entrapment condition of non-spherical bubbles

For non-spherical bubbles, there are two possibilities: first, if the surface 

tension force is strong enough it will deform the bubble and will try to bring 

the bubble to the spherical shape, and second, if the surface tension is weak, 

there will be no deformation of the bubble because of surface tension. In 

the first case, even though the buoyancy force is not enough to overcome the
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yield stress, surface tension may yield the surrounding material to bring the 

bubble to a spherical shape similar to that reported in Deka et al. (2020) for 

slender drops. Therefore, the critical Ygc depends on Bo for non-spherical 

bubbles, unlike the spherical bubbles where critical Ygc was found to be in-

dependent of Bo. Moreover, the viscosity may also play a significant role as it 

resists the shape-change motion of bubble. We perform numerical sim-ulations 

to assess the entrapment condition of non-spherical bubbles of the same 

volume by considering different aspect ratios. First, we study bubble 

entrapment condition in low surface tension regime which is presented in Sec. 

3.3.1. In this regime, the surface tension force is not strong enough to yield the 

surrounding material. Next, in Sec. 3.3.2, we discuss the bubble mobility in 

higher surface tension regimes where surface tension overcomes the yield 

stress. Finally, we discuss the viscosity ratio effect on the mobility of the 

bubbles in Sec. 3.3.3.

3.3.1. Low surface tension regime

First, we investigate the bubble entrapment in the low surface tension 

regime. We consider a typical case with Bo = 100, Ar = 5 and µr = 0.001. 

Figure 14 presents the critical yield-stress parameter for the non-spherical 

bubbles with aspect ratios of 0.5, 0.75, 1.0, 1.5, and 2.0, using Eq. (1) (blue 

line) and Eq. (2) (green line). Ygc varies significantly according to Eq. (1), but 

remains approximately constant according to Eq. (2). Some earlier literature 

(Dubash and Frigaard, 2004, 2007; Tsamopoulos et al., 2008; Dimakopoulos 

et al., 2013) have used Eq. (1) (using the equivalent radius of the bubble) 

since it is easier to relate to the Bingham number when the deformation rate 

is expressed as a function of the buoyancy force. However, as pointed out by
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Sikorski et al. (2009), the definition of Eq. (2) is more relevant since the stress 

exerted by the bubble to yield the surrounding viscoplastic material depends 

on the area normal to the direction of the buoyancy force. Indeed, when using 

the definition of Eq. (1), Lopez et al. (2018) estimated Ygc to vary between 

0.15 and 0.45, while using the definition of Eq. (2) the authors estimated a 

single value of Ygc of approximately 0.13. This corroborates that, in the low 

surface tension regime, the plasticity required to hold a non-spherical bubble 

is a function of the net buoyancy force as well as the bubble shape. The 

critical Ygc in Fig. 14 obtained from Eq. (2) is approximately 0.2 which is 

same as that obtained for spherical bubbles in proceeding section.

3.3.2. High surface tension regime

In a high surface tension regime, surface tension force may yield the sur-

rounding material to bring the bubble to a spherical shape from a deformed 

shape to minimize the surface energy. The yielding of the surrounding ma-

terial by the surface tension force also facilitates the rising motion of the 

bubble as buoyancy force is continuously acting on it. Figures 15 (a) and (b) 

present typical snapshots of initially ellipsoidal bubbles of aspect ratios of 2.0 

and 0.5 at t̄  = 0.0, 0.2, 0.4, 0.6 and 0.8. The dimensionless parameters are Bo 

= 1, Ar = 5, P l = 0.33, and µr = 0.001. For the same values of Ar, P l and 

aspect ratio, but for Bo = 100, a initially prolate bubble (Yg ≈ 0.125 using Eq. 

(2)) is mobile, while an oblate bubble (Yg ≈ 0.315 using Eq. (2)) is static (not 

shown). This is because surface tension is too weak to yield the surrounding 

material and the mobility of the bubble depends on the balance between 

buoyancy and yield stress. For Bo = 1, surface tension yields the surrounding 

material to pull back the bubbles towards a spherical
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shape. As the surrounding material is yielded, the bubbles also start rising 

because of buoyancy. When the bubbles approach a spherical shape, the 

surface tension effect on the yielding of the surrounding material vanishes, 

and the entrapment condition depends on the competition between buoyancy 

and yield stress. The maximum value of P l for which the bubble is mobile 

in the later stage is approximately 0.33 in both cases, which is very close to 

the critical limit for an initially spherical bubble (P lc ≈ 0.32). This suggests 

that if surface tension is strong enough to yield the surrounding material by 

minimizing the surface energy, the critical entrapment condition of oblate 

and prolate bubbles is nearly equal to that of an initially spherical bubble. 

