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Abstract: This paper presents a real-time eco-driving algorithm for connected electric vehicles.
The proposed solution generates a safe eco-speed profile, avoiding collision with the preceding
vehicle and respecting the speed limits. An Eco-driving Optimal Control Problem (ED-OCP)
is formulated minimizing the energy consumption of an electric vehicle while enforcing state
(position, speed, acceleration) constraints. Analytical solutions of the state-constrained ED-
OCP are implemented according to a model predictive control scheme. The proposed solution
is evaluated using a connected simulation platform developed during the H2020 EU project
CEVOLVER, under several driving scenarii, showing a significant energy consumption reduction.
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1. INTRODUCTION

Greenhouse emission reduction in transportation has be-
come a priority, it represents the main cause of air pol-
lution in cities. Emissions due to transportation represent
26% of the overall green house emissions in the European
Union, of which road transportation represent 71% (Eu-
ropean Environment Agency (2021)). The electrification
of vehicles is considered as a promising way to reduce the
pollutant emission in cities, or to suppress them in case of
fully electrified vehicles. However, despite the many efforts
from the manufacturers to increase the driving range of
the electric vehicle (EV), range anxiety is still the main
obstacle to its use.

Connectivity is a promising way to overcome this con-
straint. The connection to the cloud offers the possibil-
ity to predict and optimize energy consumption along
a trip based on route topology information provided by
a Geographic Information System (GIS), but also real-
time information about the traffic, the weather, charging
stations availability, among others. Moreover, connectivity
between cars and infrastructure, namely V2X technologies,
provides to each vehicle information about its surround-
ings, in order to anticipate the behavior of the neighboring
vehicles and thus to act cooperatively to achieve safe and
ecological driving.

Within this context, eco-driving aims to help the driver
to adopt the most economic driving profile to reduce
energy consumption. Many studies over the past decade
have shown the interest of eco-driving as a direct mean
to reduce the energy consumption of vehicles by acting on
the driving style. One can distinguish between two main

approaches to compute an eco speed profile. On the one
hand, heuristic strategies which are based on eco-driving
rules such as aggressiveness of the acceleration, stability
of the cruising speed, anticipation and aggressiveness of
the deceleration and braking, duration of idling, or op-
timal gear changing (Hof et al. (2012)). On the other
hand, model-based strategies which use optimal control
techniques to solve the eco-driving control problem.

The eco-driving problem can be formulated as an optimal
control problem and solved in general using dynamic pro-
gramming, direct methods (e.g. quadratic programming,
interior point) or indirect methods. In Mensing et al.
(2011), position constraint imposed by a preceding vehicle
is introduced and dynamic programming is used to com-
pute the constrained optimal solution that guarantees a
minimum safety distance. Given its large computational
burden, this solution cannot be implemented in real-time.
In Paredes et al. (2019), the authors use a direct method
to solve the eco-driving optimal problem in real-time for
an electric bus between stops in dedicated lanes without
safety considerations. More recently, solutions to com-
putes an energy-efficient speed profile while guaranteeing
safety constraints in speed and position showed results in
simulation using analytical solutions (Han et al. (2019)),
model-predictive control method (Wegener et al. (2020))
or reinforcement leaning (Wegener et al. (2021)).

The main challenge for an eco-driving algorithm dedicated
to connected EVs is to provide in real-time a safe speed
profile, anticipating the surrounding traffic disturbances to
offer the maximum energy savings. The control should be
robust to various driving scenarii. To that aim, this paper
presents a real-time eco-driving algorithm for connected
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profile, anticipating the surrounding traffic disturbances to
offer the maximum energy savings. The control should be
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EVs equipped with Advanced Driver-Assistance Systems
(ADAS) or V2X technologies. The proposed approach is
based on analytical solutions obtained by solving the opti-
mal control problem with Pontryagin’s Minimum Principle
considering position and speed constrained situations. The
optimal solution is applied following a model predictive
control (MPC) scheme with a shrinking horizon. To en-
sure the control robustness, a feasibility analysis of the
boundary condition is done.

The paper is organized as follows: in section 2 the Eco-
Driving Optimal Control Problem (ED-OCP) is intro-
duced. In section 3 the proposed approach and its real-
time implementation are described. The connected sim-
ulation platform used for testing the proposed solution is
presented in section 4. The results are shown and discussed
in sections 5 and 6.

