SUPPLEMENTAL MATERIAL

to

Combustion Kinetics of Alternative Jet Fuels, Part-I: Experimental Flow Reactor Study

Patrick Oßwald¹, Julia Zinsmeister¹, Trupti Kathrotia¹, Maira Alves-Fortunato², Victor Burger³, Rina van der Westhuizen³, Carl Viljoen³, Kalle Lehto⁴, Reetu Sallinen⁴, Kati Sandberg⁴, Manfred Aigner¹, Patrick Le Clercq¹, Markus Köhler¹

¹ Institute of Combustion Technology, German Aerospace Center (DLR), 70569 Stuttgart, Germany
² IFP Energies Nouvelles (IFPEN), 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, Cedex, France
³ Sasol Energy, 1 Klasie Havenga Road, Sasolburg 1947, South Africa
⁴ Neste Corporation, Keilaranta 21, 02150 Espoo, Finland

Table of Content

Table of Content.. 1
1 Inlet Flow conditions 2
2 Fuel Composition and Decay 3
1 Inlet Flow conditions

In Table S1 the inlet flow conditions for the individual measurements at fuel-rich ($\Phi=1.2$) and fuel-lean ($\Phi=0.8$) conditions are shown. Stoichiometry Φ is calculated from the NMR (ASTM-D7171) results for Hydrogen content. Heteroatoms are neglected.

Table S1: Inlet Flow conditions for the individual measurements.

