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Comparisons of Molecular Structures Generation
Methods Based on Fragments Assemblies and

Genetic Graphs.

Philippe Gantzer, Benoit Creton*, Carlos Nieto-Draghi

IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.

Abstract: The use of Quantitative Structure-Property Relationships (QSPR) helps in predicting
molecular properties since now several decades, whilst the automatic design of new molecular
structures is still emerging. The choice of algorithms to generate molecules is not obvious and is
related to several factors such as desired chemical diversity (according to an initial dataset’s
content) and level of construction (the use of atoms, fragments, patterns-based methods). In this
paper, we address the problem of molecular structure generation by revisiting two approaches:
Fragments-based Methods (FM) and Genetic-based Methods (GM). We define a set of indices to
compare generation methods on a specific task. New indices inform about the explored data
space (coverage), compare how the data space is explored (representativeness) and quantifies the
ratio of molecules satisfying requirements (generation specificity), without the use of a database
composed of real chemicals as a reference. Those indices were employed to compare generations

of molecules fulfilling a desired property criterion, evaluated by QSPR.



Introduction

R&D works in chemistry continuously contribute to the discovery of pathways for the
production of new molecules. These molecules are then characterized by means of experimental
analysis and calculations; new data are daily generated, supplementing chemistry databases.
Databases store that information, i.e. the chemicals’ names, structures, characteristics,
properties... Not fewer than 60 databases are publicly available according to Apodaca!. Databases
vary according to the molecules and the information they gather.? Considering these latter
elements, identifying a compound satisfying a set of specific constraints becomes difficult due to
the choice of databases, to their size, to the different kinds of data available and because of
databases’ different ways to store the information.

The field of Chemoinformatics focuses on processing and using the chemical information in a
smart way to resolve chemical problems. Assuming that molecules with similar structures possess
similar properties, it is possible to statistically correlate structures with properties; the so-obtained
relations are called Quantitative Structure-Property Relationships (QSPR) or Quantitative
Structure-Activity Relationships (QSAR)>. Hereafter, the acronym QSPR will also gather QSAR
and equivalents. QSPR modeling is now widely used in the industry*® as it represents fast and
accurate alternatives to estimate property values as compared to other predictive tools such as
equations of state or molecular simulations®’. QSPR can be combined to a virtual screening
procedure to highlight promising candidates for a given application within a database. This two-
step method consists in estimating property values for each database’s component and then
filtering them according to property constraints. Such virtual screening is both restricted to the

database content and to the QSPR model’s boundaries.



There is still a considerable number of molecular structures unknown or not yet referenced
within databases. The theoretical number of possible structures by assembling up to thirty atoms
of carbon, azote, oxygen, or sulfur was estimated higher than 10°° by Bohacek et al.® That is,
unknown but promising molecules cannot be considered during a virtual screening. Molecules’
generation algorithms are one of the new pathways to help the virtual synthesis of new
molecules, and both undirected and directed methodologies were developed for this purpose.
Directed methodologies generate structures without targeting specific property values. For
instance, it is possible to enumerate all the possible structures within a maximal number of heavy

atoms — other than hydrogen’. Less exhaustive generation methods were also set: structures were
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built by assembling atoms'’ or specific fragments'!2, and could be based on chemical
reactivity'®. Such methods tend to generate many useless structures since property values are not
considered.

Directed methodologies rely on the initial compounds set to guide generations toward desired
property values. The inversion of QSPR models, labeled i-QSPR hereafter, represents an
emerging technique for directed generations'. Within i-QSPR, QSPR models are both used to
predict new structures’ property values and to highlight structural features relevant for molecules
to possess a given specific property value. The spotted structural features, such as descriptor
values or ranges to reach, can be used as constraints for the generation process'>. Generation
methods derived from Evolutionary Algorithms (EA) are also considered as directed
methodologies. Genetic Algorithms (GA) are EA which modify at each iteration the so-called
parents molecules to create children molecules'®'®. Molecules are defined by a fixed number of
constituents — i.e. fragments'®, peptides!’, ligands'®. Only the presence and the location of

constituents are modified but not their structure. This restriction limits GA-based i-QSPR to

structures for which the number of constituents per structure, the available constituents, and so



the number of constituents’ combinations are a priori known. When molecules cannot be defined
by a fixed number of constituents, the genetic graph (GG)!° and similar EA approaches are
employed. GG works on structures at the atomic level: each molecule is considered as a graph,
consisted of vertices (atoms) and edges (bonds). Crossover and mutation operators are applied to
graphs and sub-elements. Constituents themselves can be modified and crossovers between
structures can be performed. Globus et al. defined GG and showed its efficiency by optimizing a
set of molecular structures until obtaining defined targeted structures by a succession of
crossovers!’. Lameijer et al. implemented a crossover operator and nine mutations based
operators?’. Chu and He developed the MoleGear software in which structures were first
generated by assembling fragments and then evolved by crossovers, mutations and further
fragments additions®!. Finally, Deep-Learning (DL) techniques initially used for text or image
recognition and generation were adapted to molecule generations by text strings or branched
trees!#?22% Nevertheless, directed methods can miss some solutions due to the bias provided by
the pool of reference structures. The choice between undirected and directed methodologies to
generate structures, or even the choice of the generation algorithm itself is not obvious and raises
the need of tools to compare generation abilities.

Although a series of indices have been developed and widely used to compare performances of
QSPR based models, the comparison of several structures’ generation methods or i-QSPR
methods is not obvious. Several tools are available to compare molecules between them or with
respect to a target. On one hand, the similarity between two structures is computable by metrics
reviewed by Nikolova et al.?® and Maldonado et al.?’, such as the Tanimoto distance which
quantifies molecules’ chemical features closeness. Such tools are useful for searching for similar
compounds which can exhibit similar property values within a database. On the other hand,

distributions of properties and descriptors values within molecular structures sets can be



evaluated. This method is preferable to compare databases diversity. For instance, Feher and
Schmidt used this approach to compare known drugs, natural molecules, and structures issued
from combinatorial chemistry?®. Brown et al. used both distribution comparisons and structure
similarity analyses to evaluate the efficiency of several published generation algorithms
implemented in the GuacaMol software?®. Authors relied on the facts that generated molecules’
property distributions should follow distributions within the reference database. To the author’s
knowledge, no tool is currently available to compare molecular generation methods without a
reference database of existing compounds.

