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Abstract 
 

A reactive flash algorithm based on the work of Gautam, Seider, White (Gautam and Seider, 

1979a, 1979b, 1979c; White and Seider, 1981) and Barreau et al. (2006) is presented. The orig-

inal algorithm minimizes the total Gibbs energy of the system with respect to an elemental 

material balance constraint and the overall system electroneutrality. In our approach, we per-

form the minimization taking into account the charge/electric potential contribution to the Gibbs 

energy to allow application to multiple electrolyte phases. Moreover, the composition deriva-

tives of fugacity coefficients are not ignored in the derivation of the working equations. Finally, 

the need of the overall electroneutrality equation is discussed. The algorithm is applied to a 

demixing amine system (water/DEEA/MAPA) with carbon dioxide, modeled with eNRTL for 

both phases (Mouhoubi et al., 2020). At LLE, both phases are electroneutral, chemical reaction 

equilibrium is satisfied and phase equilibrium of each molecule and ion individually has been 

established. Stability analysis based on the electrochemical potential allows the determination 

of an electroneutral ion-containing phase. Although calculations are compared with experi-

mental data, the purpose of the work was not the parameterization of the model, and therefore 

its accuracy is not addressed. Since our implementation of eNRTL did not satisfy the Gibbs-

Duhem equation, its composition derivatives were incompatible with the algorithm and certain 

terms had to be ignored. Even though the algorithm is generally expected to converge quadrat-

ically, convergence in this work resembles the one of a partial Newton method due to the omit-

ted derivative terms. 

 

keywords: phase equilibrium, chemical equilibrium, flash algorithm, liquid-liquid equilibrium, 

electrolytes 

 

1 Introduction 
 

Electrolyte liquid-liquid equilibrium (LLE) has been studied in the literature for both aqueous 

(Peng et al., 1995; Riazi and Moshfeghian, 2009; Hamta et al., 2018; Bülow et al., 2019) and 

mixed solvent solutions (Govindarajan and Sabarathinam, 1995; Chou et al., 1998; Salabat and 

Hashemi, 2007; Simoni et al., 2009b; Simoni et al., 2009a). Applications of electrolyte mixtures 

that split into two liquid phases include protein separation and purification (Peng et al., 1995), 

metal ion recovery with solvent extraction (Liddell, 2005), systems with aminoacids or poly-

mers with salts (Pazuki et al., 2008; Sadeghi and Jamehbozorg, 2009; Liu et al., 2019), ionic 

liquids (Riazi and Moshfeghian, 2009; Bülow et al., 2019), and water/oil/surfactant systems 

with surfactant dissociation (Riazi and Moshfeghian, 2009). Even in classical single liquid sys-

tems like miscible azeotropic mixtures (e.g. water/1-propanol), the presence of salts can intro-

duce a liquid-liquid split (Maribo-Mogensen et al., 2015). The phase diagrams exhibit LLE with 

upper, lower or even no critical points (Peng et al., 1994). Up to three liquid phases at 
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equilibrium have also been reported (van Bochove et al., 2002). Finally, in polymer solutions 

we can expect LLE between two aqueous phases with polymer/salt systems exhibiting certain 

advantages over polymer/polymer systems (biocompatible, nontoxic, nonflammable, low vis-

cosity, etc.) (Hamta et al., 2018). 

 

In terms of thermodynamic modeling, there is still no general consensus on the best strategy in 

LLE. It is not straightforward to accurately describe simultaneously short- and long-range 

forces of charged particles, which inevitably leads to approximate theories. The most widely 

used models for electrolyte solutions appear to be Debye-Hückel (Pazuki et al., 2008), Pitzer 

(Peng et al., 1994; Salabat and Hashemi, 2007; Hao et al., 2016) and Pitzer-Debye-Hückel 

(Ingram et al., 2012; Hamta et al., 2018). When the models are applied to a mixed-solvent, its 

properties are estimated based on the properties of the pure solvents. Other more complex the-

ories have been used for aqueous and mixed solvent solutions, such as NRTL/eNRTL (Ishidao 

et al., 2001; van Bochove et al., 2002; Simoni et al., 2007; Chen and Chen, 2008; Zafarani-

Moattar et al., 2013), UNIQUAC/extended UNIQUAC (Simoni et al., 2008; Pirahmadi et al., 

2010; Hamta et al., 2018; Liu et al., 2019), Wilson activity coefficient model (Chou et al., 1998; 

Salabat and Hashemi, 2007; Zafarani-Moattar et al., 2013; Zafarani-Moattar and Jafari, 2014), 

and LIQUAC/LIFAC (Kiepe et al., 2006). Apart from activity coefficient models, calculations 

with equations of state have also been published, such as PC-SAFT (Held et al., 2014; 

Mohammad et al., 2016a; Mohammad et al., 2016b) and eCPA with Peneloux translation 

(Maribo-Mogensen et al., 2015). LLE in polymer solutions with salts can be modeled with 

Fluory-Huggins combined with Debye-Hückel (Pazuki et al., 2008). The Othmer-Tobias cor-

relation has been used only for estimating tie lines (Vakili-Nezhaad et al., 2004; Zafarani-

Moattar et al., 2013). Furthermore, COSMO-RS with the electrolyte extension has been applied 

to solvent screening (Mohammad et al., 2016b). 

 

Compared to VLE modeling, results in LLE systems are much more sensitive to the ionic 

strength of the phases, which affects the correct representation of chemical equilibrium in each 

phase. The behavior of complexes or ion pairs is not captured adequately by models that do not 

take into account chemical speciation (Liddell, 2005). Association models that implicitly incor-

porate speciation reactions, attempt to overcome this challenge. Approaches such as the SAFT-

VR (Mac Dowell et al., 2010; Rodriguez et al., 2012) and the SAFT γ-SW (Rodriguez et al., 

2012) have been successfully applied to the carbon dioxide capture using amine solutions (ad-

sorption/desorption with e.g., MEA, DEA, AMP), providing a good match to the experimental 

data. When parameters in LLE are regressed only from VLE data, results are expected to be 

poor (Liddell, 2005). Although there have been studies for high molalities (Mohammad et al., 

2016a), correlations still seem unsatisfactory in high salt content (Gomis et al., 2004). Experi-

ments face challenges as well. Ion solvation might be slow, especially in mixed solvent solu-

tions (Gomis et al., 2004) and small amounts of salts should be expected in organic phases 

(Chou et al., 1998; van Bochove et al., 2002; Chen and Chen, 2008; Hamta et al., 2018). In 

general, LLE data are scarce (Kiepe et al., 2006). 

 

Despite the diversity of the published electrolyte LLE studies, the common focus is the descrip-

tion of the systems in terms of apparent compositions (e.g., partitioning of a salt between two 

phases). In this work we generalized a reactive flash algorithm for application to a system with 

multiple electrolyte phases by minimizing the Gibbs energy with the charge/electric potential 

contribution. Individual molecules and ions satisfy phase equilibrium, without constraining the 

analysis to a single salt or salts with different ions. Our purpose was to test an adequately com-

plex system that exhibits an LLE split. The available system came from the work of Mouhoubi 

et al. (2020), who provided parameters for the eNRTL activity coefficient model. The working 
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equations and stability analysis are rigorously derived for a model that satisfies the Gibbs-Du-

hem equation and the composition derivatives of fugacity/activity coefficients are symmetric. 

