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Abstract. This paper studies diffusion processes at different scales in two-dimensional (2D) composite media
(grain–pore porous micromodels). To model diffusion, this study uses the random walk particle tracking
(RWPT) method based on 2D analytical solutions in finite and semi-infinite domains with zero-flux boundary
conditions (BC) at grain boundaries. The analytical solutions are developed using a method of images.
Then, an RWPT combined to a Stop&Go algorithm is derived from these analytical solutions. The developed
RWPT algorithm is then used to model diffusion processes inside the pores at the “microscopic” level
(microscale), while the grain elements are assumed inaccessible to diffusion (zero-flux BC condition at the
interface grain/pore). The composite medium, where the diffusion occurs, is a numerical micromodel made
of periodic motifs of rectangular grains. Particles are initially located at the center of a pore, and diffuses in the
periodic motifs micromodel (infinite domain). First, the grains are chosen square with different sizes to vary
the porosity. Second, for constant porosities, the grains are elongated to study the effect of the anisotropy ratio
on diffusion processes. Effective macroscale properties (porosities, effective diffusion tensors, tortuosities)
are then calculated using moments of particles positions. The results obtained fit well with theoretical
expectations and are in very good agreement with results found in the literature.

Keywords. Composite media, Diffusion, Random walk particle tracking (RWPT), Discontinuities, Analytical
solutions, Porous materials, Zero flux.
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1. Introduction

Transport processes occurs in many fields of science including, mass or heat transfer problem, for
instance. In porous media, they include also solute mass transport, heat transport, and slightly
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compressible Darcy flow (pressure diffusion equation). Diffusion processes, in particular, are
important in transport phenomena, either directly (solute diffusion, heat diffusion, pressure
diffusion) or indirectly (when the local hydrodynamic dispersion of transported quantities is
modeled as a diffusion-type process on a larger scale). Treating such problems in physics could
be challenging, particularly in the case of spatially variable or discontinuous transport properties.

At the pore scale, considering a binary grain/pore medium, diffusion usually occurs inside the
pores, while the grain elements are assumed inaccessible to diffusion (extensions to aggregates
instead of grains are discussed in the conclusion Section 5). A zero-flux condition is assumed
locally at the grain/pore interfaces. When we treat the diffusion process at the macroscale level,
diffusion occurs in a homogeneous medium with macroscopic parameters (including porosity
and effective diffusion coefficients) determined via an upscaled methodology. There exist several
techniques to determine correctly the link between the transport processes at the microscale
and the effective parameters at the macroscale. In the literature, diffusion problems and their
upscaling issues have been widely treated using either volume averaging techniques [1, 2],
homogenization theory [3, 4], or moments matching techniques [5, 6]. A review on multi-scale
methods [7] has shown that homogenization still faces many challenges. Another recent study
has shown some improvements by using different levels of upscaling in modeling flow transport
in fractured media [8]. Upscaling has also been used to determine parameters for continuous
time random walk (CTRW) modeling [9]. In addition, the random walk particle methods have
also been used to obtain probability results on self-avoiding Random Walks where the “particles”
cannot cross their own path [10].

Solving the diffusion equation at various scales is possible using classical methods such as
Finite Volume or Finite Elements methods. In this study, we use particle methods. They have
been extensively used for modeling transport problems in porous soils, aquifers, and reservoirs.
They reduce or avoid some of the problems of Eulerian methods, for example, instabilities, exces-
sive artificial diffusion, mass balance, and/or oscillations that could lead to negative concentra-
tions. In the Lagrangian particle approach, diffusion processes are modeled by random walk al-
gorithms. The numerical (modeling) issues are different for the Eulerian partial differential equa-
tions (PDE) approach and for the Lagrangian random walk approach (for more details, see the
recent study of [11] and the review paper of [12]).