In this work, we report a new method to compare generation algorithms abilities. The
exploration of the available chemical space (denoted Applicability Domain, AD) is evaluated
with AD coverage, coverage unicity and representativeness indices; whilst the ability to generate
molecules with specified properties values is assessed by the generation specificity index. This
method is used to compare two existing molecular generation approaches, implemented and
improved, based on fragment assemblies and Genetic Graphs. Additionally, molecular generation
methods with and without constraints on property values were considered. So obtained methods
were compared by means of new indices, for a study case: the Flash Point (FP) of hydrocarbons
and oxygenated compounds. The article is organized as follows: the following section presents
QSPR and i-QSPR methods, and details new indices/metrics. The subsequent section deals with
the application of QSPR and i-QSPR methods to a database containing molecules with known

experimental FP values. The article ends with conclusions and perspectives for this work.
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Figure 1: Molecular generation workflow as considered in this work.

The complete workflow for this work is represented in Figure 1 and can be described as
follows: we start with an initial set of molecular structures for which experimental property
values are known. QSPR are developed and applied to identify relevant molecular features and to
predict new molecule’s property values. Two algorithms are implemented and improved for
molecular generation: fragments assemblies (FM, Fragment-based Methods) and successive
modification of structures (GM, Genetic-based Methods). Finally, new generation methods are
compared by means of new indices/metrics derived from the applicability domain coverage and

representativeness.

QSPR Models
To evaluate new molecular structure relevancy for a given application, it is necessary to have

accurate methods to estimate property values. We hereafter briefly describe the methodology



followed to develop QSPR models, more details can be found in reviews dealing with this
topics®’. The development of such models can be summarized in a 3-step procedure: (i)
collecting molecular structures and their associated property values, (ii) extracting structural
molecular features by means of predefined descriptors, and (iii) deriving structure-property
relationships by means of machine learning (ML) techniques.

The Simplified Molecular Input Line Entry Specification (SMILES)*® language was used to
encode molecular structures to text strings®'. A canonical SMILES format was preferred to have a
unique string for each chemical structure®?. Canonical SMILES were generated using the RDKit
Python library?3.

In Silico design and Data Analysis (ISIDA) descriptors were considered to encode molecular

3435 are a series of topological fragments descriptors based on 2D

features. ISIDA descriptors
Lewis graphs leading to models with good performances as shown in our previous work on
surfactants properties modelling.*® In this work, we considered all the ISIDA descriptors
encoding fragments between one and four atoms resulting in 101 ISIDA descriptor spaces,
corresponding to descriptors sets encoding fragments of different topologies and sizes.

The Support Vector Regression (SVR)?’ as implemented within the LibSVM library*® was
employed, with both linear and radial basis function kernels, and with an epsilon insensitive
zone®®. This method has three parameters for which the value needs to be optimized: cost,
epsilon, and gamma. In the literature, parameter values to test are usually issued from random
values combinations, from grid searches where each combination of parameters is tested or from
optimization algorithms where the minimum number of parameters combinations is tested*.
Here, the Sequential Quadratic Approximation (SQA)*' method implemented in our in-house
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program™ was used to optimize SVR parameter values. SQA method uses quadratic models to

interpolate function surfaces without derivatives. After performing iteratively quadratic



approximations in the surrounding of several points, the function surface is estimated, and its
minima are located. The procedure can lead to local minima; therefore, according to our
experience the use of six starting points was sufficient to increase probabilities to reach the global
minimum. Ranges of explored SVR parameters values during optimizations were in between 0.01
and 5000 for the cost values, and in between 0.0002 and 100 for both epsilon and gamma values.
Optimized SVR parameters were obtained by means of an n-fold cross validation (n-CV)
process®’. n-CV randomly splits the initial dataset into n folds and uses alternatively n-1 folds
(Training set) to train models and the remaining fold (Test set) to test performances of models.
The Root Mean Standard Deviation (RMSD) and the coefficient of determination (R?) indices
were computed to measure models’ performances. The final model was rebuilt with the best set
of parameters, trained on all reference data**. This final model was then used to predict new

compounds properties.

Applicability Domain

One important point before any application of a QSPR model is to define its Applicability
Domain (AD)*, i.e. the chemical space where predictions are considered as reliable. Numerous
techniques were proposed for this purpose and compared in the literature®*¢. Quantitative
methods quantify the similarity between new molecules and training dataset molecules, for
instance according to distance-based metrics. Such metrics can be restrictive, especially in the
case where the training dataset is poor. In this work, we preferred qualitative methods which are
less sensitive, even if the efficiency of QSPR cannot be quantified. We first checked AD
fulfillment by performing a fragment control assessment. All possible ISIDA descriptors
belonging to the modeling descriptor space were computed for new molecules. By this approach

we ensured that fragments — descriptors — unknown from the initial molecules were not present



within new molecules. Structures with such fragments were rejected since the potential impact of
new fragments on property values is unknown>**_ Then, we checked whether new molecules lied
in the AD of QSPR models by a bounding box method*’. The bounding box method first extracts
from the initial dataset all descriptors’ ranges of observed values and then checks that new
molecules descriptor values belong to each of the associated descriptor range. The bounding box
method was applied with the fragment descriptors used to model the property and the species —

carbon, oxygen — within initial molecule.