2. ECO-DRIVING CONTROL PROBLEM
FORMULATION

The eco-driving strategy for EVs aims to propose to the
driver an eco-speed profile v�(t) that minimizes the battery
electrochemical power consumption Pbat(t) over the travel
time horizon tf , along a route segment of length sf , under
environmental constraints on the vehicle’s position s(t),
speed v(t), and acceleration a(t) states.

In this paper, several environmental constraints are consid-
ered. To take into account surrounding traffic and safety,
a position constraint is added with a minimum safe dis-
tance (δs) imposed by a leading vehicle at a position sp,
s ≤ sp−δs. Also, infrastructure constraints are considered
with the addition of a speed constraint, v ≤ vmax to
respect the speed limit. A final speed vf at the end of
the route segment is imposed either by the leading vehicle
or by the type of segment end (i.e. stop sign, traffic light,
roundabout).

A general formulation of the ED-OCP is given by:

minimize
u(t)

J =

∫ tf

0

Pbat (up (t) , v (t)) dt (1a)

subject to ṡ (t) = v (t) (1b)

v̇ (t) = fv (v (t) , s (t) , u (t)) (1c)

s (0) = si, s (tf ) = sf (1d)

v (0) = vi, v (tf ) = vf (1e)

umin
p ≤ up (t) ≤ umax

p (1f)

amin ≤ a (t) ≤ amax (1g)

0 ≤ v (t) ≤ vmax (1h)

s (t) ≤ sp (t) + δs (1i)

Equations (1b) and (1c) refer to the system dynamics,
(1d) and (1e) to the boundary conditions, and (1f), (1g),
(1h), and (1i) to the control and states constraints. The
control input up is the powertrain force Fp divided by the
vehicle mass m.

The longitudinal dynamics of a vehicle of mass m is given
by (1c) with

fv = up(t)−
1

2m
ρaAfcdv

2 − g (cr + sin (α(s)))− Fb

m
where ρa is the air density, cd is the aerodynamic drag
coefficient, Af is the vehicle frontal area, cr is the rolling

resistance, α(s) is the road grade that depends on the
vehicle’s position s, and Fb is the brake force.

The battery electrochemical power Pbat is described by the
approximated model

Pbat(t) = η
−sign(up)
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where ki, i ∈ [0, 4], are tunable coefficients, γm is the
drivetrain transmission ratio, rw is the wheel radius, ηt
is the driveline efficiency, and ηb is the battery-to-motor
conversion efficiency.

3. ANALYTICAL SOLUTIONS APPROACH

To be adaptive to the surrounding disturbances, the eco-
speed profile needs to be computed in real time with
frequently updated measures. A model-based analytical
solution approach suits a real-time implementation since
it needs low computational burden compared to nonlinear
programming solutions.

The analytical solutions are briefly introduced in this
section. The reader should refer to Sciarretta and Vahidi
(2020) for an in-depth discussion on the presented ap-
proach.

3.1 Analytical solutions

To derive analytical solutions of the ED-OCP using Pon-
tryagin’s Minimum Principle, several assumptions are
made:

• no brake: Fb = 0
• no aerodynamic friction: ρaAfcd = 0
• constant slope: α(s) = α0

• efficiencies ηt = ηb = 1
• in Eq. (2): k3 = 1, k5 = k6 = 0
• input saturation is not explicitly considered: umax

p =

−umin
p = +∞

Although these assumptions might be strong, the corre-
sponding ED-OCP solutions are implemented following a
MPC scheme (see section 3.2), which iteratively compen-
sates the deviations between the simplified model and the
real system behaviour.

Under these assumptions (2) becomes:

Pbat(t) = mup(t)v(t) + bu2
p(t)

where b = k4m
2r2wγ

−2
m .

Unconstrained solution In the case where no position nor
speed constraints are active, the solution to the ED-OCP
is given by:

v�(t) = vi +
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− 4vi
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− 2vf
tf

)
t−
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− 3vi
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(3)



	 Caroline Ngo  et al. / IFAC PapersOnLine 54-10 (2021) 126–131	 127

Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

EVs equipped with Advanced Driver-Assistance Systems
(ADAS) or V2X technologies. The proposed approach is
based on analytical solutions obtained by solving the opti-
mal control problem with Pontryagin’s Minimum Principle
considering position and speed constrained situations. The
optimal solution is applied following a model predictive
control (MPC) scheme with a shrinking horizon. To en-
sure the control robustness, a feasibility analysis of the
boundary condition is done.