A small difference appears because the non-spherical bubble does not nec-

essarily take an exact spherical shape in the later stage. Depending on the 

final shape of the bubble, the critical Plastic number may vary slightly (also 

evident in Refs. (Tsamopoulos et al., 2008; Dimakopoulos et al., 2013))

Figures 16 (a) and (b) show the temporal variation of the aspect ratio and 

the dimensionless rise velocity of a bubble, respectively. The dimensionless 

parameters are µr = 0.001, Ar = 5, P l = 0.33, Bo = 0.1 and 1, and a/b = 0.5 

and 2.0. Because of high surface tension (Bo = 0.1 and 1) force, the bubble 

shape changes towards a spherical one. The bubble velocity first increases 

and then decreases, and finally approaches zero. This is because the P l 

value is close to the entrapment condition. It is evident that for Bo = 0.1, 

the bubbles oscillate (between oblate and prolate shapes), while for Bo = 1, 

the bubble shape smoothly changes to a nearly spherical shape.

The effective buoyant stress depends on the cross-section area normal to the 

direction of buoyancy force. For an oblate bubble, the cross-sectional area
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normal to buoyancy force is higher which reduces the effective buoyant stress, 

whereas for a prolate bubble, it is opposite. As a result, we see an oblate 

bubble is entrapped while the prolate bubble was mobile in the weak surface 

tension regime (Bo = 100). If the surface tension force is strong enough to 

yield the surrounding material, an oblate bubble may begin to rise. For 

instance, for an oblate bubble of aspect ration 0.5, Bo = 0.1, and Ar = 5, 

surface tension yields the surrounding material to approach a spherical shape 

and the yielding of surrounding material also facilitates the rising motion of 

the bubble. The bubble may get entrapped later when it reaches a nearly 

spherical shape. The critical Plastic number, in this case, is approximately 

0.335. On the other hand, for Bo = 100, the critical Plastic number of an 

oblate bubble with of aspect ratio of 0.5 is approximately 0.215. The weak 

surface tension force (Bo =100) is not able to yield the surrounding material, 

which is the reason for the lower value of the critical Plastic number. The P lc 

lies between 0.335 and 0.215 for an oblate bubble of aspect ratio 0.5 when the 

Bo is varied between 0.1 and 100.

In the case of an initially prolate bubble of aspect ratio 2.0 with Ar = 5, 

Bo = 100, the critical value is P lc ≈ 0.515. If the Bo is changed to 0.1, the 

bubble starts moving initially, but gets entrapped later even for P lc < 0.515. 

The critical Plastic number for permanent movement of the bubble in this 

case (Bo =0.1) is approximately 0.335. Thus we see that the when surface 

tension effect becomes strong (lower Bo), the critical plastic number for a 

prolate bubble decreases while the critical plastic number for an oblate bubble 

increases. We discuss this in more detail in the succeeding part.

A prolate bubble may start rising due to the yielding of the surrounding
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material by the surface tension force or by buoyancy, but may get entrapped 

later because its maximum cross-sectional area normal to the buoyancy force 

increases. The increase of cross-sectional area reduces the effective buoyant 

stress induced on the surrounding, and when this induced stress is lower than 

the yield stress the bubble gets entrapped. Thus, initially prolate bubbles may 

move momentarily or permanently depending on the surface tension force. For 

example, in Figure 15 (a), if P l were equal to 0.35, the bubble would move 

only momentarily and no yielded material would be found around the bubble 

at t̄  = 0.8, while for P l = 0.33 the bubble moves permanently.