Representation of the chemical space

A Principal Component Analysis (PCA)*” was also performed on the initial data — molecules
used to train the QSPR model, encoded by ISIDA descriptors with values Z-score normalized.
The PCA simplified the ISIDA descriptors space dimension to principal components (PCs), each
one standing in weighted linear combinations of descriptors. The first three principal components
obtained an explained variance ratio of 0.37 and were used to approximate the chemical space as
a 3D space. The initial molecules were then plotted in that space. We graphically approximated
the initial chemical space by encompassing data points with a convex hull®’. Since we aimed to
increase small-to-medium database content by generating new structures, we requested to explore
not only this initial chemical space, defined by the set of descriptors’ combinations issued from
the initial molecules, but all the possible descriptors’ combinations. To ensure all possible
generated molecule projection into the graphical chemical space, we increased each of the three
axe’s limit to define a parallelepiped rectangle as the new extended chemical space labeled C. In
our study, the parallelepipedic rectangle coordinates were set to be at a distance between 8 and 10

from the initial convex hull. Such coordinates allowed to project every new molecule, generated

further, into that space. Note that AD fulfillment was still checked for new molecules by



fragment control assessment and by the bounding box method. Figure 2 represents the space C,
with the limits of the extended chemical space C drawn in green, as well as with the initial

molecules projected on it in grey, and the limits of the initial convex hull drawn in violet.
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Figure 2: Representation of the space formed by the first three principal components of the PCA,
with projected initial data points (grey dots), the initial chemical space (purple convex hull) and

the extended chemical space C (green parallelepiped rectangle).

Molecules generation by fragment assemblies

The combination of fragments is a rather simple way to implement an approach to generate
molecules and has already been used in the literature!! . In addition, this method can be applied
to a wide variety of datasets by selecting a set of fragments related to the initial molecules. We
desired to avoid restricting the problem by choosing manually fragments®®, by defining their
connectivity, or by setting equations*>*°. We used then Nilakantan et al.>! methodology as a basis
for our method. In Nilakantan et al’s work®!, molecules were constructed by assembling
fragments until reaching a molecular size limit set randomly for each structure within a

predefined interval. Fragments were linked together by removing hydrogen atoms and by creating



a chemical bond between fragments. Fragments’ selection was weighted according to their
occurrence ratio in the initial dataset.

In this study, each new molecular structure was initiated with a seed consisting of a simple
carbon atom. Then, the seed was iteratively grown by randomly selecting and connecting new
fragments. Each unsaturated atom was considered as a potential attachment point for another
fragment. A single to triple bond was built to link fragments, according to a random choice
process and atoms’ valence. To avoid an over-selection of double or triple bonds as compared to
the single bond, we weighted the bond type choices according to the percentage of each bond
type inside our initial dataset. As in Nilakantan et al.’s work’!, the evolution of the molecular
structure was performed either until the molecular size reached a limit chosen randomly within a
range — here: the number of atoms other than hydrogen of the biggest molecule in our initial
dataset —, or until the molecular structure did not possess free attachment point anymore. If the
molecular size limit was reached while the structure still possessed available attachment points,
hydrogen atoms were added to obtain a valid structure. Molecular descriptors’ values were
evaluated after each fragment addition. Structures out of the AD were downgraded, by removing
the last added fragment and used as a solution without adding further fragments. Finally,
generated structures uniqueness was checked; molecules already existing inside the initial dataset
or already generated were discarded.

As reported in the literature, it is important to choose fragments according to the initial set of
structures'!. We first considered simple fragments: single carbon and oxygen atoms, as well as
carbon-carbon and carbon-oxygen fragments with every possible bond: simple, double, triple —
this method was called FO. With Fla method, fragments were extracted from ISIDA descriptors
used to model the initial data by QSPR. Particularly, we selected the ISIDA descriptors defining

sequences of atoms and bonds, ranging from two to four atoms**. These sequences were turned to



fragments by converting their typographic definition and by removing their hydrogen atoms. The
random fragment choice might lead to structures having more-than-expected specific fragments,
that is molecules out of the AD. We extracted then each ISIDA descriptor/fragment maximal
value from the initial dataset and weighted the fragments choice according to it (this variation of

Fla was labeled F1b). Table 1 proposes a summary of the investigated variations.

Table 1: Variations considered for our generation method based on fragment assemblies.

Variation Fragments New molecules check
Simples | Dataset! Uniq.2 AD?
Fo X X X
Fla X X X
FIb X* X X

lissued from descriptors in the dataset; 2 Uniqueness: structures should not have been generated

previously; * new structures must belong to the AD defined by fragment control assessment; *
weighted fragments choice.

Molecules generation by iterative evolution of structures

The second investigated generation method consists in applying Genetic Graphs on a pool of
molecules to design new molecular structures. At each iteration, molecules were selected
randomly one-by-one. Seven different operators were considered to make structures evolve and
are schematically represented on Figure 3. The crossover operation selects an additional graph
from the pool of initial structures and splits the graphs into four subgraphs by removing a bond to
each graph, and then link subgraphs by a single bond. Bond and atom mutations switch randomly
an atom type or a bond order on a selected graph, respectively. In cyclization and decyclization

operations a cycle is added or removed from molecules without fragmenting the graph. New



rings’ allowed sizes were limited to five and six atoms. Fragments can be added or removed by
the addition and deletion operators, respectively. At each deletion, the removed fragment was
added to a library of available fragments which could be chosen further by the fragment addition
operator. Parent molecules were selected and modified one-by-one, except for crossovers where

two parents were selected. Valence fulfillment was checked after each modification.
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Figure 3: Considered operators for molecular structures evolution by GG.

Fragment
deletion

Duplicates and molecules out of the AD were discarded. Note that when discarding a generated
structure, its parent structure was processed again with the same operator until obtaining a
structure satisfying constraints, or until the maximal number of attempts was reached. In this
latter case and if no structure satisfying constraints was obtained, another operator was selected.
If any operator allowed to generate a structure satisfying constraints after reaching their maximal

number of attempts, the algorithm skipped the current parent on the current iteration.