Previous studies have used CTRW algorithms for upscaling double porosity fractured me-
dia [13–15]. Random walk methods have also been used in many publications in order to ana-
lyze the “effective” or “macroscale” diffusion coefficient that emerges from the transport of Brow-
nian particles representing a passive tracer (heat or mass) transported in a heterogeneous or ran-
dom velocity field (e.g., [16], among others). In this study, we develop a new algorithm, using
the random walk particle tracking (RWPT) method, based on two-dimensional (2D)/three di-
mensional (3D) analytical solutions in finite and semi-infinite domains with zero-flux boundary
conditions (BC). The RWPT algorithm induced from these analytical solutions is then applied
to more complex geometries of grains and pores (that are difficult to solve analytically). Differ-
ent configurations or structures at the microscale level (e.g., grains and pores in a porous me-
dia) will be chosen in order to obtain composite isotropic media with different porosities at the
macroscale level. Then, by choosing elongated microstructures, anisotropic media emerge at the
macroscopic level. These configurations will be obtained from microscale motifs of grains and
pores with different porosities, repeated periodically and indefinitely (infinite domain grain–pore
system). Effective macroscale properties (porosities, effective diffusion tensors, tortuosities) are
then calculated for instantaneous injection (initial point source), using moments of particles po-
sitions. While standard homogenization models use steady state algorithms, the present RWPT
allows the capture of the transient dynamics of the system. The method gives additional infor-
mation on the evolution of the macro-properties through time, and thus ultimately, determines
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the representative elementary volume (REV) of the system in addition to the macro-properties.
In addition, RWPT is easily scalable with no limitations in the number of processors.

This paper is organized as follows. The next section, Section 2, presents the theory behind
RWPT methods, and the corresponding concentration-based PDE, particularly for diffusion
problems with zero-flux BC’s. Section 3 presents a generalization of particle-based methods and
algorithms for solving diffusion transport problems using RWPT in granular media with multiple
zero-flux interfaces. In Section 4, the results obtained for different geometries of grains and
pores are presented and discussed. An upscaling method using spatial moments (such as σ2

xx (t ))
is applied to the particle-based microscale simulation results in order to deduce macroscopic
diffusion properties. The conclusive Section 5 recapitulates results and discusses extensions.

2. Theory: diffusion PDE, boundaries, and random particle positions

In this first part, we introduce the equations and the formalism in order to establish zero-flux
conditions using particle methods.

2.1. PDE’s for initial-value problems in infinite domains or with one zero-flux BC

2.1.1. The Gaussian PDF of particle positions (infinite domain)

Let us define the initial-value problem (Cauchy’s problem) in an infinite porous domain:
∀t > 0; ∀x ∈R;

∂C

∂t
(x, t ) =−V

∂C

∂x
(x, t )+D

∂2C

∂x2 (x, t )

∀t > 0; lim
x→±∞C (x, t ) = 0

∀x ∈R; C (x,0) = M0

θ
δ(x −x0),

(1)

where θ is the (constant) porosity, M0 the initial mass of solute at x = x0, and C is the mass
concentration of solute per volume of solvent (kg/m in 1D).

The solution of (1) is:

∀t > 0; ∀x ∈R; C (x, t ) = M0

θ

1p
4πDt

exp

(
− (x − (x0 +V t ))2

4Dt

)
. (2)

Equation (2) can be written as follows:

∀t > 0; ∀x ∈R; C (x, t ) = M0

θ
G(x0 +V t ,2Dt ; x), (3)

where G(x0+V t ,2Dt ; x) is the Gaussian probability density function (PDF) with mean x0+V t and
variance 2Dt . In particular, G(0,2t ; x) is the fundamental solution of the diffusion equation [17].

N (µ,σ2) denotes a Gaussian random variable (RV) with meanµ and varianceσ2, which means
it has the PDF x →G(µ,σ2; x).

In 2D space, the initial-value PDE problem for pure diffusion (V = 0) is
∀t > 0; ∀(x, y) ∈R2;

∂C

∂t
(x, y, t ) = D

(
∂2C

∂x2 (x, y, t )+ ∂2C

∂y2 (x, y, t )

)
∀t > 0; lim

x,y→±∞C (x, y, t ) = 0

∀(x, y) ∈R2; C (x, y,0) = M0

θ
δ(x −x0, y − y0).

(4)

The solution of (4) is

∀t > 0; ∀x ∈R; C (x, y, t ) = M0

θ
G((x0, y0),2Dt ; (x, y)), (5)
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where G((x0, y0),2Dt ; (x, y)) is the bi-variate Gaussian PDF for 2 i.i.d. variables (independent and
identically distributed variables) with mean (x0, y0) and isotropic variance σ2

X (t ) = σ2
Y (t ) = 2Dt .

This bi-variate Gaussian solution of (4) will be used in subsequent subsections.