Although the algorithm eventually convergences to two electroneutral liquid phases at equilib-

rium, the expected quadratic convergence behavior of the algorithm was not observed. The 

implementation of eNRTL that was used, does not satisfy the Gibbs-Duhem, therefore it is 

incompatible with the algorithm. The use of such models in Gibbs energy minimization is dis-

cussed. 

 

2 Method 
 

2.1 Electrostatic energy 
 

To extend the procedure to phase equilibrium for individual ions, we need to take into account 

additional terms in the Gibbs energy differential. In phase α, it will include the charge/electric 

potential term: 
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where i is the component, α the phase, q the charge and ψ the electric potential. Textbooks 

usually present the Gibbs energy of Eq. (1) with temperature, pressure, mole numbers and 

charges as natural variables (Michelsen and Mollerup, 2018). However, the new work term 

does not introduce any new natural variables (Alberty, 1997), since: 
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where F is the Faraday constant and z the relative charge. We cannot report Maxwell equations 

such as: 
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because the charges are not natural variables. The notation “ j in

 ” means that we keep constant 

all 
jn  apart from in

. Collecting all the coefficients of dn, we obtain: 
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The term in the parenthesis is usually referred to as the "electrochemical potential", el : 
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The integrated form of a thermodynamic potential differential can be found with the help of 

Euler's theorem. In systems with PV work, the thermodynamic potentials are first-order homo-

geneous to their extensive variables. For the internal energy this means that, if: 
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the integrated form of the internal energy would be: 
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According to Euler's theorem, the integrated function multiplied by the homogeneity degree 

will be given as the product of intensive/extensive variables. Since the internal energy is first-

order homogeneous with respect to S, V and ni, we have: 
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However, Sørensen and Compañ (1997) address the particularity of involving the ψdq work 

term. The electrostatic energy must be given as: 
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That would mean that the Euler's theorem resulted in the following integration: 
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making the internal energy second-order homogenous with respect to the charge. This observa-

tion of Sørensen and Compañ is valid in the derivative potentials, such as the Gibbs energy used 

in this work. There are two direct consequences: 

 

• We obtain the correct "Gibbs-Duhem" equations. This "situation of mixed Euler order" 

as mentioned by the authors, does not allow one generalized Gibbs-Duhem equation, but 
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two variation equations, one for each homogeneity degree. First- and second-order vari-

ables are included in different equations, given as 

 

 

and 

 

 

Sørensen and Compañ explicitly stress the "confusion" in the literature about the correct 

integration of thermodynamic potentials and the resulting incorrect Gibbs-Duhem equa-

tion, which is usually presented as: 
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• We obtain the correct expression for the Gibbs energy. In the work of Sørensen and 

Compañ, the integrated internal energy is given by: 
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which results in the Gibbs energy being: 
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compared to the incorrect expression: 
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Eventually, the partial molar Gibbs energy is given by: 
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At constant temperature and pressure, Eq. (11) takes the form: 
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The same procedure for Eq. (12) gives: 
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Using Eq. (18) and (19) in Eq. (17), we obtain: 
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In systems with charged components, equilibrium is established at the minimum of the Gibbs 

energy, where the partial molar Gibbs energies are equal between the phases. Alberty (1997) 

prefers to call the partial molar Gibbs energy "chemical potential" to be compatible with non-

electrolyte analysis. In this work we will refer to the partial molar Gibbs energy as "electro-

chemical potential" el  [Eq. (5)] to avoid ambiguities with the classical contribution (μ) given 

by a thermodynamic model.  

 

The separation of el  into μ and an electric term must be addressed. First, Michelsen and 

Mollerup (2018) present the electrochemical potential el  of this work under the Helmholtz 

natural variables with the symbol 
ec

j  and as a combination of different contributions: 
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starting with the classical contribution 
c

j , the energy of charging each ion in the solution 
self

j

, the background potential energy 
el

j  and the dipole-ion interactions 
dip

j . Thermodynamic 

modeling of the excess Gibbs/Helmholtz energy uses charges and potentials to describe the 

non-ideality in such mixtures, but the last term (zjFψ) is not included in the models implicitly. 

It is the work term that was initially included in the internal energy differential. Second, ac-

cording to Denbigh (1981) and Guggenheim (1986), the measurement of a potential ψ differ-

ence between phases makes sense only when the phases have identical compositions, to exclude 

the influence of the chemical work. Otherwise, the authors claim that this separation is arbitrary 

and does not have a physical meaning. A calculated value of Δψ based on our analysis does not 

correspond to a measurable quantity. The only thermodynamic requirement is the equality of 
el  at equilibrium. Nevertheless, ψ differences have been identified experimentally in the lit-

erature (Haynes et al., 1991).  

 

The classical term μ is given by: 
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and its composition derivatives are: 
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where δij is the Kronecker delta and the phase amounts are found as the sum of mole numbers: 
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Second-order composition derivatives of the Gibbs energy (Maxwell relations) result in sym-

metric composition derivatives of el : 
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Differentiating Eq. (5), we get: 
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It must be mentioned that Alberty (1997) uses ψ as a constant and resorts to a Legendre trans-

form to make ψ a (natural) variable of a different thermodynamic potential. Sørensen and 

Compañ (1997) have considered an additional constant external ψ, as a "pseudo first-order" 

term in the context of Euler's theorem. In our analysis we use only the internal ψ that arises 

from the solution charges, which could be a function of mole numbers. Therefore, we do not 

eliminate ψ composition derivatives. 

 

The term μ should behave the same whether ψ = 0 or ψ ≠ 0: 
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This has a direct consequence on the derivatives of fugacity coefficients, which must be sym-

metric as well: 
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Therefore, Eq. (27) becomes: 
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2.2 Gibbs energy minimization 
 

The equilibrium state corresponds to the minimum of the Gibbs energy. For constant tempera-

ture, we can minimize the equivalent reduced Gibbs energy: 
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where: 
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The purpose of this derivation is to generalize the equations shown in Gautam, Seider and White 

(Gautam and Seider, 1979a, 1979b, 1979c; White and Seider, 1981) which were also used in 

Barreau et al. (2006). The final system of equations is similar to the one of the modified RAND 

method(White et al., 1958; Tsanas et al., 2017a; Paterson et al., 2018; Medeiros et al., 2021). 