The parent molecules database — initially set with molecules used to derive QSPR models —
was redefined before each iteration to provide a new pool of structures to be modified. We
considered two variations to supplement the pool of structures, and differences mainly stood in
the management of add-ons. In the first variations (Gla and G1b) all previous parents and all
generated molecules satisfying property constraints were selected as new parents for the next
iteration. Only acyclic molecules were considered in Gla, without the use of the cyclization
operator whilst cyclic molecules were considered in G1b. The third variation (G2) differs from
G1b on the selection of molecules to modify. All initial and generated molecules were sorted
according to the distance from their property’s value to the targeted value, and only a specified
number of the first molecules were considered as new parents. Table 2 proposes a summary of
the investigated variations.

Table 2: Variations considered on our generation algorithm by successive modification of

structures.

New molecules
check

Var. | Uniq.! | AD? | Cycles | New parents’ database content (selection)

Gla X X All previous parents and new generated molecules.

Glb X X X All previous parents and new generated molecules.

Previous parents and new generated molecules are sorted
according to their property values closeness to the
targeted value and only the top ranked molecules are
selected.

G2 X X X

! Uniqueness: structures should not have been generated previously; 2 new structures must
belong to the AD defined by fragment control assessment.



Molecular diversity

Molecular structure generation can lead to several scenarios according to the definition of the
AD and to AD’s area occupancy by new structures. AD’s area occupancy can vary due to
chemical rules constraints (i.e., octet rule fulfillment), due to algorithms, and due to user selected
constraints (i.e., initial structures, fragments). We therefore propose to compare generation
methods considering the space formed by C. C was discretized into unit cubes along the three first
PC axes, and each new molecular structure is located in one of the unit cubes. As detailed
hereafter, our proposed indices calculation does not consider empty cubes, limits of C can be
increased without consequences on indices value, but this will increase computation time. We
assume that sparser the molecules were projected within C, more their structural features were
diverse, since each principal component is a linear combination of descriptors. Several indices
(labeled 1) were defined according to the occupancy of each cube. Those indices were classified
into three categories: AD coverage, AD representativeness, and generation specificity.

The AD coverage defines the percentage of the AD occupied by at least one molecule
generated by the method m over the filled AD — all cubes occupied by a molecule generated by
any method. In fact, some cubes could correspond to a PCA space not reachable by molecules,
either due to the AD fragment control assessment or due to chemical rules’ (i.e. octet rule)
violation, and should not be considered in AD coverage. The AD coverage thus informs about the
diversity of molecules generated by method m compared to the observed diversity of molecules

generated by all methods. The I; index was set to inform about the AD coverage and is defined as

the ratio between N7 the number of occupied cubes in C by molecules generated by the

method m, over N2 . the number of occupied cubes in € by molecules generated by all



methods M (Equation (1)). Its value is included within the interval ]0;1]. I; values close to one
indicate a high AD coverage of the generation method.

N(C,m

L =-22S meM (1)

cubes

The AD representativeness defines how an algorithm generates molecules within the AD
compared to all the generation methods. We hereafter define two occupancy rates (P,) and use
them to derive indices informing about the AD representativeness. The occupancy rate of the unit

cube x for the method m, P™, is defined as the ratio between NJ;)» ....0s> the number of structures

generated using m in the unit cube x, and NG™ . the total number of structures generated
using m in C (Equation (2)). The global occupancy rate of a unit cube x, P!, is defined as the
average (over the total number of generation methods, M) of individual occupancy rates P[™
(Equation (3)).
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me — sz::ctures X €E C (2)
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Distribution indices were then used with defined P,. Although the Kullback-Leibler
divergence®? has already been used to compare i-QSPR performances?’, this metric is not suitable
for our study since P/ and P! could be null. Therefore, four metrics are defined and tested
within our work. The four metrics being similar, only I, is discussed within this paper; I} to I,4
indices are discussed in Supporting Information. I, is defined as one minus the Hellinger

distance®>**. Hellinger distance is defined as the square root of the sum of the squared differences

between square rooted P/* and PJ; weighted by the coefficient 1/v2 to normalize I, values



between 0 and 1 (Equation (4)). The use of differences of square root values in I, gives less

weight to high deviations as compared to other indices defined in Supporting Information.

1 n
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AD representativeness index values are within the interval [0;1]. Those indices are expected to
have low values at the beginning of the generations since the number of generated structures is
too low to represent algorithms performances inside the AD. Then, values should increase as
soon as cubes start to be occupied by structures generated by more than one method. The higher
the index values for PI™ are, the higher its similarity to P! is.

The AD coverage uniformity defines how an algorithm generates molecules in C compared to a

hypothetical generation, providing molecules projected with an equal probability on cubes in C.

In the hypothetical generation, the hypothetical occupancy rate of a unit cube x, th’m, is defined

as the ratio between Ny, crures and No - (Equation (5)).
Cm
th,m — Nstrgctures’m eM (5)
N ,m
cubes

I; was set to inform about the AD coverage uniformity and is defined as one minus the

Hellinger distance between P" and th’m (Equation (6)). I3 values are within the interval [0;1].
High I5 values indicate that the generation is producing molecules projected with an almost equal
probability on the used cubes. AD coverage uniformity is similar to AD representativeness in the
sense that both indices compare distributions and use a reference dynamically build. I5 values are
expected to take high values at the beginning of the generation since the algorithms start to
explore C by generating a molecule in an unexplored cube. Then, according to algorithm

implementation and to the restrictions provided by the AD, index values are expected to decrease.