On the other hand, in the case of an oblate-shaped bubble, surface tension 

reduces the maximum cross-sectional normal to the direction of buoyancy 

force. The reduction of the cross-sectional area normal to the direction of 

buoyancy force increases the effective buoyant stress, and hence allows the 

bubble to rise. Differently from prolate bubbles, besides being momentarily 

mobile, oblate bubbles may be momentarily static, depending on the surface 

tension force. For high surface tension regime, the initial surface tension 

pulling force is able to form a complete envelope of yielded material. If the 

buoyant stress is sufficient to yield the surrounding material the bubble rises, 

otherwise the bubble gets entrapped. For example, in Figure 15 (b), if P l were 

equal to 0.35, the bubble would move initially, but no yielded material would 

be found around the bubble at t̄  = 0.8. For P l = 0.33, the bubble moves 

permanently. For intermediate surface tension regime, surface tension slowly 

and partially yields the surrounding material. In has been observed that in 

this regime, for oblate bubbles, the upper surface of the bubble gets yielded, 

but some regions on the lower surface of the
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bubble remain unyielded. Thus, the shape of the bubble changes without 

any net movement of the bubble. Eventually, as the bubble cross-sectional 

radius decreases, this momentarily static bubble is set into motion, as seen 

in Figure 15 (c), for Bo = 10, Ar = 10, P l = 0.60, µr = 0.001 and initial 

aspect ratio equal to 0.5. For higher values of P l and/or µr (discussed in 

more detail in the next Sec. 3.3.3), unyielded material can still be found in 

lower surface of the bubble, even for later times, as shown in Figure 15 (d) 

for µr = 10 anf t̄  up to 40.0.

To get a better quantitative understanding, we plot the value of P lc and 

Ygc for different Bo and aspect ratios. First, we try to find the value of P lc 

for the entrapment of a bubble that was initially set in motion by the surface 

tension force. Figure 17 (a) shows the P lc as function of Bo for Ar = 5 and 

10, µr = 0.001, and for a/b = 0.50, 0.75 and 2.00. It is evident in Fig. 17 

(a) that as Bo decreases, the critical Plastic number approaches the value 

of a spherical bubble in the high surface tension regime (for Bo ≤ 5 in our 

simulations). Increasing the Archimedes numbers shifts the P lc vs Bo curve 

upwards. For aspect ratios close to unity, P lc tends to be a constant with 

Bo for the low surface tension regime. For example, for a/b = 0.75, P lc is 

the same for Bo = 25, 50 and 100, while for a/b = 0.50, P lc increases as 

Bo decreases from 100 to 25. Present simulations suggest that, for a non-

spherical bubble, the critical plastic number for bubble entrapment deviates 

from that of the spherical bubbles only if the Bo is high (Bo > 5 in the 

present study). Otherwise, the entrapment condition is approximately the 

same as that of a spherical bubble because of the high dominance of the 

surface tension force which eventually transforms the non-spherical shape
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into a nearly spherical one. In the high Bo regime, the critical plastic number

shows an increasing trend for a prolate bubble with the increase in Bo, while

it shows a decreasing trend for an oblate bubble (Fig. 17 (a)). The reason

for this opposite trend is the contrasting effect of surface tension on prolate

and oblate bubbles in the change of the effective buoyant stress as discussed

above.

The radius of the maximum normal plane of the bubble (normal to buoy-

ancy) at the instant of entrapment is plotted in Fig. 17 (b). It is evident

in Fig. 17 (b) that the curve of the maximum radius (or maximum cross-

sectional area) for different initial aspect ratios converge to a single curve as

the Bond number decreases. For the same initial aspect ratio (a/b = 0.50)

and different Archimedes numbers (Ar = 5 and 10) the curves overlap in the

whole range of Bond number considered here. This indicates that the maxi-

mum radius at the instant of entrapment is not a function of the Archimedes

number; it depends on the initial aspect ratio and Bo. Fig. 17 (c) shows the

variation of Ygc (using Eq. 2 where Rmax is obtained from Fig. 17 (b)) as a

function of Bo. It is evident that the entrapment condition Ygc ≈ 0.20±0.02

(gray area) still holds for the permanent motion of the bubble for the whole

range of Bo considered here. This illustrates that, regardless of the initial

condition (a/b and Bo), the entrapment condition can be well specified by

a constant value of Ygc by properly defining the yield stress parameter Ygc

based on the final shape of the bubble.
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3.3.3. Viscosity ratio effect on the entrapment condition of non-spherical bub-

bles

Viscous dissipation slows down the motion of a bubble from a non-spherical 

shape to a spherical shape. Surface tension tries to bring a de-formed bubble 

to a spherical shape and the increased viscosity of the bubble resists the 

motion. In the high surface regime (Bo � 1), the bubble reaches a spherical 

shape because of the strong dominance of capillary force. This is evident in 

Fig. 18 (a) where the variation is aspect ratio of an oblate bubble is shown at 

different viscosity ratios for Bo = 0.1 and P l = 0.66. Increased viscosity also 

reduces the inertia effect and thus the oscillatory motion of the bubble. The 

final mobility of the bubble depends on the competition between the buoyancy 

and yield stress of the surrounding material.