The paper is organized as follows: in section 2 the Eco-
Driving Optimal Control Problem (ED-OCP) is intro-
duced. In section 3 the proposed approach and its real-
time implementation are described. The connected sim-
ulation platform used for testing the proposed solution is
presented in section 4. The results are shown and discussed
in sections 5 and 6.

2. ECO-DRIVING CONTROL PROBLEM
FORMULATION
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the route segment is imposed either by the leading vehicle
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Equations (1b) and (1c) refer to the system dynamics,
(1d) and (1e) to the boundary conditions, and (1f), (1g),
(1h), and (1i) to the control and states constraints. The
control input up is the powertrain force Fp divided by the
vehicle mass m.

The longitudinal dynamics of a vehicle of mass m is given
by (1c) with

fv = up(t)−
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where ρa is the air density, cd is the aerodynamic drag
coefficient, Af is the vehicle frontal area, cr is the rolling

resistance, α(s) is the road grade that depends on the
vehicle’s position s, and Fb is the brake force.
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where ki, i ∈ [0, 4], are tunable coefficients, γm is the
drivetrain transmission ratio, rw is the wheel radius, ηt
is the driveline efficiency, and ηb is the battery-to-motor
conversion efficiency.

3. ANALYTICAL SOLUTIONS APPROACH

To be adaptive to the surrounding disturbances, the eco-
speed profile needs to be computed in real time with
frequently updated measures. A model-based analytical
solution approach suits a real-time implementation since
it needs low computational burden compared to nonlinear
programming solutions.

The analytical solutions are briefly introduced in this
section. The reader should refer to Sciarretta and Vahidi
(2020) for an in-depth discussion on the presented ap-
proach.

3.1 Analytical solutions

To derive analytical solutions of the ED-OCP using Pon-
tryagin’s Minimum Principle, several assumptions are
made:

• no brake: Fb = 0
• no aerodynamic friction: ρaAfcd = 0
• constant slope: α(s) = α0

• efficiencies ηt = ηb = 1
• in Eq. (2): k3 = 1, k5 = k6 = 0
• input saturation is not explicitly considered: umax

p =
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p = +∞

Although these assumptions might be strong, the corre-
sponding ED-OCP solutions are implemented following a
MPC scheme (see section 3.2), which iteratively compen-
sates the deviations between the simplified model and the
real system behaviour.

Under these assumptions (2) becomes:

Pbat(t) = mup(t)v(t) + bu2
p(t)

where b = k4m
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Unconstrained solution In the case where no position nor
speed constraints are active, the solution to the ED-OCP
is given by:
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Speed constrained solution When the speed is con-
strained by a maximum speed bound vmax, the optimal
speed profile reads:

v�(t) =




vi +
2(vmax − vf )

t1
t+

vmax − vi
t1

2 t2 in [0, t1)

vmax in [t1, t2]

vf+
2(vmax−vf )

tf−t2
(tf−t)− vmax−vf

(tf−t2)2
in (t2, tf ]

(4)
where t1 and t2 are the entry and exit times of the
constrained arc and are defined as:

t1 =
3(vmaxtf − sf )

√
vmax − vi

(vmax − vf )
3
2 + (vmax − vi)

3
2

t2 = tf − t1

√
vmax − vf
vmax − vi

Position constrained solution The position of a leading
vehicle during the optimization horizon tf is predicted
using its current position, speed, and acceleration as mea-
sured by an ADAS or a V2X system. These are denoted,
respectively, sp,0, vp,0, and ap,0. Under the assumption of
constant acceleration, the predicted position s̃p and the
predicted speed ṽp read:

ṽp(t) = vp,0 + ap,0t

s̃p(t) = sp,0 +

∫ t

0

ṽp(τ)dτ

The optimal speed profile considering the position con-
straint is given by:

v�(t) =




vi + c1t+ c2t
2 in [0, tc)

c3 + c4 (t− tc)− c5
(t− tc)

2

(tf − tc)
2 in [tc, tf ]