Function Q is linearized truncating after the second term of a Taylor expansion around the 

current estimate of mole numbers: 

 

 ( )
0 0

2
0

1 1 1 1 1 1

1

2

C C CP P PN N NN N N

i i q

i i qi i q

Q Q
Q Q n n n

n n n

  

  
  = = = = = =

 
= +  +  

  
 

n n

n  (33) 

 

where: 

 

 
0,

i i in n n   = −  (34) 

 

Superscript 0 denotes the current estimate of mole numbers, chemical potentials, etc. In the 

expansion of the terms in Eq. (33), we make use of μ symmetric derivatives [Eq. (28), (29)], 

the classical Gibbs-Duhem equation [Eq. (18)] and the consequence of the symmetric el  de-

rivatives [Eq. (30)]. The approximation of function Q becomes: 

 

 

( )
( )

( )
0

0

2
,0

0

,0
1 1 1 1

2

,0
1 1 1 1

,0 ,0 ,0

1 1

1

2

ˆln1 1

2 2

1 1 1

2 2

C CP P

C CP P

CP

N NN N
ii

i i

i i i

N NN N

i
i q

i q q

NN

i i i

i i

n
Q Q z n

RT n

n
n n

n n

q n q n q n
F n


 


 

 
 

 
 


     











= = = =

= = = =

= =

 
= + +  + 

 

 
− +



  
+ − + 

  

 

 



n

n

n

 (35) 

 

In the last two terms of Eq. (35), the composition derivatives are calculated at the current esti-

mate n0. In the publications of Gautam, Seider and White (Gautam and Seider, 1979a, 1979b, 

1979c; White and Seider, 1981) derivatives of fugacity coefficients are completely ignored in 

the derivatives of the chemical potential. Such an approach is a "partial Newton's method", 

because only a part of the full second-order derivatives is utilized. A partial Newton’s method 

has the advantage of simpler implementation, but it requires more iterations to converge com-

pared with the full Newton’s method. 

  

The approximation of function Q is minimized under an elemental material balance constraint: 

 

 
1

PN


=

=A n b  (36) 

 

The elemental material balance states that the amount of the chemical elements cannot change 

due to reaction. The methods that minimize the Gibbs energy with respect to an elemental 
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material balance are called non-stoichiometric (Smith and Missen, 1982). In such cases there is 

no need of explicitly specifying which reactions take place in the system. In the presence of a 

constraint, the Lagrangian of the system is defined as: 

 

 ( ) ( ) T

1

,
PN

Q 

=

 
= − − 

 
n λ n λ A n b  (37) 

 

At the minimum: 

 

 

0

1,...,

1,...,

i

C

P

n

i N

N






=



=

=

 

0

1,...,

j

Ej N




=



=

 (38) 

 

or: 

 

 
( )

0

0

,0

,0 ,0
1

,0

1

ˆln

0

1,..., 1,...,

C

E

N
qi i

i q

qi i i

N

ji j

ji

C P

n n
z n

n RT n n n

q q A
n

i N N

  
 

   


 











=

=


= + + − +

 


+ − − =


= =





n

n

 (39) 

 

and 

 

 1 1

0

1,...,

CP NN

ji i j

ij

E

A n b

j N



 = =


= − + =



=


 (40) 

 

Throughout the calculations, we keep the phase charges equal to 0. We note: 

 

• Eq. (31) reduces to the classical Gibbs energy. The values of the Gibbs energy are not 

affected by the values of ψα.  Every phase charge is kept at 0 and the electric term vanishes 

without contributing to the Gibbs energy itself. However, the values of ψα affect the ion 

phase equilibrium. 

• The coefficients of the ψα composition derivatives in Eq. (35) and (39) are always a func-

tion of charge (current or initial estimate of charge). These terms can be ignored when the 

phase charge is always kept at 0. 

 

At equilibrium, the current estimate should be approaching the next estimate: 

 

 
,0

i i

RT RT

  
→  ,0

1i

i

n

n




→  

,0
1

n

n




→  (41) 

 

Since the terms with the derivatives are eliminated in Eq. (39) due to the Gibbs-Duhem equa-

tion, we obtain: 
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el,

1

1,..., 1,...,

EN

i i
i ji j

j

C P

z A
RT RT

i N N

 
 

 



=

+ = =

= =


 (42) 

 

Eq. (42) shows that the reduced el at equilibrium will be given by the appropriate linear com-

bination of the Lagrange multipliers. The Lagrange multipliers at equilibrium represent the 

chemical potential of the elements which were chosen in the formula matrix A. Since their 

values are phase-independent, the corresponding electrochemical potentials at equilibrium are 

the same for all phases. When the distribution of the ions is not uniform between the different 

solvent media (phases), ψα are in principle different (Haynes et al., 1991; Michelsen and 

Mollerup, 2018). Consequently, different ψα  would result in different μ. It is necessary to re-

member that the equilibrium criterion is based on el  and not on μ. 

 

Isolating the mole numbers from Eq. (39), we get: 

 

 
( )

,0
1

,0 T

1,...,

a

P

u
RT

N


   



−  
= + − − 

 

=

μ
n n M A λ z

 (43) 

 

where: 

 

 ,0

1,..., P

n
u

n

N










=

 (44) 

 

and 

 

 0

,0

ˆln

1,..., 1,...,

iq i
iq

i q

C C

M
n n

i N q N




 

 
 +



= =

n
 (45) 

 

Matrix Mα satisfies: 

 

 
( )

1

1

1,...,

CN

ij j

i

C

M n

j N

 
−

=

=

=


 (46) 

 

Eq. (43) is substituted in Eq. (40) to obtain: 

 

 ( ) ( )
,0

1 1
T

1 1

P PN N

RT


 

 

− −

= =

 
+ + = + 

 
 

μ
A M A λ Cπ Bu b A M  (47) 

 

where: 
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,0

1

1,..., 1,...,

CN

i ij j

j

E P

B A n

i N N

 



=



= =


 (48) 

 

and 

 

 
( )

1

1 1

1,..., 1,...,

C CN N

i ij jq q

j q

E P

C A M z

i N N

 



−

= =

 −

= =


 (49) 

 

The mole numbers must satisfy two additional equations. First, a relevant subset of the phases 
el

PN  < NP must be electroneutral (for more details, see section 2.4): 

 

 

T

el

0

1,..., PN





=

=

z n
 (50) 

 

Eq. (43) is substituted in Eq. (50) to obtain: 

 

 
T diag( )+ =C λ s rπ  (51) 

 

where: 

 

 
( )

1

1 1

1,...,

C CN N

i j ij

i j

P

s z z M

N

 



−

= =



=


 (52) 

 

and 

 

 
( ) ( )

1
,0

1 1

/

1,...,

C CN N

i ij j

i j

P

r z M RT

N

  



−

= =

 −

=


 (53) 

 

Second, the sum of the mole numbers in all phases must be equal to the phase amount: 

 

 1

1,...,

CN

i

i

P

n n

N

 



=

=

=


 (54) 

 

Eq. (43) is substituted in Eq. (54) to obtain: 

 

 
( )

T

1,..., P

d

N

 



=

=

B λ
 (55) 
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where: 

 

 

,0 ,0

1

1

1,...,

CN

i i

i

P

d n
RT

N

  



=



=


 (56) 

 

Eq. (47), (51) and (55) are combined in a system of equations with unknowns the Lagrange 

multipliers, the reduced electric potentials and variables u: 

 

 

( ) ( ) ( )
1 1

T ,0

1 1

T

T

/

diag( )

P PN N
RT  

 

− −

= =

   +    
    =
    
     

   

 A M A C B b A M μλ

C s 0 π r

B 0 0 u d

 (57) 

 

The dimensions of the system are NE + 
el

PN  + NP. 

 

2.3 Formula matrix, reactions and electroneutrality 
 

In stoichiometric methods the Gibbs energy is minimized with respect to reaction extents, 

whereas in non-stoichiometric methods, the Gibbs energy is minimized under the material bal-

ance constraint (Smith and Missen, 1982). We can view a reactive system either from the per-

spective of the elements or the reactions. When working on a system of NC components, we 

must make one of the following decisions: 

 

1. Our system can be described by NE independent entities (elements). The elements are 

used to define the formula matrix A and they can be interpreted as building blocks of the 

components. Assuming the number of elements, we implicitly acknowledge that a num-

ber of NR = NC – NE equilibrium reactions must take place in our system. It is not necessary 

to know these reactions to solve with a non-stoichiometric method. 