Increasing the viscosity ratio decreases the maximum velocity of the bub-

ble. This comes as a consequence of the slow shape-change motion of the 

bubble. The viscosity of the yielded regions of the viscoplastic material de-

pends on the strain rate on the yielded region. At a higher strain rate, 

viscosity is low (µ1 = τy/‖γ̇ ‖ + µp). Because of the slow shape-change mo-tion 

of the bubble at a higher viscosity ratio, the strain rate on the yielded region is 

low resulting in a higher viscosity of the yielded material. This subsequently 

decreases the rising velocity of the bubble at a higher viscosity ratio as evident 

in Fig 18 (b). All bubble in Fig. 18 (a) and (b) are only momentarily mobile. 

As the figures show, for the range of viscosity ratio studied and for Bo � 1, 

increasing the viscosity ratio decrease the motion duration of momentarily 

mobile bubbles due to the higher viscosity of the viscoplastic surrounding 

material.
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With the increase in Bo, the effect of the viscosity ratio becomes signif-

icant. In the low viscosity regime, the bubble reaches a spherical shape by 

yielding the surrounding material around it. At a higher viscosity ratio, the 

bubble can yield the surrounding material but slowly. As a result, a yielded 

envelope is not observed around the bubble. The region on the lower sur-face 

of the bubble remains unyielded and thus resists the rising motion of the 

bubble as evident in Fig. 15 (c) and (d) for Bo = 10, P l = 0.60 and µr = 0.001 

and 10, respectively. In the former, the bubble is momentarily entrapped, 

while in the latter the bubble is permanently entrapped.

Finally, we evaluate the critical plastic number and critical yield-stress 

parameter for the entrapment of a bubble at different viscosity ratios. The 

results are shown in Figs. 19 (a) and (b), respectively, for µr varying from 

0.001 to 1. It is evident in Fig. 19 that neither the critical plastic number nor 

the yield-stress parameter change with the change in viscosity ratio. For µr = 

10, the value of P lc decreases in the intermediate Bond number regime. This is 

due to the increased resistance force of the bubble viscosity to shape change. 

For example, for Bo = 10 and µr = 0.001, P lc ≈ 0.615, while for µr = 10, P lc ≈ 

0.52. However, the values of Rmax for bubble mobility does not vary with µr. 

Hence, increasing the viscosity ratio decreases Ygc for µr & 10. We may infer an 

opposite behaviour for prolate shaped bubble since viscosity ratio resists Rmax 

increase. Edson ans Jean-Lou: I need more time to finish the simulations to 

determine P lc for µr = 10 that I started last week, and thus, finish this last 

paragraph. These simulations should be finished while you two read the 

revised manuscript.
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4. Concluding remarks

We have investigated the entrapment condition of initially spherical and 

non-spherical bubbles in a Bingham material. The entrapment condition can 

be expressed by a approximate value of the yield stress parameter Ygc for both 

spherical and non-spherical bubbles in low viscosity ratio regimes given as Ygc 

≈ 0.20 ± 0.02.

For a spherical bubble, the entrapment condition is independent of the 

Bond number, for the whole range of Bo studied (0.1 to 1000), and the 

viscosity ratio for µr up to about 50. For µr & 50, Ygc decreases with µr, until 

reaches the asymptotic values of 0.143 for solid particles at µr ≈ 200.

For initially non-spherical bubbles, the surface tension force plays an im-

portant role in the final entrapment condition in the intermediate surface 

tension regime (5 ≤ Bo ≤ 50). In the low surface tension regime, surface 

tension force does not play any role in the final entrapment condition of a non-

spherical bubble. Here, the critical plastic number for entrapment in-creases 

as the shape changes from a prolate to an oblate shape because of the change 

in the effective area on which the force exerted by the yield stress acts. 