(5)

where tc is the contact time that is found by solving the
cubic equation:

(vi−vf+ap,0tf )t
3
c +

(
(4vp,0+vf−2vi)tf+

ap,0t
2
f

2
−3sf

)
t2c

+
(
6sp,0tf + (vi − vp,0) t

2
f

)
tc − 3sp,0t

2
f = 0

where the terms ci are defined as

c1 = ap,0 +
4(vp,0 − vi)

tc
+

6sp,0
t2c

c2 = −6sp,0
t3c

− 3(vp,0 − vi)

t2c
c3 = vp,0 + ap,0tc

c4 = ap,0 −
6sp,0
t2c

− 2(vp,0 − vi)

tc

c5 = vf − 3vp,0 + 2vi − 6
sp,0
tc

− ap,0tf + 6sp,0
tf
t2c

+ 2 (vp,0 − vi)
tf
tc

3.2 MPC approach

The analytical solutions of section 3.1 are implemented fol-
lowing a model predictive control scheme with a shrinking
horizon approach.

sf

tf

C

A
D

Fig. 1. Domain of feasibility: Light gray zone corresponds
to the set of unconstrained solution, dark gray to the
position constraint solution; the different curves cor-
respond to the different feasibility conditions, tested
to validate the {sf , tf} and eventually correct them.

At every time step, one of the optimal solutions v� given
by (3), (4), and (5) is selected according to whether, at the
current driving situations, a speed or position constraint
is active or not. Then, the solution is computed until the
end of the current horizon. As in model predictive control,
only the first control is applied. This procedure is repeated
using the updated measures at a time step of 100 ms to
be adaptive to new situations.

The boundary conditions {vf , sf , tf} are derived from
GIS information, in particular using the traffic average
speed for the values of tf and vf . In case of the pres-
ence of a preceding vehicle, especially when the latter
decelerates, the boundary conditions are adjusted to the
preceding vehicle’s trajectory prediction, obtained from
{sp(t), vp(t), ap(t)}. The values of {vf , sf , tf} are therefore
time-varying and updated at each time step.

The analysis of these boundary conditions determines
if the solution v� is feasible. As an example, for given
values of vi(t) and vf (t), the sets of feasible values of
{sf (t), tf (t)} can be computed as shown in figure 1. If the
optimal solution is not feasible, the boundary conditions
tf (t) or/and sf (t) are modified to fulfill the feasibility
conditions. The minor adjustment tries to minimize the
impact on the travel time. To guarantee the robustness of
the control, an additional ”preventive/emergency braking”
mode is implemented, and is activated when the preceding
vehicle brakes rapidly.

4. SIMULATION FRAMEWORK

The proposed algorithm is evaluated using the simulation
platform shown in figure 2. This platform includes a
surrounding environment model, a driver model which
is sensitive to the environment influence, and a high-
fidelity EV model. To simulate the eco-driving strategy,
the platform is connected to a proprietary cloud from
which it receives real-time and predictive data about the
traffic, the weather conditions and the route. ADAS or
V2X technologies such as radar or camera sensors are
simulated.

Fig. 2. Simulation platform

4.1 Driver model

The driver model is used in the simulation platform to
follow the target speed profile generated by the eco-
driving strategy or a car-following model, and provides
powertrain torque demand to the EV model. Although
in the simplified model of section 3.1 brakes are not
considered, the driver model uses both the motor and the
brake torques.

The eco-driving receives route information about a chosen
trip. The eco-speed profile is computed along sub-trips
defined either by the GIS or custom aggregation of short
route’s segments. The constraints on position, speed and
acceleration are adapted according to the disturbances
generated by the environment model along the route.

4.2 Environment model

The environment model simulates the impact of the sur-
rounding vehicle’s environment, namely the route and
infrastructure, the traffic and the weather. The developed
model acts on the driver model modifying the position,
speed and acceleration constraints. The considered influ-
ences and their effect on the driver model are described in
table 1.