2. Our system can be described by NR linearly independent reactions. The reactions are col-

lected in the stoichiometric matrix N, which includes the stoichiometric coefficients of 

all components in all the reactions. Stoichiometric coefficients are negative for reactants, 

positive for products and zero for inerts. Assuming the number of reactions, we implicitly 

acknowledge that there are NE = NC – NR independent entities (elements) in the system. It 

is not necessary to know these elements to solve with a stoichiometric method. 

 

As Smith and Missen (1982) have pointed out, the two problems are not independent. The two 

matrices must satisfy: 

 

 =AN 0  (58) 

 

For a given A matrix, we can find infinite consistent N matrices from Eq. (58) and vice versa. 

Matrix N is the null space of matrix A and any appropriate method can be used for this calcu-

lation. Some studies (Smith and Missen, 1982) begin their analysis by listing the reactions in 

the system, but instead of using Eq. (58) to directly extract a consistent A matrix from the given 

N matrix, they construct matrix A themselves. However, A and N are not independent, therefore 
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we must make sure that the selected A matrix actually corresponds to the reactions we wish to 

equilibrate. First, the number of elements must be given by: 

 

 –E C RN N N=  (59) 

 

Examples in Smith and Missen (1982) begin with setting chemical elements as elements. To 

demonstrate an issue with blindly following such an approach, we find in the literature the 

synthesis of MTBE from isobutene and methanol: 

 

 4 8 4 5 12C H CH O C H Oi− +  (60) 

 

If the formula matrix was built directly from chemical elements, we would have: 

 

 

4 8 4 5 12C H CH O C H O

4 1 5 C

8 4 12 H

0 1 1 O

i −

=A  (61) 

 

According to Eq. (59), we would end up satisfying 3 3 0R C EN N N= − = − =  reactions. This of 

course does not correspond to the original system we intended to solve for. A correct formula 

matrix would include 2 elements for the 3 components, so that we can satisfy 

3 2 1R C EN N N= − = − =  reactions at equilibrium: 

 

 

4 8 4 5 12

4 8

4

C H CH O C H O

1 0 1 C H

0 1 1 CH O

i

i

−

= −A  (62) 

 

The following remark is relevant only in ion-containing systems. When we construct ourselves 

the formula matrix, we can potentially separate it in an atomic part (chemical elements, combi-

nation of chemical elements) and a row of the component charges (considering the electrons as 

additional elements): 

 

 
atom

T

 
=  
 

A
A

z
 (63) 

 

The charge row corresponds to the overall electroneutrality constraint: the total charge of the 

system. Overall electroneutrality is implicitly satisfied in two cases: 

 

• constructing a formula matrix with chemical elements: if the oxidation number of the 

atoms is the same in all components, the charge row in Eq. (63) is not needed. A proof 

for an equivalent statement is mentioned in Tsanas et al. (2019): if a constant charge can 

be assigned to the elements, the total system electroneutrality is unnecessary. The oxida-

tion number is used here as the "apparent" charge of the atom. 

• constructing a stoichiometric matrix with the desired reactions: if the reactions are bal-

anced in terms of atoms and charges, then a consistent formula matrix can be determined 

from Eq. (58) and the charge row is implicitly included. 
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Satisfying the overall electroneutrality means that: 

 

 
atom

atomT
rank rank( )

  
=   

  

A
A

z
 (64) 

 

When we specify chemical elements as elements, but the oxidation number of the atoms 

changes, then the charge must be included as an element. To demonstrate the necessity of the 

charge element, assume the following redox reaction: 

 

 3 2 2 3Fe V Fe V+ + + ++ +  (65) 

 

We identify the components and the chemical elements of the system. The formula matrix with 

only chemical elements is: 

 

 

2 3 2 3Fe Fe V V

1 1 0 0 Fe

0 0 1 1 V

+ + + +

=A  (66) 

 

This formula matrix will satisfy 4 2 2R C EN N N= − = − =  reactions at equilibrium, and one 

consistent reaction set is: 

 

 

3 2

2 3

Fe Fe

V V

+ +

+ +
 (67) 

 

which is not physical, because it is not electrically balanced. The correct formula matrix must 

include the charge, to satisfy 4 3 1R C EN N N= − = − =  reaction at equilibrium. 

 

 

2 3 2 3Fe Fe V V

1 1 0 0 Fe

0 0 1 1 V

2 3 2 3 z

+ + + +

=A  (68) 

 

For some readers this discussion might appear trivial. However, others may start their analysis 

by specifying their elements instead of their reactions. For a reaction scheme found in the liter-

ature of 
literature

RN  reactions that has 
literature

CN  components, the reader needs only 
literature

CN  and 

their chemical formulas to define a formula matrix in terms of chemical elements. We want to 

stress that it is important to verify that 
defined literature literature

E C RN N N= − . Otherwise, the reader will 

not satisfy the same chemical equilibrium that inspired their study. 

 

In our work, we construct the formula matrix with chemical elements and make sure they cor-

respond to the literature reactions. The separation of the formula matrix into an atomic part and 

a charge row was done only for demonstration purposes. If the charges need to be included in 

the formula matrix, they are treated as regular elements. In all equations, they appear as Aji and 

not as zi (j is the charge row). 
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2.4 Electric potential 
 

As mentioned earlier, ψα does not affect the value of the Gibbs energy when the phases are kept 

electroneutral. In the system of Eq. (57) we always determine Lagrange multipliers for all ele-

ments (NE) and variables u for all phases (NP). However, enforcing electroneutrality [Eq. (50)] 

is not necessary for every phase. Only the relevant phases (
el

PN ) must be included in the equa-

tions for the determination of π. We note the following for the determination of the electric 

potential: 

 

• electroneutrality of a single electrolyte phase is enforced by the material balance and its 

ψ can be arbitrary. 

 

When the overall electroneutrality is satisfied by the formula matrix, the single ion-containing 

phase is electroneutral due to the material balance. In this phase, ions take part only in chemical 

equilibrium. Any consistent stoichiometric matrix to the formula matrix [Eq. (58)]: 

 

 ( )f=N A  (69) 

 

must satisfy the charge balance as well: 

 

 T 0=N z  (70) 

 

The condition of chemical equilibrium based on el  is: 

  

 ( )T 0F + =N μ z  (71) 

 

or 

 

 
T T F = −N μ N z  (72) 

 

Using Eq. (70), the right-hand-side of Eq. (72) is zero for any value of ψ: 

 

 
T 0 =N μ  (73) 

 

which is the condition of chemical equilibrium in non-electrolyte systems, based on μ. There-

fore, the first ion-containing phase should be excluded from the calculation of π in Eq. (57). Of 

course, the same phase is included for the calculation of u. 

  

• non-ionic phases that are always electroneutral (e.g. vapor, solids) are not included in the 

system of Eq. (57) for the calculation of π. 

 

• values of ψ are required for the second phase with ionic species and each ion-containing 

phase after that. 