2.1.2. Semi-infinite domain with zero-flux BC

In a semi-infinite one-dimensional (1D) domain with a zero-flux BC at x = xBC, the diffusion
of an initial-value “source” located at x = x0 is governed by the following system of equations:

∀t > 0; ∀x ∈ ]−∞; xBC ];
∂C

∂t
(x, t ) = D

∂2C

∂x2 (x, t )

∀t > 0; lim
x→−∞C (x, t ) = 0

∀t > 0; −θD
∂C

∂x
(xBC, t ) = 0

∀x ∈ ]−∞; xBC ]; C (x,0) = M0

θ
δ(x −x0).

(6)

The solution of (6) is (7) (similar to the one found in [18, p. 363–365]): ∀t > 0; ∀x ∈ ]−∞; xBC ];

C (x, t ) = M0

θ
(G(x0,2Dt ; x)+G(2xBC −x0,2Dt ; x)). (7)

Equation (7) could be written as

C (x, t ) = M0

θ
(G(x0,2Dt ; x)+LBC(G(xBC,2Dt ; x))), (8)

where LBC is a linear application that transforms G(x0,2Dt ; x) into G(2xBC − x0,2Dt ; x). Notice
here that LBC(G(x0,2Dt ; x)) is the symmetric of G(x0,2Dt ; x) relative to x = xBC (see Figure 1).

In the 2D case considering the left half-space with a zero-flux BC on the vertical plane x = xBC,
Equation (6) becomes

∀t > 0; ∀x ∈ ]−∞; xBC ]; ∀y ∈R;
∂C

∂t
(x, y, t ) = D

(
∂2C

∂x2 + ∂2C

∂y2

)
(x, y, t )

∀t > 0; lim
x,y→−∞C (x, y, t ) = 0

∀t > 0; ∀x ∈ ]−∞; xBC ]; lim
y→+∞C (x, y, t ) = 0

∀t > 0; ∀y ∈R; −θD
∂C

∂x
(xBC, y, t ) = 0

∀x ∈ ]−∞; xBC ]; ∀y ∈R; C (x, y,0) = M0

θ
δ(x −x0, y − y0).

(9)

The solution of this equation (9) is the following combination of Gaussians: ∀t > 0; ∀x ∈
]−∞; xBC ]; ∀y ∈R;

C (x, y, t ) = M0

θ
(G((x0, y0),2Dt ; (x, y))+G((2xBC −x0, y0),2Dt ; (x, y))). (10)

The half-domain solution (10) (with zero-flux BC) will be used in subsequent subsections.

2.2. PDE solutions with zero-flux BC’s

The concentration-based analytical solutions shown in this section have been checked by direct
substitution in their respective system of equations and their initial and BC’s. They take the
form of infinite series. Using the same concept shown in this section for 2D analytical solutions,
these solutions could be extended to solve 3D problems. An analytical method, analogous to that
described in Appendix A, will be applied later to RWPT for treating multiple interfaces in 2D (see
RWPT algorithms in Section 3.2 further below).

The method used in Appendix A to obtain 2D concentration-based solutions C (x, y, t ) was
applied to different initial-boundary-value problems with cartesian parallel interfaces serving as

C. R. Mécanique — 2021, 349, n 3, 529-558
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Figure 1. Plot of different terms of (7) and (8) (analytical solutions). The red vertical line
represents the interface: BC with zero flux. The green vertical line is the initial source
position located at x = 2. The bold curves are the solutions inside the domain of interest,
while the dashed lines are the same solutions extended outside the domain. The green bold
curve is a Gaussian: it is the source solution in an infinite domain. The magenta Gaussian
curve is the symmetric of the green one relative to the interface. The bold blue curve is the
left-hand side of (7) and (8); it is the sum of the green and magenta curves.

zero-flux planes. In these problems, each and every interface is infinite. Even when the domain
is finite in one direction, the corresponding interface (orthogonal to that direction) is assumed
to be infinite. This last condition restricts the application of this method to the geometric
configurations of Figures 24–27. These configurations allow the solution to be the product of the
1D solution in one direction multiplied by the 1D solution in the other direction.

In the following Section 3.2, it is suggested that the independence between the two directions
in these concentration-based solutions implies an independence between the X (t ) and Y (t )
positions of particles. This is one of the key points of our RWPT algorithms to be implemented
for various grain–pore systems (see results in Section 4).