Disturbance Impacted variable on eco-driver

Leading vehicle Position, speed
Route length Speed profile
Route curvature Maximum speed along the curvature for

comfort and safety
Traffic signs Transition speed at the end of segment
Legal speed limit Cruising speed
Weather condition Cruising speed, acceleration/deceleration,

following distance to leading vehicle

Table 1. List of modeled influences

Route and infrastructure The influence due to the route
infrastructure is modeled thanks to third party mapping
web-services. The eco-speed profile is enriched by taking
into account the speed profile disruptions induced by the
road signalization and infrastructure. Indeed, the GIS
database contains information about the route topology,
the legal speed limit and the type of interface ending
each route segment (e.g. stop sign, traffic light, turning
movement). To model the influence of the intersection on
the driver’s speed profile, the transition speed vf,i between
two route segments {i− 1, i} is computed as:

vf,i = β
vavg,i + vavg,i+1

2
(6)

where vavg,i and vavg,i+1 are the average traffic speeds
provided by the map web services, and β ∈ [0, 1] is
a parameter depending on the type of interface, which
could be selected in a deterministic or stochastic way. The
driver model also adapts its speed profile to the route
topology-induced constraints, in particular the vehicle
speed limit due to route curvatures. The route curvature is
reconstructed from the longitude and latitude coordinates
along the chosen route to obtain the apparent route
heading. From this heading and the vehicle-route static
friction limit, the speed limit due to the curvature is
obtained.

Surrounding traffic A model of a leading vehicle is added
to simulate the surrounding traffic. The idea relies on
the fact that regardless of the overall traffic, the ego
vehicle behavior mainly depends on the behavior of the
immediately preceding vehicle. A virtual leading vehicle is
modeled using Gipps’ car following model [Gipps (1981)].
It follows the same planned route as the ego vehicle and
is only sensitive to the route topology and infrastructure.
The leading vehicle’s speed profile is generated for each
route segment, reproducing the behavior of a driver with
no anticipatory abilities of the route to come.

Weather A first impact of the weather condition is
the adjustment of the legal speed limit. Indeed, in some
countries the local legislation imposes to lower the le-
gal speed limit in case of adverse weather conditions. A
second impact is the influence in general of the weather
condition on the driver behavior: the latter will adapt
the safety distance and acceleration (or deceleration) con-
cerning, for instance, the visibility in a rainy situation
or the drift risks in cold conditions. To anticipate the
influence of the weather condition, the state constraints
of the ED-OCP are adapted, modifying the maximum
acceleration/deceleration and the minimum distance gap,
as described in Hammit et al. (2018).

5. SIMULATION RESULTS

The performance of the eco-driving algorithm is evaluated
using two urban trips of 4.2 km and 5.3 km, shown in
figure 3. The selected trips are located in congested areas
in order to assess the impact of traffic constraints on the
speed profile, and thus bring out the performance of the
presented connected eco-driving algorithm.

Fig. 3. Validation urban trips 1 (left) and 2 (right) (circles
indicate nodes)

For the two tests, a vehicle (Leader) is always in front
of the controlled vehicle (Ego) in order to simulate the
surrounding traffic as described in the previous section
(see fig. 4). To evaluate how the proposed approach adapts
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follow the target speed profile generated by the eco-
driving strategy or a car-following model, and provides
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considered, the driver model uses both the motor and the
brake torques.
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defined either by the GIS or custom aggregation of short
route’s segments. The constraints on position, speed and
acceleration are adapted according to the disturbances
generated by the environment model along the route.
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ences and their effect on the driver model are described in
table 1.

Disturbance Impacted variable on eco-driver

Leading vehicle Position, speed
Route length Speed profile
Route curvature Maximum speed along the curvature for

comfort and safety
Traffic signs Transition speed at the end of segment
Legal speed limit Cruising speed
Weather condition Cruising speed, acceleration/deceleration,

following distance to leading vehicle

Table 1. List of modeled influences

Route and infrastructure The influence due to the route
infrastructure is modeled thanks to third party mapping
web-services. The eco-speed profile is enriched by taking
into account the speed profile disruptions induced by the
road signalization and infrastructure. Indeed, the GIS
database contains information about the route topology,
the legal speed limit and the type of interface ending
each route segment (e.g. stop sign, traffic light, turning
movement). To model the influence of the intersection on
the driver’s speed profile, the transition speed vf,i between
two route segments {i− 1, i} is computed as:

vf,i = β
vavg,i + vavg,i+1

2
(6)

where vavg,i and vavg,i+1 are the average traffic speeds
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driver model also adapts its speed profile to the route
topology-induced constraints, in particular the vehicle
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reconstructed from the longitude and latitude coordinates
along the chosen route to obtain the apparent route
heading. From this heading and the vehicle-route static
friction limit, the speed limit due to the curvature is
obtained.