 

An arbitrary value of ψ for the first ion-containing phase will affect the ψ in any subsequent 

ion-containing phase. However, the different Δψ at equilibrium depend on the equilibrium dis-

tribution of ions and will be the same. 
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2.5 Stability analysis 
 

Stability analysis in non-electrolyte systems is based on the minimization of the reduced tangent 

plane distance: 

 

 ( ) ( ) ( )
1

1 CN

i i i

i

tpd w
RT

 
=

= −  w w x  (74) 

 

where x is the composition of the feed phase and w the composition of the trial phase. If we can 

find a trial phase composition that results in a negative tangent plane distance, a phase split is 

thermodynamically favored. When a phase does not contain charges, stability analysis is per-

formed as an unconstrained minimization of the modified tpd shown by Michelsen (1982). 

 

Michelsen’s method in electrolyte mixtures might lead to accumulation of charges during iter-

ations, because compositions are allowed to vary independently during minimization. This sub-

sequently leads to numerical issues either in the calculation of activity coefficients or solving 

the linear systems of the modified tpd minimization. When ions exist in the trial phase, we 

employ a different method. The problem is defined in terms of el  [Eq. (5)], and we need to 

minimize: 

 

 

( ) ( ) ( )el el

1

1

1
min

s.t 1

C

C

N

i i i

i

N

i

i

tpd w
RT

. w

 
=

=

 = − 

=





w
w w x

 (75) 

 

In this section, our previous observations are still valid and details will be omitted for brevity: 

 

• ψ of the trial and feed phase does not affect the value of the tpd as long as we keep the 

trial phase electroneutral. 

• in the working equations, due to electroneutrality being met at each iteration, terms with 

composition derivatives of ψ vanish. 

 

The Lagrangian is: 

 

 ( ) ( )
1

, 1
CN

w w i

i

tpd w 
=

 
= − − 

 
w w  (76) 

 

We define: 

 

 ( )ˆln ln 1i i i it w d= + − +w  (77) 

 

with: 

 

 ( )ˆln lni i i i xd x z = + +x  (78) 

 

At the minimum, the Lagrangian gradients are zero: 
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0

1,...,

i i w w

C

t z

i N

 + − =

=
 

1

1 0
CN

i

i

w
=

− =  (79) 

 

For the first iterations, we use a successive substitution method as initialization, similar to the 

approach in Tsanas et al. (2017b). Eq. (79) becomes: 

 

 ( )ˆln ln 1i i w i i ww d z  = + − − −w  (80) 

 

We keep the fugacity coefficients constant. For the Lagrange multiplier and π of the trial phase 

as independent variables, we have: 

 

 
i

i

w

w
w




=


 

i
i i

w

w
z w




= −


 (81) 

 

In a nested-loop approach, we solve in the inner loop the equations: 

 

 
1

1
CN

i

i

w
=

=  (82) 

 

and 

 

 
1

0
CN

i i

i

z w
=

=  (83) 

 

or equivalently: 

 

 

0 0 0

1 1 1

0 2 0 0

1 1 1

1
C C C

C C C

N N N

i i i i

i i iw

N N N
w

i i i i i i

i i i

w z w w

z w z w z w





= = =

= = =

   
− −   

    =     
−   
   

  

  

 (84) 

 

Mole fractions are updated by Eq. (80). In the outer loop, the fugacity coefficients are updated 

and we enter the inner loop again. For a second-order approach, we base our analysis on the 

modified RAND method (White et al., 1958; Tsanas et al., 2017a; Paterson et al., 2018; 

Medeiros et al., 2021). The modified RAND method itself is not used here. What we use is a 

similar derivation strategy as the modified RAND, to take advantage of the constraints in the 

minimization of tpd. We linearize Eq. (77) and substitute it in Eq. (82) and (83). We obtain: 

 

 
0 0

C

w

w N w +  + − =t M w z e  (85) 

 

 
0

1 1

1
C CN N

i i

i i

w w
= =

 = −   (86) 

 

and 
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0

1 1

C CN N

i i i i

i i

z w z w
= =

 = −   (87) 

 

with 

 

 
0

0

ˆlniqw i
iq

i q

M
w w

 
 +


n

 (88) 

 

Eq. (85) becomes: 

 

 ( ) ( )
1

0

C

w

N w w 
−

 = − −w M e z t  (89) 

 

By substituting Eq. (89) in (86) and (87), and taking into account that: 

 

 
( )

1

1

1,...,

CN
w

ij j

i

C

M w

j N

−

=

=

=

  (90) 

 

 we have the final system of the second-order method: 

 

 

( )

( )

10 0 0 0

1 1 1

10 0 T 0

1 1 1 1

1
C C C

C C C C

N N N
w

i i i i
i i iw

N N N N
ww w

i i i ij j i i
i i j i

w z w w

z w z M z z w





−

= = =

−

= = = =

   
− − +   

    =     
− +   

  

  

  

M t

z M t

 (91) 

 

After solving the system, updates of the mole fractions are calculated from Eq. (89). Michelsen 

(1982) incorporated a single linear constraint in the tpd objective function. This gave rise to a 

simpler problem: the unconstrained minimization of the modified tpd. In our work, we solve 

the full constrained minimization with two linear constraints. Refinements can follow to match 

the simplicity and efficiency of Michelsen's work. Nevertheless, the contribution of this study 

is the inclusion of the electroneutrality constraint, which is necessary when searching for a 

phase split to an ion-containing phase. 

 

2.6 Algorithm 
 

The system in Eq. (57) is solved iteratively. Then, the values of λ, π, and u are substituted in 

Eq. (43) to obtain the new estimates of the mole numbers. In the next iteration, the matrix and 

vector of Eq. (57) are updated with the new mole numbers. The procedure repeats until the 

error: 
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becomes less than a tolerance. The step must be controlled by the following equation: 
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 (93) 

 

to avoid negative mole numbers or accepting a step that increases the Gibbs energy. Default 

value of ω is 1 and when the step is not acceptable, ω is halved. 

 

Since the method is numerical, an initial estimate is necessary. Guessing a good starting value 

is not straightforward, therefore an initialization procedure is employed. Initialization is per-

formed by solving the original system of Eq. (57) considering constant fugacity coefficients 

(composition derivatives of fugacity coefficients are ignored). The chemical potentials are 

found during initialization by: 

 

 const lni
i ix

RT


 

= +  (94) 

 

where: 
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The fugacity coefficients are calculated based on the composition in the feed. The thermody-

namic model is therefore called only once per phase in Eq. (95) and the chemical potential will 

depend only on the logarithm of the mole fractions. The solution of the initialization corre-

sponds to the equilibrium of a hypothetical system, where the equilibrium fugacity coefficients 

are equal to the ones assumed initially. 

 

In principle, we could begin calculations with a multiphase system. However, to increase reli-

ability, a single phase is initially assumed. The initial estimate is refined with the initialization 

procedure and then the Gibbs energy is minimized for the single phase. Finally, stability anal-

ysis is used to identify convergence to a local minimum. If stability analysis detects a phase 

split, the new phase is included in the system and a new minimization is attempted. Initialization 

is not called again. The procedure is repeated until stability cannot identify any further phase 

split (stable system). 

 

2.7 Violation of the Gibbs-Duhem theorem 
 

In our work we minimize the Gibbs energy of a multiphase system with the charge contribution. 