2.3. From particle positions to concentration

Let us consider now a particle-based method to solve initial-value problems. The concentration
will be determined from the particles positions PDF (note, in the present case, total mass M0 is
constant, and concentration C (x, t ) is proportional to PDF):

C (x, t ) =
∫
R

C (X t , t )δ(X t −x)dX t (11)

C (x, t ) =
∫
R
δ(X t −x)dmt , (12)

C. R. Mécanique — 2021, 349, n 3, 529-558
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where X t and dmt represent, respectively, the position and mass of an infinitesimal concentra-
tion packet (to be discretized as a “particle”).

3. Methods and algorithms

Based on the previously established solution principles for the concentration-based PDE’s (see
Section 2.2), this section develops an RWPT algorithm that solves diffusion problems in more
complex geometries (compared to the geometries of Section 2.2).

3.1. RWPT methods with one zero-flux BC

RWPT methods are primarily inspired from initial-value problems (see Section 2.1). These meth-
ods consider particles to be independent. Therefore, if a particle does not encounter any inter-
face, then it will be considered as if it were in an infinite domain, and follows the correspond-
ing algorithm. On the other hand, the RWPT algorithm is altered for particles that do encounter
interfaces (e.g., interface with zero-flux BC).

3.1.1. RWPT in an infinite domain

To solve (1) using particle methods in 1D, for a time t , we need to generate particles with a PDF
equivalent to (2). Thus, these particles must follow the RV N (x0 +V t ,2Dt ), hence

X t = N (x0 +V t ,2Dt ). (13)

Using simple Gaussian RV operations, we obtain

X t = x0 +V t +
p

2Dt ; ; N (0,1), (14)

where N (0,1) is a Gaussian RV, with 0 mean and unit variance.
In conclusion, the PDF of RV X t is identical to the concentration solution in (2) divided by

M0/θ.
In 2D, to solve a pure isotropic diffusion problem (4) using a particle method, Xt governed by

Xt =
(

x0

y0

)
+
p

2Dt ; ;

(
NX (0,1)
NY (0,1)

)
, (15)

where NX (0,1) and Ny (0,1) are two independent Gaussian RV’s, with 0 mean and unit variance.

3.1.2. RWPT in semi-infinite domain with zero-flux BC

Let us define ΩBC and Ω∗
BC as: ΩBC = ]−∞; xBC ] and Ω∗

BC = [ xBC;+∞ [, so ΩBC
⋃
Ω∗

BC = R.
In Section 2.1.2, we have shown that the solution of the semi-infinite domain with zero-flux
BC could be written as the sum of: the solution of the infinite domain G and its symmetric
LBC(G) relative to the position of the interface x = xBC. Both are truncated on the semi-infinite
domain ΩBC. On the other hand, LBC(G) truncated on ΩBC is the symmetric of G truncated on
Ω∗

BC. Therefore, in RWPT methods, G truncated on ΩBC represents the particles that did not
reach the interface. The particles algorithm (i.e., infinite domain algorithm) is not altered; this is
because G is the solution of the infinite domain.1 Whereas, LBC(G) truncated on ΩBC symmetry
represents the particles that crossed the interface were totally reflected (i.e., their final position is
the symmetric relative to the interface).

1These considerations (properties) are due to the linearity of the corresponding PDE problem. A superposition
principle is being applied; and there are analogies with Green’s functions approach and with the method of images as
well.
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Hence, the particles Random Walk algorithm becomes, in the presence of a zero-flux plane at
x = xBC: {

∀p X p
t = N p (x0,2Dt )

If (X p
t > xBC) X p

t = 2xBC −x0 −
p

2Dt N p (0,1).
(16)

Note here that N p is a Gaussian random variate, that is, a given realization of the Gaussian RV, for
particle number p. Since its outcome is known, it can be compared to the interface position xBC.

3.2. Multiple zero-flux interfaces for RWPT

In RWPT methods, after crossing one interface, particles may eventually cross multiple interfaces.
First, because the spatial step depends on a Gaussian RV, which has unbounded values. Secondly,
in multidimensional problems, particles located near a corner, for example, around two perpen-
dicular interfaces, might cross the interfaces forming this corner [19–22]. Thus, the algorithm
governing particles displacements must take into account such possibility. Therefore, this sub-
section proposes a generalization, analogous to the concept of Section 2.2, where the algorithm
for a single interface with zero-flux boundary (16) was used to treat multiple interfaces.