1 _ i* C m _ hm~2 6
h=1-( Z)(JP_ ™) ©6)

Finally, the generation specificity evaluates the percentage of generated molecules for given
property values. I, is set for this purpose as the ratio between Nh,ciures: [P —T| <t (the
number of generated molecules Nt crures POSSessing the absolute value of their property value
p minus the desired property value T lower or equal to the tolerance ¢) and NI%.,, rures (the total

number of generated molecules using m) (Equation (7)). I, values are included within the interval

[0;1].
_ NSY?TuCtures; |p —T|<t
TN )
Sstructures

AD coverage, AD representativeness and AD coverage uniformity indices defined above are
computed when generating molecules with or without constraints on property values. The
generation specificity index is only computed when we focused on generating molecules with a
desired property value. Index value comparison is valid only within the same study since the
cubes’ occupancy reference states are calculated in accordance with the specified generations’

molecules only.

Results

Datasets and models

Flash Point (FP) is a key property for characterizing the hazardousness of chemicals. FP
defines the lowest temperature for a liquid to form a mixture with the air able to ignite in the
presence of a flame. Thus, Flash Point is only relevant for liquids, a low FP value reveals a high
flammability risk. Many approaches have already been proposed to predict FP values of

chemicals, including QSPR®. Correlations between the carbon atom number and FP values



highlight that large molecules tend to have high FP values®’. Note that other molecular features
such as branching degree and polarity also impact the FP values. For all these reasons, FP

appears as an interesting case study for QSPR and i-QSPR.

Dataset chemical diversity

1344 HE Training

B Test
20%

88

_.
2
£

21

57 52 53

,_.
o
&
!
£

Distribution

Cyclic
Cyclic
(saturated)
Alkenes
Alkynes
Ethers
Esters
Ketones
acids

Cyclic
(Oxygenates)

(unsaturated)
Aromatics
(Oxygenates)
Aromatics
Paraffins
Aldehydes
Alcohols
Carboxylic
Peroxides

Figure 4: Composition of our dataset, in terms of percentage and number of molecules for various
chemical families, in the training and test set.

We used the database previously built by Saldana et al.>> Authors recovered experimental data
from several sources including other QSPR studies’®®! and databases such as Design Institute for
Physical Properties (DIPPR)®2. In the work by Saldana et al., the database was filtered to keep
only compounds of interest, for instance hydrocarbons and oxygenated molecules (mainly
alcohols and esters). We considered in our work the full database, including additional families of
compounds such as aldehydes, ketones, ethers, and alkynes. This database that contains 785
chemicals was split randomly into two subsets, 599 compounds were used for training and 186
for testing the models. Figure 4 illustrates the chemical diversity within the database. Each
training and test set contains about 40% hydrocarbons and 60% of oxygenated compounds.

Among them, 30% (240 molecules) are cyclic, including naphthenes and aromatics. The most



represented chemical family is the esters with 177 molecules (21 %) while there are few alkynes
(8 compounds) and peroxides (2 compounds).

The ISIDA descriptors were computed to encode molecular features on the basis of SMILES.
For each descriptor set, parameters of SVR were optimized using 5-CV according to the
methodology described above. Models using descriptors based on sequences of two to four atoms
and their bonds exhibits good performances as shown in Table 3, according to internal (cross-
validation) and external validation. When predicting Saldana et al. dataset,® our model shows
performances similar to those reported by authors. The slight difference in performances can be
attributed to our database which contains a wider diversity than that used by Saldana et al. and to
the use of a single QSPR whilst Saldana et al. used several QSPRs into a consensus model. An
analysis of the accuracy of our QSPR model within the space C is proposed in Supporting

Information (Figure S3), it shows that the model prediction error is roughly stable in this space.

Table 3: QSPR model performances measured by cross-validation and external validations,

compared to that reported by Saldana et al.>

This work’s Previous

performances performances
Dataset RMSD (K) | R? RMSD (K) | R?
Training set (cross-validation) 15.74 0.920 | --- -
External validation set 15.46 0.935 | - -—-
Saldana et al.’s full dataset®> 12.71 0.948 | 10.9 0.959
Saldana et al.’s validation set™ 9.58 0.967 | 10.9 0.967




Our dataset’s molecules are provided with their SMILES notation, their predicted FP value,
and their descriptors values in Supporting Information. The maximal occurrence of each fragment
can be found by searching the maximal value of its associated descriptor. The QSPR AD is
restricted by those chemical features known within the initial set and encodable by the descriptors
used. For instance, up to one peroxide group is allowed within new molecules (as three initial
molecules contain this feature in the used database), as well as one ethynyl group (included
within eight initial molecules). Bigger fragments, such as ketal group, cannot be encoded by 4-
atoms fragments and their presence is therefore not checked. Also, the hybridization of carbon

atoms within molecules is not fully considered by the used descriptors.

Generation of diverse molecules

The dataset was then used as the reference for molecular generations. New structures were built
by fragment assemblies (methods FO, Fla and F1b) and iterative evolution of a population of
structures (methods Gla and G1b). Up to 5 million structures were generated with each method.
Noting that such number of structures is sufficient for a first evaluation of methods. Fragment-
based methods (FMs) can output in a single run all news structures. GM methods must be
performed in several runs. In fact, GMs’ initial pool of structures is the QSPR dataset — with or
without cyclic molecules according to Gla or G1b variation. After a 10-iteration run, this pool
contains more than 8x10° structures and quickly become difficult to handle by our computer’s
memory. Four runs were needed for Gla and Glb to reach a total of 5 million generated
molecules after removing duplicates.