Surrounding traffic A model of a leading vehicle is added
to simulate the surrounding traffic. The idea relies on
the fact that regardless of the overall traffic, the ego
vehicle behavior mainly depends on the behavior of the
immediately preceding vehicle. A virtual leading vehicle is
modeled using Gipps’ car following model [Gipps (1981)].
It follows the same planned route as the ego vehicle and
is only sensitive to the route topology and infrastructure.
The leading vehicle’s speed profile is generated for each
route segment, reproducing the behavior of a driver with
no anticipatory abilities of the route to come.

Weather A first impact of the weather condition is
the adjustment of the legal speed limit. Indeed, in some
countries the local legislation imposes to lower the le-
gal speed limit in case of adverse weather conditions. A
second impact is the influence in general of the weather
condition on the driver behavior: the latter will adapt
the safety distance and acceleration (or deceleration) con-
cerning, for instance, the visibility in a rainy situation
or the drift risks in cold conditions. To anticipate the
influence of the weather condition, the state constraints
of the ED-OCP are adapted, modifying the maximum
acceleration/deceleration and the minimum distance gap,
as described in Hammit et al. (2018).

5. SIMULATION RESULTS

The performance of the eco-driving algorithm is evaluated
using two urban trips of 4.2 km and 5.3 km, shown in
figure 3. The selected trips are located in congested areas
in order to assess the impact of traffic constraints on the
speed profile, and thus bring out the performance of the
presented connected eco-driving algorithm.

Fig. 3. Validation urban trips 1 (left) and 2 (right) (circles
indicate nodes)

For the two tests, a vehicle (Leader) is always in front
of the controlled vehicle (Ego) in order to simulate the
surrounding traffic as described in the previous section
(see fig. 4). To evaluate how the proposed approach adapts
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to the vehicle’s surrounding disturbances and the gain
obtained with the eco-speed profile, a comparison is done
with respect to a speed profile generated by the Gipps
car-following model so as to represent a non-eco-driving
vehicle. Both vehicles drive on the same route with the
same travel time to have a fair comparison. The constraint
vmax of the Gipps model is set to a value between the legal
speed limit and the traffic average speed to obtain the
same travel time. Therefore, the ego Gipps average speed
is lower than the leading vehicle one.

Fig. 4. Surrounding traffic simulation : Leading vehicle
(Gipps) always in front of Ego vehicle (Gipps or eco-
MPC)

The eco-driving adapts its trajectory to avoid unnecessary
acceleration/deceleration between route segments thanks
to the route information and provides a smooth speed
profile while preventing collision with the leading vehicle.
One can observe in figure 5 that the solution respects the
safety distance imposed by the leading vehicle along the
trip.
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Fig. 5. Relative position to the leading vehicle in Trip
1 (left) and 2 (right) (blue: Gipps, green: eco-MPC,
dotted: δs)

The Gipps driver model does not know the route to come,
hence sharp accelerations and decelerations can be ob-
served at the beginning and the end of each route segment
despite the fact that the ego vehicle stands relatively far
away from the leading vehicle. The acceleration distribu-
tions (figs. 6 and 7) reflect those behaviors: the eco-MPC
has a centered acceleration distribution with few observa-
tions at its ends, whereas the Gipps model’s distribution
tends to have bigger left and right tails, showing that
greater deceleration and acceleration values occur more
frequently.

The eco-driving obviously impacts the speed. In figure 8,
cumulative distributions of the speed for the two trips
show that the target speed generated by the eco-MPC is
lower than the speed of the reference Gipps model. As
a consequence, the energy consumption of the non-eco-
driving vehicle tends to increase.