3.2.1. RWPT zero-flux BC in 1D

Using an analogous method to the one used to solve concentration-based problem with two
zero-flux BC’s (see Appendix A.1), and combining it with the RWPT algorithm for one zero-flux
BC described in Section 3.1.2, the 1D RWPT for two zero-flux BC’s becomes Algorithm 1 below.

Algorithm 1: RWPT algorithm in a bounded domain with zero-flux BC’s

∀p X p (
t n+1)= X p (

t n)+√
2D

(
t n+1 − t n

)
N n;p (0,1)

While
(
X p

(
t n+1

) ∉ [xBC1; xBC2]
)

If
(
X p

(
t n+1

)< xBC1
)

X p (
t n+1)= 2xBC1 −X p (

t n+1)
ElseIf

(
X p

(
t n+1

)> xBC2
)

X p (
t n+1)= 2xBC2 −X p (

t n+1)
End

End

Algorithm 1 calculates the final position of each particle using RWPT in a bounded 1D domain
with zero-flux BC’s. Each time a particle crosses an interface, its final position undergoes a total
reflection.

The method used in Appendix A.1 to solve the concentration-based problem with two zero-
flux BC’s is similar to the use of the method of images through infinite superpositions. Each time
the method of images was used, it corrected the new term to fit the boundary condition.

In RWPT, the method of images becomes a total particle reflection. If the new particle position
is outside the domain [xBC1; xBC2], it represents, in term of PDE’s, the tail of the solution that it is
outside of the domain and needs to be corrected again. That is why reflections are repeated until
the particle’s final position becomes inside the domain [xBC1; xBC2]. Note here that spatial steps
lengths have a finite variance because they are Gaussian distributed. This algorithm (Algorithm 1)
does not have restrictions on the time step. Therefore, the time step can be set equal to the final
simulation time.

C. R. Mécanique — 2021, 349, n 3, 529-558
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3.2.2. RWPT zero flux, interfaces in 2D

Section 2.2 presented 2D analytical solutions for various zero-flux configurations. In all these
configurations, interfaces are infinite. This condition allows the concentration-based solutions
to be the product of the 1D solution in one direction multiplied by the 1D solution in the other
direction. In RWPT, if the PDE of the stochastic process could be written as the product of the
PDE’s of its components, then the position of X and Y are independent. In this case, there are no
restrictions on the time step and the 2D RWPT algorithm can be expressed as Algorithm 1 applied
to X and Y .

On the other hand, if interfaces are not infinite, then it can be demonstrated that the
concentration-based solution cannot be written as a product of two functions with separate and
independent variables. The proposed following algorithm (Algorithm 2) is a generalization of the
infinite interface case taking into account the case of finite interfaces and complex geometries in
a Cartesian mesh.

Algorithm 2: 2D RWPT for infinite or finite interfaces with zero-flux BC

(1) Consider particle
(
p

)
with mass mp and position X (p)

1 and X (p)
2 .

(2) For i ∈ {1;2}; X (p)
i

(
t n+1)= X (p)

i

(
t n)+√

2D
(
t n+1 − t n

)
N n;p

i (0,1)

(3)

{
X (p)

i (1) = X (p)
i

(
t n+1

)
; X (p)

i (0) = X (p)
i (t n)

u = sign
(
N n;p (0,1)

)
t 0 = 0

(4) while particle (k) crosses interfaces do
(a) Calculate the times t1 and t2 when (k) reach the nearest interface in the x and y

directions
(b) [I ; tI ] = min(t1, t2); i is the direction that reached its interface first (I could be either

direction 1 or 2) and tI is its corresponding time

(c)

{
X (p)

I (0) = XInterface

X (p)
3−I (0) = X (p)

3−I (0)+u3−I
p

2D
(p

tI −
p

t 0
)

N n;p
I (0,1)

(d)
{

uI =−uI t 0 = tI

(e)

{
i ∈ {1;2} ; X (p)

i (1) = X (p)
i (0)+ui

p
2D

(√(
t n+1 − t n

)−p
tI

)
N n;p

i (0,1)

(5) end
(6) X (p)

i

(
t n+1

)= X (p)
i (1)

Algorithm 2 calculates the final position for particles using RWPT in a 2D domain with zero-
flux interfaces. Each time a particle crosses an interface, its final position undergoes a 2D total
reflection based on the analytical method of images. Particles may cross interfaces multiple times
in the same time step. Every time they do, there their position is recalculated.