Without loss of generality, we ignore this contribution in this section for simplicity: 
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Apart from the satisfaction of the material balance, at the minimum: 
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Any root-finding method can be used to solve Eq. (97), and if it converges successfully, the 

conditions at the minimum will be met. Given that the equations correspond to a minimum, if 

we use a method that satisfies the constraints at each iteration (feasible region), the procedure 

becomes much safer. Compared to direct root-finding, minimization methods allow the moni-

toring of the objective function. If the function increases in the current iteration, we can inter-

vene to rectify ascent directions or simply avoid overstepping the solution. 

 

The gradient of the Gibbs energy based on the thermodynamic definition is: 
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and based on the direct differentiation of Eq. (96): 
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According to the Gibbs-Duhem equation [Eq. (18)], the summation in Eq. (99) is zero and the 

gradient matches the one of Eq. (98). However, when the thermodynamic model does not satisfy 

the Gibbs-Duhem equation, the summation term persists. This creates the following problems: 

 

1. If we want to satisfy the familiar equations of chemical and phase equilibrium, the gradi-

ents should be found from Eq. (98). The solution does not correspond to the minimum of 

Eq. (96), since we did not use the real gradients [Eq. (99)]. Consequently, the method 

becomes less safe, because we cannot expect a descent direction at every iteration. 

2. If we want to minimize Eq. (96), the gradients should be found from Eq. (99). However, 

at the minimum we do not satisfy familiar thermodynamic conditions. In other words, 

phase equilibrium would not correspond to the equality of the chemical potentials, but the 

real gradients from Eq. (99). 

 

Derivations in section 2.2 use the conditions of the symmetric fugacity coefficient derivatives 

and the Gibbs-Duhem equations. These allow the simplification of the working equations to the 

system of Eq. (57). A consequence of the Gibbs-Duhem is: 
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Similar considerations apply to stability analysis in section 2.5, which appears to be even more 

susceptible, given that the objective function combines two sets of chemical potentials [Eq. 

(75)]. In this work, we used the eNRTL model that was first published by Chen and Evans 

(1986) and is also implemented in the ASPEN Plus process simulator. Activity coefficients 

from this implementation of eNRTL violate the Gibbs-Duhem equation: both Pitzer-Debye-
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Hückel and Born terms consider the solvent as a pseudo-pure component and no composition 

derivatives in density or dielectric constant are included. Different issues appear in the NRTL 

term as well. Equations and relevant comments are included in the Appendix. When our algo-

rithm converges using these equations of eNRTL, the electrochemical potentials are equal in 

all phases and they satisfy chemical equilibrium. Unfortunately, strictly speaking, this is not the 

minimum of the objective function for the reasons mentioned above. 

 

Finally, such modeling can create ambiguities in the analytical expression of the Gibbs energy. 

This is supposed to be given by: 
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Differentiating Eq. (101) should yield back those derivative terms in the summations. As we 

have seen, this is not the case when the Gibbs-Duhem equation is not satisfied. No further anal-

ysis will be attempted in this work about such models. For more information about the violation 

of Gibbs-Duhem and eNRTL, we suggest the studies of Bollas et al. (2008), Chang and Lin 

(2020).  

 

3 Results and discussion 
 

3.1 System and parameters 
 

To test the algorithm on the equilibrium of multiple electrolyte phases, we select the demixing 

amine system of water, DEEA, MAPA and carbon dioxide (Mouhoubi et al., 2020), described 

by the following set of reactions: 
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Water, DEEA and MAPA are solvents, and the remaining components are solutes. Solvents 

follow the pure saturated liquid reference state, while solvents the infinite dilution reference 

state. In the current LLE calculations, vapor pressures and Henry’s constants are not reported, 

as they eventually cancel out from the equations. The influence of the Poynting correction was 

ignored for all components. 

 

Mouhoubi et al. (2020) modeled this system with eNRTL (as further detailed in the Appendix) 

and determined binary and ternary interaction parameters using VLE data. No LLE data were 

included in the regressions. In our work, the necessary thermodynamic properties to calculate 

equilibrium are: 
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• eNRTL parameters, dielectric constants for DEEA, MAPA (modification due to different 

reference temperature) (Mouhoubi et al., 2020) 

• water dielectric constant (Khodakovskii and Dorofeeva, 1981) 

• water density (Le Blanchon Bouhelec, 2006) 

• DEEA, MAPA densities (Pinto et al., 2014a) 

• formation properties (reference state chemical potentials) (Arshad et al., 2016) 

• H3O
+ formation properties were extracted from the value of Kw (Bandura and Lvov, 

2005), while being consistent with the formation properties of water and OH- reported in 

(Arshad et al., 2016) 

 

Table 1: Constants for dielectric constant and density correlations for the solvents [Eq. (A 7)]. 

  Water DEEA MAPA 

Dielectric 

constant 

A 88.399 24.756 11.804 

B 33174.2 8992.68 4411.8 

Tref (K) 273.15 

     

Density 

(mol/L) 

A 4.9669 0.8050 2.0410 

B 0.27788 0.29387 0.41787 

C 647.13 592.0 599.0 

D 0.1874 0.28237952 0.37282388 

 

Table 2: Formation properties of H3O+ (infinite dilution mole fraction-based), as extracted from Kw 

(Bandura and Lvov, 2005). 

ΔG (kJ/mol) ΔH (kJ/mol) 

-216.996 -289.294 

 

3.2 Apparent compositions 
 

Experimental data in electrolyte systems are not always presented with speciation. Properties 

or phase splits can be reported with the apparent molecular compositions, despite the existence 

of ions at equilibrium. Apparent components take a similar meaning to the elements in a non-

stoichiometric method: they are the reaction invariant independent entities which are sufficient 

to define the equilibrium state of the system. If the overall content of those apparent species is 

given, we have enough information to determine the compositions of the true species through 

chemical equilibrium. In our work, we specify through the feed composition the elemental 

amounts in vector b [Eq. (36)]. Although vector b does not represent the equilibrium composi-

tion, it carries sufficient information to eventually calculate it. In multiphase systems, b vectors 

can be found for every phase [Eq. (48)Erreur ! Source du renvoi introuvable.]. These only 

show us the partitioning of the elements between the phases. Consequently, to reveal the true 

compositions, we need to solve single-phase chemical equilibrium for each individual phase. 

 

In contrast to our work, apparent compositions are not usually reported in terms of chemical 

elements, but preferably in terms of the few molecules that dissociate to produce the ions. Man-

ually, it would be possible to calculate the apparent composition of e.g., carbon dioxide based 

on the carbon balance as: 

 

 2
2 2 3 3

CO CO HCO CO MAPACOO
n̂ n n n n− − −= + + +  (103) 
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where the symbol n̂  corresponds to apparent mole numbers. Manual calculation is however 

tedious and error-prone. We can take advantage of the formula matrix to automate the calcula-

tion of the required apparent compositions. The steps to follow are: 

 

1. Select NE components in the system as the desired apparent components. 

2. Modify the formula matrix A by moving the columns of the apparent components to the 

front. Columns of the formula matrix represent components, while rows represent ele-

ments. 