For all generated structures as well as for molecules of the initial dataset, we computed FP
values and a series of characteristics such as the molecular weight (MW)* and synthetic

accessibility (SA)®. The molecular weight informs about molecule’s size which is correlated to



FP>7 and SA scores compounds from 1 (easy to synthesize) to 10 (very complicated to
synthesize). SA is a useful property since we aim to propose synthetically feasible compounds as
solutions. The distributions of each property values according to the generation method employed
are represented on Figure 5. The molecular weight distribution is right skewed for generated and
initial sets. Initial molecules MW distribution appears to be bimodal with the highest peak
located around 120 g/mol. MW distributions of generated molecules are monomodal with their
peaks at roughly 200 g/mol to 250 g/mol. F1b’s MW values are more spread than for the other
generations. Also, the SA distribution for initial molecule is spread between 0.5 and 5.5 whilst
generated molecules’ SA distribution is spread between 1.5 and 6 with a peak around 4 (for
molecules generated by Gla/b) and around 4.5 (for molecules generated by FO/F1/F2a). Predicted
FP values for initial molecules are spread between 200 K and 500 K whilst FP distributions of
generated molecules are narrower and centered around 400 K. As expected, generated molecules
tend to be bigger than the average of the initial molecules, also to be more complex and thus to
possess a high FP value. That phenomenon is observed since the number of possible atoms
combinations to generate molecules with low FP value — small molecules — is smaller than for
structures with a higher FP value. It should be noted that such generated big molecules still
belong to the AD defined by a fragment control assessment and bounding box. Molecules
generated by Gla and G1b methods seem to be slightly easier to synthesize according to their SA
values and molecules generated by F1b to be sparser about their size according to their molecular

weight.
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Figure 5: Synthetic accessibility, molecular weight, and flash point distributions (percentage of

molecules from the considered dataset) within sets of initial and generated molecules, for each

generation method.

Several cube sizes from 0.5 to 6 unit were investigated to discretize the space C. A cube size of
1 unit exhibited the best compromise between the stability of indices values and the required
computing time. C was thus discretized into about 40° cubes. Indices I; to Is were dynamically

computed for each investigated generation method. Table 4 presents the indices calculated for the

5 million generated molecules.



Table 4: Calculated indices after generation of five million molecules with each method.

Method L I I3

FO 0.68 0.77 0.38
Fla 0.74 0.62 0.41
Fl1b 0.72 0.69 0.40
Gla 0.75 0.79 0.43
Glb 0.90 0.84 0.44

10° 102 10* 108
# Generated molecules

10° 102 10* 108
# Generated molecules

10° 102 10* 108
# Generated molecules

—F0

Fla F1b =—G1a

G1b

Figure 6: Evolution of indices I; to I3 with the number of generated molecules, for each

generation method.



Figure 6 presents the variation of indices I; to I3 as a function of the number of generated
molecules for the different generation methods. At the beginning of the generations, I; values are
low around 0.2, i.e. around 1/M with M=5 the number of compared methods, as each of the five
methods provided molecules located in different cubes. After about one hundred generated
molecules, 11 values start to increase, meaning that areas of individual generations start to
overlap. I; values of FMs tend to inch up faster than GMs. Among FMs, Fla and F1b which use
more fragments as compared to FO were able to explore wider C. Concerning GMs, their I; values
also increase but more slowly than FMs before 10* generated molecules: GMs are restricted by
the diversity within the pool of initial structures. After first iterations — 10* to 10° generated
molecules —, GMs outperform FMs in terms of AD coverage. Finally, at five million generated
structures, the percentage of occupied cubes is higher for GMs as compared to FMs. Since
covering the maximum of C is a key point to provide diverse generated molecules, GMs score
better than FMs from 10° generated structures.

Variations of AD representativeness’s index I with the number of generated structures can be
also observed on Figure 6. At the beginning of the generations, values are at their minimum,
meaning an important deviation between distributions of generated molecules by each method
and the distribution of molecules generated by all methods. Then, values increase with the
number of generated structures, showing that each method started to generate structures projected
in a more similar way in C. Plateau values are observed from 10° generated structures. Values of
AD representativeness’s index I at five million generated structures are reported on Table 4. 1>
index ranks generation methods as follows: G1b>G1a>F0>F1b>F1a.

AD coverage uniformity index has its values close to one at the beginning of the generations,

meaning that as expected the same number of generated molecules is projected in each cube of C.



I3 index values start then to decrease with the number of generated molecules. Indeed, as soon as
algorithms start to generate molecules in already explored cubes, the distribution of generated
molecules in cubes start to differ from a uniform distribution. At 5 million generated molecules,
I5 rank generation methods as follow: G1b>Gla>F1a>F1b>F0.

Fragments constraints imposed Fla and F1b have tendencies to lead to the generation of
molecules in more dissimilar way as compared to FO or to GMs. According to those observations,
we conclude to a better efficiency for GMs to generate molecules in comparison with FMs.
Indeed, from comparisons performed in this section, GMs appear to be interesting methods
providing both the closest AD coverage and the highest AD representativeness. The consideration
of rings in molecules and genetic operators as in Glb, improves the molecular diversity as

compared to Gla.

Generation of diverse molecules within a desired property value range

In this section, we investigate the generation of structures with predicted property values within
a specific interval. Three FP ranges were arbitrary selected: [200 K, 300 K[, [300 K, 400 K[, and
[400 K, 500 K[. The targeted FP ranges were seen as an average value — 250 K, 350 K and 450 K
— associated with a tolerance value of 50 K. From conclusions drawn in previous sections, we
hereafter employed GMs: G1b and G2. With G2, we varied the number of parents between 50
and 800 and we present hereafter the results when the generation was restricted to 800 molecules
(i.e., close to the initial set size; this generation is labeled G2-800) and to 50 molecules (labeled
G2-50). Due to the lack of selected structures’ diversity, the ability of G2 methods to output new
structures quickly decreases with the number of iterations. Therefore to obtain five million
unique structures, generations had to be performed up to five times with G2-800 for each set of

targeted property value range, and up to 100 times with G2-50. Duplicated molecules between



two runs of the same method were removed. Since each run generated new structures

independently, the pool of selected structures to be modified at the end of each iteration was

different from one run to another; inducing an exploration of different chemical patterns over

runs.

Table 5: Generation method performances for molecules with a FP value included in each

interval.