3.2.3. Discussion on time step size

Algorithm 1 requires particles to encounter interfaces that are only parallel to each other.
Hence, the generalization to Algorithm 2. However, this algorithm (Algorithm 2) requires a
time step small enough that most particles do not encounter multiple horizontal and vertical
interfaces during a single time step. Therefore, the maximum spatial step of a particle should
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Figure 2. Effective diffusivity versus time step. The bold blue curve represents the effective
diffusivity plotted against the time step chosen for the simulation. The horizontal dashed
red line correspond to the value of effective diffusivity using a time step ∆t = 10−3 (or
roughly ∆t ≤ 10−2). The vertical dashed green line corresponds to the time step ∆t = 10−2

used in all subsequent simulations.

not be greater than the characteristic length of the microgeometry. This limitation could be
interpreted in terms of constraints as follows:

max(∆Xstep) ≤λPORE (17)

max
(√

2DPORE∆t Z
)
≤λPORE, (18)

where Z is a normalized Gaussian RV N (0,1).

∆t ≤ λ2
PORE

2DPORE(max(Z ))2 . (19)

For this problem of 2D grain/pore, the maximum absolute value of the Gaussian RV will not
exceed 7 in practice (knowing that the probability of the absolute value of a normal Gaussian
RV to exceed 7 is around 10−12, this probability is calculated from the cumulative distribution
function of the normal distribution). Hence, we replace (max(Z ))2 by 50, and (19) becomes

∆t ≤ 10−2 λ
2
PORE

DPORE
. (20)

In addition, we should keep in mind that for the same simulation time, a small time step
costs more in term of computational time compared to a larger time step. Hence, we choose
the largest time step that verifies condition (20). In the following subsection, we take λPORE = 1
and DPORE = 1, therefore the time step is equal to ∆t = 10−2. Furthermore, to validate ∆t = 10−2,
we repeated the same simulations with different time steps. The result in terms of the calculated
effective diffusion coefficient (explained later in Section 4.1.1) is shown in Figure 2 versus time
step size. It is clear that the constraint ∆t ≤ 10−2 is adequate, and required.
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Figure 3. 2D Micromodel motif for a 75% porosity. The red square represents the grain, the
white region represents the pore.

3.3. Grain–pore micromodel

3.3.1. Grain/pore motif and pattern

This subsection describes the first geometric configuration that will be studied. Figure 3
represents the Grain/Pore motif that will be repeated, periodically and indefinitely, to create the
infinite domain geometry. The red square corresponds to the grain while the pore is in white. The
area of the pore divided by the area of the whole motif (grain/pore), is the porosity of the motif
(in this case θ = 75%). Since the infinite domain geometry is a periodic repetition of the previous
motif (see Figure 4), then the effective porosity of the infinite domain is the same: θeff = 75%.

3.3.2. Representative elementary volume (REV)

For this kind of periodic structure, we could naively imagine that the REV would be composed
of one grain and three pores as shown in Figure 3. However, for this particular problem of
the diffusion from an initial source in an infinite domain, we will later define the REV using a
convergence criterion for macroscopic properties (such as effective diffusivity).

The first macroscopic property to be studied here is the porosity (θ). To define the REV using
the macroscopic porosity, we define first a square surface (in 3D, we would have used a volume)
in which the effective porosity is calculated. In most cases, the surface is taken as a disc (sphere in
3D), but here, in the interest of simplicity, we take a square. This area will be related to a “radius”
(distance from the center (the initial source position) to the area’s edge). This “radius” is equal to
half the edge of the square, in the case of a disc, this distance is the radius of the disc. Later we
will use this “radius” to define the limits of our REV.

Figure 5 plots the porosity inside a square against the “radius” of this square. In Figure 4, the
blue dot represents the center of the square, and the three magenta squares are examples of areas
over which the porosity is calculated. The three magenta vertical lines in Figure 5 correspond to
the magenta squares outlined in Figure 4.