3. Calculate the reduced row echelon form of the modified formula matrix as: 

 

  ˆ =A I A  (104) 

 

This new formula matrix corresponds to an equivalent definition of the system (same 

equilibrium solution) where component 1 is element 1, component 2 is element 2, etc. 

The remaining part of new formula matrix is simply what remains after the row operations 

to obtain this form. 

 

4. Calculate the apparent mole numbers as: 
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5. Normalize the apparent mole numbers to obtain system-size independent compositions. 

 

It is worth mentioning that the concise statement “component 1 is element 1” is misleading. 

The mole numbers of the components change due to reaction, but this is not true for the ele-

ments. When a component is defined as an element, these two share only chemical formulas, 

not properties. The elements in non-stoichiometric methods are in general abstract entities that 

do not need to be tangible (e.g., actual chemical elements). Therefore, the apparent composition 

of water in a reactive system means the composition of the element “H2O”. Real water mole-

cules in the system react and their mole numbers change. 

 

For the current system, the transpose formula and modified formula matrices are presented: 
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and: 
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Note that the last column of the transpose formula and modified formula matrices are the same. 

As a result, element 3H O+
 in the modified formula matrix corresponds to the charge and its 

apparent composition will always be 0. Only the apparent compositions of water, DEEA, 

MAPA and carbon dioxide are presented in the following section. 

 

3.3 Comparison with experimental data and convergence 
 

LLE data were obtained in apparent compositions and compared to equilibrium calculations 

(Figure 1). Pinto et al. (2014b) reported the concentrations (mol/L) of the four molecules at 

different carbon dioxide partial pressures. For the feed of the reactive flash for each experi-

mental point we calculated the average experimental composition of the two liquid phases 
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(midpoint of the experimental tie-line, Table 3) as the safest feed that could lead to an LLE 

split. The partial pressure of carbon dioxide in the original publication of Pinto et al. was not 

used. No vapor phase was identified by stability analysis, so no CO2 partial pressure was cal-

culated. 

 

Table 3: Experimental mole fractions and feed of calculations at 313.15 K. 

 
Aqueous phase 

 (Pinto et al., 2014b) 

 Organic phase 

 (Pinto et al., 2014b) 

 
Feed in calculations 

Exp. point 
number 

H2O DEEA MAPA CO2 
 

H2O DEEA MAPA CO2 
 

H2O DEEA MAPA CO2 

1 0.591 0.023 0.197 0.189  0.257 0.728 0.011 0.005  0.424 0.376 0.104 0.097 

2 0.526 0.031 0.222 0.221  0.281 0.699 0.011 0.010  0.403 0.365 0.116 0.116 

3 0.554 0.041 0.197 0.208  0.295 0.683 0.010 0.012  0.425 0.362 0.103 0.110 
4 0.564 0.041 0.191 0.204  0.308 0.667 0.012 0.013  0.436 0.354 0.101 0.109 

5 0.567 0.051 0.181 0.200  0.290 0.676 0.016 0.018  0.429 0.364 0.098 0.109 

6 0.503 0.086 0.188 0.223  0.279 0.692 0.010 0.019  0.391 0.389 0.099 0.121 
7 0.552 0.073 0.172 0.204  0.304 0.653 0.016 0.026  0.428 0.363 0.094 0.115 

8 0.558 0.078 0.164 0.201  0.330 0.615 0.022 0.034  0.444 0.346 0.093 0.117 

 

The model (eNRTL) was parametrized in Mouhoubi et al. (2020) fitting only VLE experimental 

data. Using exactly the same set of parameters, our algorithm was able to identify a liquid-liquid 

split when applied directly at the experimental LLE conditions mentioned in Pinto et al. 

(2014b). In Figure 1, the biggest deviations are found for the apparent DEEA in the aqueous 

phase. Additionally, in the organic phase, the trend between the first two experimental points 

for water and DEEA disagrees with the trend of the calculations. It must be stressed that the 

accuracy of the model is not the purpose of this work. We intended to demonstrate the feasibility 

of electrolyte LLE calculations with a non-stoichiometric algorithm. Nevertheless, given that 

the parameters of Mouhoubi et al. (2020) came from VLE data regressions, the algorithm con-

verged to a reasonable description of the two liquid phases. The VLE parameters seem to cap-

ture the experimental behavior to some extent. 

 

 
(a) 

 
(b) 

Figure 1: Comparison of experimental and calculated apparent compositions at 313.15 K and 1 bar (ex-

perimental data: points, calculations: lines). 

 

In Figure 2 the true mole fractions of the ions in each phase are presented. It is evident that the 

aqueous phase has a much higher content of ions than the organic phase. The aqueous phase 

has a higher dielectric constant, and as a result dissociation is favored. Modeling the LLE of 

the demixing amine system is necessary to obtain more meaningful description of the specia-

tion. 
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(a) 

 
(b) 

Figure 2: Composition of ions at 313.15 K and 1 bar. 

 

In Figure 3, the ionic strength, the total relative charge and the potential difference are shown 

for both liquid phases. Ionic strength is found as: 
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and the absolute value of the relative charge as: 

 

 tot

CN

i i

i

z z x =   (109) 

 

As shown in Figure 2, Figure 3(a) and (b) illustrate that both phases contain non-negligible 

amounts of charged species. The ionic strengths are above 0.1 for the aqueous phase and above 

0.0001 for the organic phase. However, the total charge of both phases is close to machine 

precision. This is the most direct validation that the algorithm has converged to the expected 

set of phases: the two phases contain molecules and ions individually at equilibrium, but they 

remain electroneutral. Furthermore, potential differences between the phases are shown in Fig-

ure 3(c). Although we cannot directly compare our potentials with any experimental data 

(Denbigh, 1981; Guggenheim, 1986), we can find measured values of potentials in Haynes et 

al. (1991) for a different system: salt concentration up to 1 mM in PEG/Dextran solutions re-

sulted in potentials up to 7-8 mV. 
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(a) 

 
(b) 

 
(c) 

Figure 3: Calculated ionic strength, total relative charge and potential difference for the two liquid phases. 

 

Finally, Figure 4 illustrates the convergence behavior of the algorithm. An initial liquid phase 

is assumed, converged, and then stability analysis introduces a second liquid phase. L and LL 

curves are shown for two convergence strategies: using composition derivatives of fugacity 

coefficients and ignoring them completely (partial Newton). Our method is similar to the mod-

ified RAND method, where quadratic convergence is expected (White et al., 1958; Tsanas et 

al., 2017a; Paterson et al., 2018; Medeiros et al., 2021). Figure 4 clearly demonstrates that in-

cluding or excluding the derivatives does not greatly impact convergence. Moreover, the num-

ber of iterations seems quite high for a Newton’s method and the convergence is linear close to 

the solution. 