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Ar [g/min]</th>
<th>Fuel [mg/min]</th>
<th>O_2 (Fuel-rich) [mg/min]</th>
<th>O_2 (Fuel-lean) [mg/min]</th>
<th>Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECLIF Ref 1</td>
<td>17.64</td>
<td>31.1</td>
<td>88.1</td>
<td>1.19</td>
<td>132.1</td>
</tr>
<tr>
<td>ECLIF Ref 2</td>
<td>17.64</td>
<td>31.1</td>
<td>88.1</td>
<td>1.20</td>
<td>132.1</td>
</tr>
<tr>
<td>ECLIF SSJF 1</td>
<td>17.64</td>
<td>31.4</td>
<td>89.7</td>
<td>1.20</td>
<td>134.5</td>
</tr>
<tr>
<td>ECLIF SSJF 2</td>
<td>17.64</td>
<td>31.4</td>
<td>89.9</td>
<td>1.20</td>
<td>134.8</td>
</tr>
<tr>
<td>ECLIF SSJF 3</td>
<td>17.64</td>
<td>31.2</td>
<td>88.5</td>
<td>1.20</td>
<td>132.8</td>
</tr>
<tr>
<td>ECLIF FSJF</td>
<td>17.64</td>
<td>31.3</td>
<td>88.9</td>
<td>1.20</td>
<td>133.4</td>
</tr>
<tr>
<td>SASOL IPK</td>
<td>17.64</td>
<td>31.67</td>
<td>91.77</td>
<td>1.20</td>
<td>137.65</td>
</tr>
<tr>
<td>SASOL IPK-A</td>
<td>17.64</td>
<td>31.3</td>
<td>89.2</td>
<td>1.20</td>
<td>133.8</td>
</tr>
<tr>
<td>SASOL Heavy Naphtha #1</td>
<td>17.64</td>
<td>31.5</td>
<td>90.4</td>
<td>1.20</td>
<td>135.6</td>
</tr>
<tr>
<td>SASOL Heavy Naphtha #2</td>
<td>17.64</td>
<td>30.7</td>
<td>84.94</td>
<td>1.20</td>
<td>127.4</td>
</tr>
<tr>
<td>SASOL Light Distillate #1</td>
<td>17.64</td>
<td>31.1</td>
<td>88.6</td>
<td>1.19</td>
<td>132.9</td>
</tr>
<tr>
<td>SASOL Light Distillate #2</td>
<td>17.64</td>
<td>30.78</td>
<td>85.83</td>
<td>1.20</td>
<td>128.74</td>
</tr>
<tr>
<td>ECLIF2/ND-MAX Ref 3</td>
<td>17.64</td>
<td>31.02</td>
<td>87.5</td>
<td>1.20</td>
<td>131.2</td>
</tr>
<tr>
<td>ECLIF2/ND-MAX Ref 4</td>
<td>17.64</td>
<td>31.19</td>
<td>88.6</td>
<td>1.20</td>
<td>132.9</td>
</tr>
<tr>
<td>ECLIF2/ND-MAX SAJF 1</td>
<td>17.64</td>
<td>31.3</td>
<td>89.3</td>
<td>1.20</td>
<td>133.9</td>
</tr>
<tr>
<td>ECLIF2/ND-MAX SAJF 2</td>
<td>17.64</td>
<td>31.34</td>
<td>89.6</td>
<td>1.20</td>
<td>134.4</td>
</tr>
<tr>
<td>ECLIF2/ND-MAX SAJF 3</td>
<td>17.64</td>
<td>31.17</td>
<td>88.4</td>
<td>1.20</td>
<td>132.6</td>
</tr>
<tr>
<td>ECLIF2/ND-MAX HEFA (JS-B2)</td>
<td>17.64</td>
<td>31.66</td>
<td>91.7</td>
<td>1.20</td>
<td>137.5</td>
</tr>
<tr>
<td>airegEM Ref</td>
<td>17.64</td>
<td>31.2</td>
<td>88.6</td>
<td>1.20</td>
<td>132.9</td>
</tr>
<tr>
<td>airegEM ReadiJet™ (JS-B3)</td>
<td>17.64</td>
<td>31.1</td>
<td>87.7</td>
<td>1.20</td>
<td>131.5</td>
</tr>
<tr>
<td>airegEM ATJ (JS-B1)</td>
<td>17.64</td>
<td>31.7</td>
<td>92.1</td>
<td>1.19</td>
<td>138.2</td>
</tr>
<tr>
<td>ATJ-SKA</td>
<td>17.64</td>
<td>31.5</td>
<td>90.4</td>
<td>1.20</td>
<td>135.7</td>
</tr>
<tr>
<td>SIP (Farnesane)</td>
<td>17.64</td>
<td>31.6</td>
<td>91.2</td>
<td>1.20</td>
<td>136.8</td>
</tr>
<tr>
<td>FT-Light</td>
<td>17.64</td>
<td>31.7</td>
<td>92.0</td>
<td>1.19</td>
<td>138.0</td>
</tr>
<tr>
<td>DEMO-SPK Ref A/C</td>
<td>17.64</td>
<td>31.08</td>
<td>87.8</td>
<td>1.20</td>
<td>131.7</td>
</tr>
<tr>
<td>DEMO-SPK Ref Lab</td>
<td>17.64</td>
<td>31.13</td>
<td>88.1</td>
<td>1.20</td>
<td>132.2</td>
</tr>
<tr>
<td>DEMO-SPK MB A/C</td>
<td>17.64</td>
<td>31.27</td>
<td>89.1</td>
<td>1.20</td>
<td>133.6</td>
</tr>
<tr>
<td>DEMO-SPK MB SIP</td>
<td>17.64</td>
<td>31.2</td>
<td>88.7</td>
<td>1.20</td>
<td>133.0</td>
</tr>
<tr>
<td>JETSCREEN JS-A1</td>
<td>17.64</td>
<td>31.16</td>
<td>88.4</td>
<td>1.20</td>
<td>132.6</td>
</tr>
<tr>
<td>JETSCREEN JS-A1.3</td>
<td>17.64</td>
<td>31.31</td>
<td>89.4</td>
<td>1.20</td>
<td>134.0</td>
</tr>
<tr>
<td>JETSCREEN JS-B1</td>
<td>17.64</td>
<td>31.62</td>
<td>91.4</td>
<td>1.20</td>
<td>137.1</td>
</tr>
<tr>
<td>JETSCREEN JS-C1</td>
<td>17.64</td>
<td>30.69</td>
<td>85.2</td>
<td>1.20</td>
<td>127.9</td>
</tr>
<tr>
<td>JETSCREEN JS-C3</td>
<td>7.64</td>
<td>31.0</td>
<td>87.6</td>
<td>1.20</td>
<td>131.3</td>
</tr>
<tr>
<td>NJFCP A1 (JP-8: POSF 10264)</td>
<td>17.64</td>
<td>31.3</td>
<td>89.2</td>
<td>1.20</td>
<td>133.8</td>
</tr>
<tr>
<td>NJFCP A2 (Jet A: POSF 10325)</td>
<td>17.64</td>
<td>31.1</td>
<td>88.1</td>
<td>1.20</td>
<td>132.1</td>
</tr>
<tr>
<td>NJFCP A3 (JP 5: POSF 10289)</td>
<td>17.64</td>
<td>31.0</td>
<td>87.3</td>
<td>1.20</td>
<td>130.9</td>
</tr>
<tr>
<td>ACCESS2 Reference</td>
<td>17.64</td>
<td>31.1</td>
<td>87.9</td>
<td>1.20</td>
<td>131.8</td>
</tr>
<tr>
<td>ACCESS2 HEFA Blend (50:50)</td>
<td>17.64</td>
<td>31.4</td>
<td>90.0</td>
<td>1.19</td>
<td>135.0</td>
</tr>
</tbody>
</table>
2 Fuel Composition and Decay