However, by defining the yield stress parameter, Ygc, based on the radius of 

the maximum cross-sectional area of the bubble (normal to buoyancy), we 

observe an approximately constant value of Ygc. In the high surface ten-sion 

regime, surface tension force completely yields the surrounding material 

around the bubble, making a non-spherical bubble rises while returning to a 

spherical shape, with the same entrapment criteria as that of a spherical 

bubble. In the intermediate regime, surface tension can yield the surround-ing 

material to reduce the deformation of the bubble and start its the rising
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motion. However, the surface tension effect is not strong enough to convert 

the shape of the bubble into an exactly spherical one. Therefore, the bub-ble 

remains in a deformed stage. In this regime, the prolate-shaped bubbles have a 

slightly higher critical plastic number than the spherical bubbles, and may set 

into motion permanently or momentarily, depending on the balance between 

surface tension and yield stress. On the other hand, oblate-shaped bubbles 

have a slightly lower critical plastic number than the spherical bub-bles, and 

may be permanently or momentarily static, also depending on the balance 

between surface tension and yield stress.

(This last paragraph of the conclusion should change when I finish the last 

simulations). By appropriately defining the yield stress parameter based on 

the radius of the final maximum cross-sectional area of the bubble (normal to 

buoyancy), the entrapment criteria can be expressed as a constant value of the 

yield stress parameter given as Ygc = 0.20±0.02. Present investigation reveals 

that viscosity ratio (µr . 10) does not change the value of critical yield-stress 

parameter Ygc for bubble entrapment. However, since the bubble viscosity 

resists deformation, the critical Plastic number is reduced with viscosity ratio 

increase for oblate bubbles in intermediate values of the Bond number. We 

may infer an opposite behaviour for prolate bubbles.
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Figure 1: A representative diagram of the computational domain. A square domain of

side length H = 25D is considered to perform the numerical simulations, where D is

the diameter of the bubble. The axisymmetric simulations are performed in a cylindrical

coordinate system (r, z) where r and z are the axial and radial coordinates respectively.

Gravity acts in the negative z-direction and, the bubble center is initially located at a

height of 5D from the lower boundary. The surrounding is a viscoplastic fluid (fluid 1)

and the bubble is a Newtonian fluid (fluid 2) of the bubble.
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(a) t̄ = 0.00 (b) t̄ = 10.00

Figure 2: A view of the mesh at time t̄ = 0.00 (a) and t̄ = 10.00 (b), for Ar = 33.33,

Bo = 200.00, and Pl = 0.83, with maximum level 12 and minimum level 4.
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Figure 3: Dimensionless velocity, ū, of the center of mass versus dimensionless time, t̄,

for different mesh refinement levels. The minimum refinement level in all cases is 4 while

the maximum refinement level is changed from 9 to 13. The simulations are performed

considering the harmonic mean of viscosity and one case considering the arithmetic mean

of viscosity (dashed line) is also shown for comparison. The dimensionless parameters are

Ar = 33.33, Bo = 200.00, and Pl = 0.83.
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(a) N = 1e3 (b) N = 1e4 (c) N = 1e5 (d) N = 1e6

Figure 4: Snapshots of the yield (white)/unyielded (black) regions around the bubble along

with bubble interface. The simulation results are shown for N = (a) 103, (b) 104, (c) 105

and (d) 106 at t̄ = 10.00. The dimensionless parameters are Ar = 33.33, Bo = 200.00,

and Pl = 0.83.
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Figure 5: Dimensionless velocity ū of the center of mass versus dimensionless time t̄ for

N = 103, 104, 105, 106 and 107, for Ar = 33.33, Bo = 200.00, and Pl = 0.83.
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Figure 6: Comparison of dimensionless terminal velocity ūo obtained from present simula-

tions with the experimental results of Wegener et al. (2010) for Newtonian bubbles rising

in a Newtonian matrix.
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Figure 7: Comparison of present simulation result (right half) with the steady state result

of Dimakopoulos et al. (2013) using the ALM (left half). The simulations are performed

using N = 106 and at maximum refinement level 12.

(a) t̄ = 0.00 (b) t̄ = 2.00 (c) t̄ = 4.00 (d) t̄ = 6.00 (e) t̄ = 8.00 (f) t̄ = 10.00

Figure 8: The interface of the bubble and the yielded(white)/unyielded(black) regions for

Ar = 33.33, Bo = 200.00, and Pl = 0.83 at different time instants.
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(a) Pl = 0.25;Yg = 0.150 (b) Pl = 0.32;Yg = 0.192 (c) Pl = 0.33;Yg = 0.198 (d) Pl = 0.34;Yg = 0.204

Figure 9: The yielded (white) and unyielded (black) regions around a bubble at t̄ = 0.20 for

different values of Pl. The bubble interface is shown in red color. The other dimensionless

parameters are Ar = 7.5, Bo = 0.01 and µr = 0.001.