 

Although we did include composition derivatives of fugacity coefficients, we were not able to 

use the full derivatives from eNRTL. The derivatives of the Pitzer-Debye-Hückel and the Born 

terms had to be ignored because they are asymmetric and they violate the Gibbs-Duhem equa-

tion (see Appendix). However, this is an essential term in ionic systems, since it describes the 

Coulombic long-range interactions. Figure 4 shows that ignoring the long-range term, leads 

practically to the convergence of a partial Newton’s method where the fugacity coefficient de-

rivatives are completely ignored. Our general recommendation is to avoid using models that 

violate the Gibbs-Duhem with a minimization method. The main point of this publication was 

to show that LLE calculations with electrolytes are possible and the converged solution satisfies 

Eq. (42). The system of Mouhoubi et al. (2020) was simply selected because it was already 

modeled, it is adequately complex and experimental data suggested that it separates into two 
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immiscible phases. Additionally, the extent of dissociation of the components is not known 

beforehand (e.g., full dissociation of NaCl), but it is controlled by chemical equilibrium. A 

fugacity/activity coefficient model that satisfies the Gibbs-Duhem and its composition deriva-

tives are symmetric is not expected to exhibit such behavior, because it’s full derivatives are 

compatible with the framework of the algorithm. 

 

 

Figure 4: Convergence of the system at 313.15 K and 1 bar. 

 

4 Conclusions 
 

The method of Gautam, Seider and White (Gautam and Seider, 1979a, 1979b, 1979c; White 

and Seider, 1981) for simultaneous chemical and phase equilibrium was re-derived to include 

composition derivatives of fugacity coefficients and was further extended for application to 

multiphase electrolyte systems. This method is similar to the modified RAND (Tsanas et al., 

2017a; Paterson et al., 2018; Medeiros et al., 2021). The algorithm minimizes an approximation 

to the reduced Gibbs energy with the charge/electric potential contribution, by solving at each 

iteration for the chemical potentials of chemical elements, the electric potentials and the phase 

amounts. The algorithm was applied to a demixing amine system modeled with eNRTL and the 

same set of parameters for both ion-containing phases. The system was chosen as it was com-

plex enough for our purpose and model parameters were already available. Calculations start 

by establishing chemical equilibrium for a single liquid phase, then stability analysis identifies 

a second liquid phase, and finally the full system is solved. Stability analysis is expressed in 

terms of the electrochemical potential. This allows the search for an ion-containing trial phase 

whose composition respects electroneutrality. The algorithm convergences to two liquid elec-

troneutral phases, where electrochemical potentials are equal for each individual component 

and chemical equilibrium is satisfied. The main difference with LLE calculations in the litera-

ture is that both molecules and ions are treated as individual components of the system without 

the limitation of full electrolyte dissociation (e.g., partitioning of NaCl). Instead of forcing 

phase equilibrium for salts (combination of ions), we allow the ions to partition individually in 

the different phases. Although the algorithm converges, we were not able to attain quadratic 

convergence rate as expected by the method. This is because the system was modeled by an 

implementation of eNRTL which does not satisfy the Gibbs-Duhem equation, and it was not 

possible to include the full derivatives of the fugacity coefficients (non-symmetric). Neverthe-

less, our priority was to demonstrate that the general equations of the algorithm can be applied 

to electrolyte LLE and converge to compositions that satisfy all the equilibrium constraints. 

However, to use the method to its full capacity and take advantage of its efficiency and relia-

bility, we advise against the use of a model that violates the Gibbs-Duhem equation. 
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Appendix: eNRTL equations 
 

To model a mixed-solvent ion-containing phase, we use the eNRTL activity coefficient model 

(Chen and Evans, 1986). The activity coefficient of a solvent follows the symmetric convention: 

 

 
PDH NRTLln ln lni i i  = +  (A 1) 

 

whereas for a solute, it follows the asymmetric mole fraction-based convention: 

 

 
PDH NRTL Bornln ln ln lni i i i   = + +  (A 2) 

 

An important point in the definition of the asymmetric activity coefficients in eNRTL is that 

they are defined with respect to infinite dilution in water: 

 

 
s

w

w

i
i

i




 
=  (A 3) 

 

In Eq. (A 3), the following convention was used: a property X in a solution with mixed solvent 

“s” defined with respect to an aqueous reference state is 
s

w X . The symbol w i


 refers to the 

symmetric infinite dilution activity coefficient of i in water. The Pitzer-Debye-Hückel contri-

bution for the solvents is: 
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and for the solutes: 
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where ρ is a parameter in the model and is equal to 14.9. The Debye-Hückel slope is calculated 

from: 
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Dielectric constants and densities are given for pure solvents as functions of temperature: 
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and the final mixture properties are found with the help of simple mixing rules, using only 

solvent components in the summations: 

 

 s

ss

1
i i i

i

x M
M

 


=   

1

s
i

i s i

x




−



 
=  
 
  (A 8) 

 

The Born contribution for the solutes is given by (CGS units): 
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The NRTL contribution follows the symmetric convention for both solvents and solutes. The 

input parameters are energy interaction and non-randomness parameters between molecules (m, 

m’), cations (c, c’) and anions (a, a’): 

 

mm   m m   ,m ca  ,ca m  ,ca ca  ,ca ca   ,ca c a   ,c a ca   

mm m m  =  , ,m ca ca m =  
, ,ca ca ca ca  =  

, ,ca c a c a ca  =  

 

Input parameters are calculated as functions of temperature: 
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and 

 

 ( )expG = −  (A 11) 

 

The equation for the activity coefficients is presented with the more straightforward formulas 

found in the documentation of ASPEN Plus, rather than the one in Chen and Evans (1986): 
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To convert the symmetric to the asymmetric activity coefficient required by the solutes, we 

need to normalize them with their infinite dilution activity coefficient in water: 

 

 ( ),NRTL

w w w wln k k k k kZ G   = +  (A 13) 

 

The auxiliary variables in the equations are: 
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• “charge” fraction 
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• ion-specific fractions: 
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• “mixing” parameters 
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After all the parameters have been calculated from Eq. (A 16) to (A 20), we can write the model 

with the general form of Eq. (A 12), where: 
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Finally, we do not account for cc’ or aa’ interactions: 

 

 0ccG  =  0cc ccG   =  0aaG  =  0aa aaG   =  (A 22) 

 

Apart from the activity coefficients, the algorithm requires the derivatives of the activity coef-

ficients with respect to composition. The expression of eNRTL is quite complex, therefore we 

adopt the following assumptions: 

 

1. The derivation of the PDH and Born activity coefficients is performed by differentiating 

the corresponding excess Gibbs energy expressions. To obtain Eq. (A 4), (A 5) and (A 

9), the differentiation assumes that the solvent properties are constant, although this is not 
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true for mixed solvents because the dielectric constant and the density depend on solvent 

composition. Following the same assumption, the derivatives of the Born activity coeffi-

cients are 0 for all solutes. 

2. The PDH term given by Eq. (A 4) and (A 5), violates the Gibbs-Duhem equation at con-

stant temperature and pressure (not thermodynamically consistent). Additionally, its de-

rivatives are not symmetric. Therefore, the derivatives of the PDH activity coefficients 

are completely ignored for all components. For the reader’s reference: 
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3. The derivation of the NRTL contribution to the activity coefficient from the correspond-

ing excess Gibbs energy expression assumes constant ion fractions Yi, although this is not 

true for multiple cations and anions. Keeping the same assumption in the differentiation 

of the activity coefficient: 
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and: 
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Consequently, in this work, for all components, solvents or solutes: 
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Mole fractions are considered independent in the model and the derivatives with respect to mole 

numbers can be found as: 

 

 
1

ln ln1
C

i i

N

j jkk
n xn

 

=

 
=

 
 (A 27) 

 

The sum of the mole numbers equal to one is not forced by the model, but externally. 