The figure 9 shows a focus on the speed profile at the
beginning of the trip between 0 and 1.2 km and the
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Fig. 6. Vehicles’ accelerations distribution in Trip 1 (blue:
Gipps, green: eco-MPC )
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Fig. 7. Vehicles’ accelerations distribution in Trip 2 (blue:
Gipps, green: eco-MPC )
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Fig. 8. Vehicles speed cumulative distribution in Trip 1
(left) and 2 (right) (blue: Gipps, green: eco-MPC,
dotted: δs)

impact of the Gipps behavior on the energy consumption
which increases faster than the eco-MPC one, in particular
between 200 m and 500 m.
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Fig. 9. Vehicles speed profiles (left) and energy consump-
tion (right)

A focus on the partition of the energy consumption for the
two trips are given in figures 10 and 11. The calculations
of the different non-reducible energy components, namely
the variations of kinetic, potential, rolling resistance and
auxiliaries energies, is detailed in Sciarretta and Vahidi
(2020). For equivalent scenarios, the effective energy con-
sumption, denoted ”other”, is the only term impacted by
the driving behavior. The results show that the battery
energy consumption has been reduced by 9.2% for trip 1
and 13% for trip 2, corresponding to a reduction of 22.5%
and 23%, respectively, for the effective energy.
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Fig. 10. Energy consumption results in Trip 1 (blue: ki-
netic, red: potential, yellow: rolling resistance, purple:
auxiliaries, green: others)
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Fig. 11. Energy consumption results in Trip 2 (blue: ki-
netic, red: potential, yellow: rolling resistance, purple:
auxiliaries, green: others)

6. CONCLUSION

This paper has presented an analytical approach to solve
the ED-OCP under speed and position constraints for
connected EVs. Implemented as a shrinking horizon MPC,
ED-OCP is solved in real-time guarantying the generation
of a safe eco-speed profile. The simulation platform used to
test the proposed solution includes an environment model
to emulate the surrounding impacts due to traffic, infras-
tructure and weather on the controlled vehicle. Promising
results have been obtained within this platform. The anal-
ysis shows that in an urban situation the eco-MPC reduces
the number and smooths the acceleration/deceleration
while keeping as much as possible a constant speed to gain
energy consumption. This strategy is consistent with the
results reported in Solano Araque et al. (2018).

Future work will evaluate the sub-optimality of the pre-
sented solution with a reference optimal solution obtained

with a nonlinear optimisation approach. A better consid-
eration of the leading vehicle’s trajectory will be done
to improve the anticipatory capability of the approach
and further smooth the eco-speed profile. Finally, this
algorithm will be embedded in EV and tested on open
road within the framework of the project CEVOLVER.
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A focus on the partition of the energy consumption for the
two trips are given in figures 10 and 11. The calculations
of the different non-reducible energy components, namely
the variations of kinetic, potential, rolling resistance and
auxiliaries energies, is detailed in Sciarretta and Vahidi
(2020). For equivalent scenarios, the effective energy con-
sumption, denoted ”other”, is the only term impacted by
the driving behavior. The results show that the battery
energy consumption has been reduced by 9.2% for trip 1
and 13% for trip 2, corresponding to a reduction of 22.5%
and 23%, respectively, for the effective energy.
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Fig. 10. Energy consumption results in Trip 1 (blue: ki-
netic, red: potential, yellow: rolling resistance, purple:
auxiliaries, green: others)
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Fig. 11. Energy consumption results in Trip 2 (blue: ki-
netic, red: potential, yellow: rolling resistance, purple:
auxiliaries, green: others)

6. CONCLUSION

This paper has presented an analytical approach to solve
the ED-OCP under speed and position constraints for
connected EVs. Implemented as a shrinking horizon MPC,
ED-OCP is solved in real-time guarantying the generation
of a safe eco-speed profile. The simulation platform used to
test the proposed solution includes an environment model
to emulate the surrounding impacts due to traffic, infras-
tructure and weather on the controlled vehicle. Promising
results have been obtained within this platform. The anal-
ysis shows that in an urban situation the eco-MPC reduces
the number and smooths the acceleration/deceleration
while keeping as much as possible a constant speed to gain
energy consumption. This strategy is consistent with the
results reported in Solano Araque et al. (2018).

Future work will evaluate the sub-optimality of the pre-
sented solution with a reference optimal solution obtained

with a nonlinear optimisation approach. A better consid-
eration of the leading vehicle’s trajectory will be done
to improve the anticipatory capability of the approach
and further smooth the eco-speed profile. Finally, this
algorithm will be embedded in EV and tested on open
road within the framework of the project CEVOLVER.
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