41



 0.01

 0.05

 0.1

 0.5

 1

 0.1  0.5  1  5  10  15

P
la

st
ic

 n
u
m

b
er

, 
P

l

Archimedes number, Ar

Mobile
Entrapped

Ygc = 3Pl / Ar = 0.195

Figure 10: The entrapped and mobile regimes are shown as a function of Pl and Ar for

initially spherical bubbles, with Bo = 1.00 and µr = 0.001. The red and green squares

represent the entrapped and mobile regions, respectively. The boundary between the two

regimes can be represented by a linear relation Ygc = 3Plc/Ar = 0.195 shown by the

dashed line.
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Figure 11: The variation of Ygc with the variation of Ar for Bo = 1 and µr = 0.001 (black 

circles). Several values of Ygc reported in different literature is also plotted for a comparison.
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Figure 12: The variation Ygc is plotted with the variation of Bo. Two sets of simulation

results are shown (Ar = 1 and 5) along with the results of Tsamopoulos et al. (2008)

(Ar ≈ 2.24) and Dimakopoulos et al. (2013) (Ar ≈ 2.37).
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Figure 13: The critial yield stress parameter Ygc is plotted with the variation of µr. Three

sets of simulation results are shown (Ar = 1, 5 and 10) along with the result of Beris et al.

(1985) for solid particles (µr → ∞). Bo = 1 in all the simulations. Edson and Jean-Lou: 45
The simulations did not converge until µr = 200 for Ar = 5 and 1. Thus, what figure do

you think we should keep, the upper ou lower figure?
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Figure 14: The variation of Ygc with the variation of initial aspect ratio (a/b) of the

bubble calculated by Eq. 2 (green line with squares) and Eq. 1 (blue line with circles).

The dimensionless parameters are Ar = 5 and Bo = 100.
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(a)

t̄ = 0.0 t̄ = 0.2 t̄ = 0.4 t̄ = 0.6 t̄ = 0.8

(b)

t̄ = 0.0 t̄ = 0.2 t̄ = 0.4 t̄ = 0.6 t̄ = 0.8
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(c)

t̄ = 0.0 t̄ = 1.0 t̄ = 5.0 t̄ = 15.0 t̄ = 25.0

(d)

t̄ = 0.0 t̄ = 10.0 t̄ = 20.0 t̄ = 30.0 t̄ = 40.0

Figure 15: Snapshots of the bubble interface (in red) and yielded (white)/unyielded (black) 

regions at different times for non-spherical bubbles. Initial aspect ratio of (a) 2.0 and (b) 0.5, 

Ar = 5, P l = 0.33, Bo = 1, and µr = 0.001. Same results in (c) and (d) for initial aspect ratio 

of 0.5, Ar = 10, P l = 0.60, Bo = 10, and µr = 0.001 and 10, respectively.
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Figure 16: (a)Temporal variation of the aspect ratio of a bubble for different initial shapes

and Bond numbers. (b)Temporal variation of the dimensionless rising velocity of a bubble

for different initial shapes and Bond numbers. Other dimensionless parameters are Ar =

5 and Pl = 0.33.
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Figure 17: (a) The variation of critical Plastic number with the change Bond number.

(b) The radius of the maximum cross-sectional area of the bubble (Rmax/D) normal

to the direction of buoyancy force is plotted for different Bond numbers at the time of

entrapment. (c) The variation of the yield stress parameter Ygc (calculated using Eq. (2)

with the variation of Bond number Bo. In Eq. (2), Rmax taken at the time of entrapment

as shown in Fig. 17b. The data for two values of Ar (5 and 10), µr = 0.001, and different

initial shapes (a/b = 0.50, 0.75 and 2.00) are plotted together.
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Figure 18: Temporal variation of the (a) aspect ratio and (b) dimensionless rising velocity

of a bubble for different viscosity ratios. The dimensionless parameters are Ar = 10, a/b =

0.5, Bo =0.1 and Pl = 0.66.
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Figure 19: Viscosity ratio effect on the (a) variation of critical Plastic number with the 53
change Bond number and (b) variation of the yield stress parameter Ygc (calculated using

Eq. (2) with the variation of Bond number Bo. The dimensionless parameters are Ar =

10, a/b = 0.50, and µr = 0.001, 0.01, 0.1, and 1. (These figures may change too)