Targeted interval

[200 K, 300 K[

[300 K, 400 K|

[400 K, 500 K|

#molecules 3.53x10° 1.48 x 10° 2.75x10°

Index / Method I 1p) I I4* I 15 I3 I4 I I Iz I4
Glb 0.82 1 0.86 [ 0.55 [2.35 1094 | 0.77 | 0.44 | 0.45 | 0.96 | 0.80 | 0.44 | 0.55
G2-50 0.82 1 0.85 [ 0.54 [0.07 | 0.73 | 0.80 | 0.41 | 0.30 | 0.66 | 0.81 | 0.45 | 0.71
G2-800 0.80 | 0.85 [ 0.55 [0.37 | 0.81 | 0.88 | 0.40 | 0.36 | 0.85 | 0.90 | 0.43 | 0.62
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Figure 7: Indices variations as a function of the number of molecules generated having their FP

value in the interval [200 K, 300 K.

Each method provided a minimum of 3.53 x 10? structures having their predicted FP value in
[200 K, 300 K[ among the 5 million generated structures. Index values after generating 3.53 x 10°
structures with FP values within the specified range are reported in Table 5. Evolution of indices
with the number of generated structures respecting the FP requirement are shown on Figure 7.
AD coverage, AD coverage uniformity and representativeness indices’ values are similar for each
considered method; showing similar distributions of molecules generated by each method.
According to generation specificity, generating molecules with FP values in the interval
[200;300[ was easier with G1b, when the pool of structures to modify was not restrained, than

with G2, when selecting the structures to modify at each iteration.
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Figure 8: Indices variations as a function of the number of molecules generated having their FP

value in the interval [300 K, 400 K.

Each considered GM was able to provide a minimum of 1.48 million structures possessing their
FP value in the second interval [300 K, 400 K| among the 5 million structures generated. Index
values after generating 1.48 million structures with FP values within the specified range are
reported in Table 5. Evolution of indices with the number of generated structures respecting the
FP requirement are presented on Figure 8. From roughly 1x10* to 4x10* generated structures, G2-
50 Ii, I and Is values decrease and then increase again: this behavior shows the transition
between two G2-50 generation runs. From 10* generated structures, G1b leads to the best AD
coverage, followed by G2-800 and G2-50. The best AD representativeness is obtained at the end
of the generations by G2-800, followed by G2-50’s and G1b’s. G1b obtains a slightly better AD
coverage unicity than G2-800 and G2-50. Regarding the generation specificity, I4 values increase

at the beginning of the generation process until 10° structures, where a decrease is observed for



the three methods. G1b most easily generated molecules within the second targeted FP interval,

followed by G2-800 and G2-50.
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Figure 9: Indices variations as a function of the number of molecules generated having their FP

value in the interval [400 K, 500 K.

Each method generated a minimum of 2.75 million structures with a predicted FP in the third
interval [400 K, 500 K| among the 5 million structures generated. Index values after generating
2.75 million structures with FP values within the specified range are reported in Table 5.
Evolution of indices with the number of generated structures respecting the FP requirement are
presented on Figure 9. According to I; values, the best AD coverage is obtained with the use of
G1b, G2-800 and finally G2-50. On one side, we notice a smooth decrease of the AD
representativeness index values for G1b’s method from 4x10* generated structures. At the
opposite side, G2-800 and G2-50 index values continue increasing. At the end of the generations,

(G2-800 obtains the best AD representativeness scores, followed by G2-50 and Glb. The AD



coverage unicity is similar for each compared method. 14 values increase with the number of
generated structures, showing an increasing ability to generate molecules satisfying property
constraints for all methods. At the end of generations, G2-50 obtains the best generation

specificity, followed by G2-800 and G1b.

For each targeted interval, AD coverage, and representativeness index values according to the
number of generated structures follow the same behavior as when property values are not
targeted: index values increase as soon as some cubes start to be occupied by molecules
generated by more than one method. The use of several runs for each method allowed to smooth
the lack of diversity within the pool of structures to be processed, this is especially the case with
G2-50. The study of the AD coverage highlights a better efficiency for the G1b method to
explore the available AD. This difference in AD coverage induces a stabilization or a decrease of
G1b AD representativeness values, as observed after 10* generated molecules. The AD coverage
unicity values follow the same behavior as when property values are not targeted. This shows that
generated molecules are not evenly spread on the occupied space in C. Values are however
similar between the generations for each targeted interval, indicating a similar spreading of
molecules. Concerning generation specificity, we observe for the first two intervals an increase of
I+ values until 10% (for the first FP interval) or 10° (for the second interval) generated molecules,
followed by a decrease of those values. To generate structures with those FP requirements
become harder after a threshold related to the mean expected size of molecules. The
combinatorial being higher for the third interval as compared to first and second, an increase of 14
values is observed with increasing number of generated molecules.

Overall the targeted intervals, G1b provides high AD coverage scores, and so more diverse

molecules than G2. This behavior allows G1b to spot more easily new structural features required



for small to medium molecules to possess a desired property, and so to generate more easily
small to medium molecules. G2 methods reduce the diversity by focusing on specific patterns in
the selection procedure. G2 is better suited for the generation of large molecules since the number
of allowed structural modifications is high with such molecules. This behavior is especially
noticed when using a small number of selected items per iteration, i.e. with G2-50. GMs could be
improved further to obtain even better AD coverage and AD representativeness, for instance by
adding more operators to handle cycles within aromatics and naphthenes, like the ring mergence

recently proposed by Inoue et al.**

Conclusion

We addressed the problem of molecular generation and i-QSPR by revisiting two known
approaches: generation of molecules by Fragments-based Methods (FM) and Genetic-based
Methods (GM). FM uses fragments which correspond either to carbon and/or oxygen atoms
linked by a bond or which are functional groups extracted from the initial pool of structures. GM
successively modifies an initial pool of structures by means of genetic graphs operators which act
on atoms and bonds. In order to compare generation methods, we proposed a series of indices
based on a discretization into unit cubes of the chemical space C. Those indices analyze the pool
of generated structures in terms of (i) AD coverage, (ii)) AD representativeness, (iii), AD
coverage unicity, and (iv) generation specificity when a property’s value is targeted.