The detailed chemical composition as well as the fuel decay at fuel-lean ($\Phi=0.8$) conditions is shown on the next pages for one fuel per page. Use Table S2 and following description for identification of chemical classes.

Table S2: Definition of hydrocarbon classes

<table>
<thead>
<tr>
<th>Formula</th>
<th>Hydrocarbon classes</th>
<th>IHD</th>
<th>(\text{W}_{\text{H}})-range [mass-%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(n)H({2n+2})</td>
<td>n-Paraffins and iso-Paraffins</td>
<td>0</td>
<td>14.5-18.0</td>
</tr>
<tr>
<td>C(n)H({2n})</td>
<td>Mono-cyclic Paraffins (or Olefins)</td>
<td>1</td>
<td>14.0-15.0</td>
</tr>
<tr>
<td>C(n)H({2n-2})</td>
<td>Bicyclic Paraffins</td>
<td>2</td>
<td>12.5-14.0</td>
</tr>
<tr>
<td>C(n)H({2n-4})</td>
<td>Tricyclic Paraffins</td>
<td>3</td>
<td>11.5-13.0</td>
</tr>
<tr>
<td>C(n)H({2n-6})</td>
<td>Mono-cyclic Aromatics</td>
<td>4</td>
<td>7.5-12.5</td>
</tr>
<tr>
<td>C(n)H({2n-8})</td>
<td>Naphthenic-mono-Aromatics</td>
<td>5</td>
<td>8.5-12.0</td>
</tr>
<tr>
<td>C(n)H({2n-10})</td>
<td>Naphthenic-mono-Aromatics</td>
<td>6</td>
<td>7.5-11.0</td>
</tr>
<tr>
<td>C(n)H({2n-12})</td>
<td>Bicyclic Aromatics</td>
<td>7</td>
<td>6.0-11.5</td>
</tr>
</tbody>
</table>

Fuel Composition

The bar chart in the top left-hand corner of the page shows the detailed chemical fuel composition. Herein, each bar series show an individual hydrocarbon class (n-/iso-paraffins, mono-/bi-/tri-cyclic paraffins, mono-/bi-cyclic- and naphthenic-aromatics) with associated Index of Hydrogen Deficiency (IHD). Each HC-class is broken down to the number of carbon atoms in the molecule (z-axis: #C). Note, there is a differentiation between n- and iso-paraffins (first HC-class, IHD=0) shown as thinner (total paraffins) and thicker (n-paraffins) bars. The mass fractions (y-axis: \(y_i\)) of species i are plotted against their hydrogen content (x-axis: \(w_H\)). The color scale bar is used for better readability of the lower mass fraction values. The red lines reflect the average C-number and hydrogen content of the fuel.

Fuel Decay

The diagram in the top right-hand corner shows the mole fraction of the individual hydrocarbons within their HC-class at non-reactive inlet conditions. (Note, C\(_4\)H\(_{2n-4}\) and C\(_8\)H\(_{2n-10}\) are not shown.). The six figures below show in each case the fuel decay of a HC-class separated by the individual number of C-atoms at fuel-lean ($\Phi=0.8$) conditions.
SASOL Heavy Naphtha #2
ECLIF2/ND-MAX SAJF 2
airegEM ReadiJet™ (JS-B3)
DEMO-SPK Ref A/C

n/a
Neste HFP HEFA Blend 1

\[\frac{x}{x_{\text{max}}} \]

\[T/K \]

\[C_8, C_9, C_{10}, C_{11}, C_{12}, C_{13}, C_{14}, C_{15} \]

\[\phi = 0.8 \]

\[C_{n=2}, C_{n=3}, C_{n=4}, C_{n=8}, C_{n=12} \]

\[n/\text{a} \]