FM and GM-based methods were implemented and compared with these new indices when
generating molecules for the Flash Point (FP) endpoint. We first concluded on the better
efficiency of GMs as compared to FMs to output structures projected sparser in C. In fact, GMs
have a wider choice of tools to generate structures — several operators — than FMs which can only

add fragments. Moreover, considering only fragment additions, FMs use a fixed number of



defined fragments whilst GMs use fragments dynamically issued from initial and generated
molecules. Also, GMs handle cyclic molecules whilst this feature was not encoded for FMs.
Then, we focused on GMs to generate molecules having their FP values within three desired
intervals. The method G1b allowed to generate molecules sparser distributed in C and so to ease
the production of small-to-medium structures for which the number of atoms combinations is
limited. G2 methods performed better than G1b to generate bigger structures. We would like to
emphasize that conclusions drawn in this study were performed based on one database including
FP values. Future works will deal with extensive comparisons between FMs and GMs using the
proposed indices, testing their behaviors on many other databases varying the initial pool of
molecular structures and target properties.

This method was presented for the case where the applicability domain (AD) of the QSPR
model was used both to check new molecules similarity to the initial data and to define a
chemical space for comparing generation methods. It is possible to restrict more the AD by
considering ranges of additional fragments (for instance longer or using another topology) as
constrains. Moreover, it is possible to define a generation space manually, i.e., a subset of interest
within the AD, to compute the proposed indices. For instance, within this study, when targeting a
flash point range, it is possible to only consider unit cubes or in their surrounding in C occupied
by initial molecules having their property within the desired range. We did not use this feature
because it could bias the exploration of the whole chemical space.

The proposed indices use a chemical space representation built by PCA according to the initial
database. This allows them to compare generation methods without considering an external
reference database. Indeed, the comparisons’ reference is dynamically built from the generated
items. Authors would like to highlight that index values are related to the number of generated

structures as well as to the compared methods. Moreover, as the reference is dynamically defined,



comparisons can only be performed for a same number of generated molecules. Index values are
dependent on the simplification of the descriptors’ space by the PCA and three dimensions are
often not sufficient to explain the full variance in the dataset. The use of other methods to
represent chemical spaces, such as with the BCUT metrics®, or with 2-Dimension data

representations by Generative Topographic Mapping®®®’

, are under investigation.

Our study can also be extended to the optimization of molecules fulfilling constrains on several
properties with the following adaptations. First, individuals QSPR models should be built for
each property according to initial dataset(s). Then, a global applicability domain should be
defined, considering only the chemical features represented in all initial dataset(s). The scoring
function of generated molecules should consider all properties, it could be defined as the mean of

scaled differences between predicted and desired properties values. The procedure to build C

according to the global AD and to compute index values remains unchanged.

AUTHOR INFORMATION

Corresponding Author

*E-mail: benoit.creton@ifpen.fr

ACKNOWLEDGMENT
The authors are grateful to A. Varnek research team for discussions about distribution
comparisons, and to D. Sinoquet for discussions about the use of the SQA optimization

algorithm.



ABBREVIATIONS
QSPR, Quantitative Structure-Properties Relationship; i-QSPR, inversion of QSPR model; GA,

Genetic Algorithm; GG, Genetic Graphs; AD, Applicability Domain; FM, generation by
fragments assemblies; GM, generation by successive modification of structures; SVR, Support
Vector Regression; SQA, Sequential Quadratic Approximation; n-CV, n-fold Cross Validation;
RMSD, Root Mean Standard Deviation; PCA, Principal Component Analysis; FP, Flash Point;
SMILES, Simplified Molecular Input Line Entry Specification, MW, Molecular Weight; SA,

Synthetic Accessibility.

SUPPORTING INFORMATION AVAILABLE: Initial dataset of molecules, with their
descriptors values and their predicted flash point; Additional information about the considered
PCA space and extended chemical space C; Some of the AD representativity indices I, Ioc and
Ioq definition, application, and comparisons with I>; Analysis of QSPR model’s accuracy within

the space C.

DATA AND SOFTWARES AVAILABILITY

DATA: The molecules used to build the QSPR model and as basis for generations are provided
with their SMILES notation, their predicted FP value, and their descriptors values in Supporting

Information.

QSPR MODELS: Descriptors were calculated by the ISIDA Fragmentor 2017 software (available

on request at http://infochim.u-strasbg.fr/spip.php?rubrique41). The construction of models was

44

handled by an in-house bash script, using the /[ibsvm software™ (available on


http://infochim.u-strasbg.fr/spip.php?rubrique41

https://www.csie.ntu.edu.tw/~cjlin/libsvm/), and parameter values were optimized by the

l.48

software reported in Sinoquet et al.”® paper. Predictions were performed by another in-house bash

script, using also ISIDA Fragmentor 2017 and libsvm.

GENERATION ALGORITHMS: Generations were proceeded by in-house python (version
3.6.6) scripts, using the following libraries: RDKit*° for the manipulation of molecules (available

on https://www.rdkit.org/, version 2018.09.3), and Numpy (available on https:/numpy.org/

version 1.16.3). Also, the following standard python libraries were used: multiprocessing to
process several molecules at the same time, subprocess to predict molecules’ properties by the

bash script mentioned above, csv to read input data and write results.

COMPARISON ALGORITHMS: Molecules were compared with python (version 3.6.6) scripts
using the following libraries: sklearn® for the standardization of descriptors and to compute

PCAs (available on https:/scikit-learn.org, version 0.23.2), scipy® to compute convex hulls and

space C (available on https://www.scipy.org/, version 1.3.0), matplotlib’’ to graphically represent

convex hulls and space C (available on https://matplotlib.org/, version 3.0.0), numpy to compute

index values (available on https:/numpy.org/, version 1.16.3). Also, the following standard

python library was used: csv to read input data and write results.
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