Simulation time. The simulation time should be large enough for the particles to explore the do-
main consisting of one or several representative elementary volumes (REVs). Thus, the reference
size specific to the simulation time (LREF) could be a few times the typical REV length scale (LREV).
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Figure 4. 2D Micromodel comprising 20 × 20 grains (red squares). The blue dot in the
center is used as the initial source. The three square frames in magenta represent upscaling
domains of various sizes.

The simulation time can be estimated by equating the reference size (LREF) to the standard devi-
ation displacement (i.e., the so-called root-mean-square dispersion length). This yields the esti-
mated simulation time for the particle cloud to explore a few times the typical REV length scale
of the grain/pore system:

TSimu ∼ L2
REF

2Deff
. (21)

4. Results and discussion

This section analyzes the results of simulations of diffusion of an initial source inside the pores of
a composite media pore/grain. Different structures are studied, either isotropic or anisotropic
and with different porosities. For each case, an upscaling method, using the time-dependent
moments of particles positions, is applied to determine the macro-properties of the composite
media (essentially, effective porosity tortuosity, and diffusion coefficient).

4.1. Isotropic grains (λGrain,X =λGrain,Y )

4.1.1. Porosity θ = 75%

The first grain/pore configuration, where the diffusion (Algorithm 2) will be tested, is the one
described in Figure 4. An initial source diffuses inside the center of the pore at the position
(0.5;0.5). The result of the simulation is shown in Figure 6. The blue dots represents the particles
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Figure 5. Porosity profile versus “radius” of the upscaling domain expressed in pore size
units in bold blue curve. The horizontal bold red line is the effective porosity of the infinite
domain 75%. The horizontal dashed red lines are ±5% of the bold red line. The vertical
magenta bold lines correspond to the three magenta squares outlined in Figure 4.

Figure 6. 2D plot of particles positions (blue dots): result of diffusion simulation at time
tF > TSimu in the geometry of Figure 4.
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Figure 7. Zoom at the center of Figure 6: 2D plot of particles positions (blue dots) results of
diffusion simulation at time tF > TSimu, in the geometry of Figure 4.

after time tF = 20. This time is chosen so that enough particles have explored the periodic infinite
domain, which means that the particles spread over more than one REV.

Figure 7 is a zoom of Figure 6 centered on the position of the initial source (0.5;0.5). It shows
clearly that particles are found anywhere but inside the squared grains. Algorithm 2 makes
particles bounce off the grains.

After post-processing, as described in Section 2.3, Figure 8 is obtained. In this figure, concen-
trations C (x, y) were computed as 2D histograms based on the smallest histogram bins corre-
sponding pore size λPORE. They represent the 2D concentrations of particles. As one might pre-
dict, the highest concentrations are found near the center where the initial source was (0.5;0.5).
Then, the concentration drops gradually while moving further away from the center, as expected.

Effective diffusivity. There are different methods to calculate the effective diffusivity. The most
common one in the literature uses the concentration gradient in a Dirichlet bounded do-
main [23]. This study uses the second order spatial moments of particles positions M2(t ):

M2(t ) =
(
σ2

X σX Y

σY X σ2
Y

)
. (22)

If M2(t ) is diagonal then M2(t ) = σ2(t )I , with I is the identity matrix. Then, the effective
diffusivity is determined by one of the two following equations:

Deff =
σ2

2t
(23)

Deff =
1

2

dσ2

dt
. (24)

Figures 10 and 11 plot the effective diffusivity as defined in (23). The convergence of the
effective diffusivity is defined as: it is convergent when its value stays between ±1% of its final
mean value. This happens at around t = 1 close to the value predicted by (21).
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Figure 8. 2D plot of concentrations of the simulated particle cloud shown in Figure 6.

Initially, the effective diffusivity is equal to the local diffusion coefficient inside the pore. Deff

stays equal to D0 until particles start encountering grains interfaces. Then, as times goes by,
particles bounce off the grains, which limits their diffusion, and Deff starts slowly to decline, until
it converges toward its final value (because of the periodicity of the geometry), which is smaller
than D0 due to tortuosity effect.

The REV can be defined from the convergence in time of macro-properties. From Figure 11, we
determine that effective diffusivity converges at time equal to 1. Hence, the effective diffusivity
REV would have a “radius” of about

√
2Defft max(Z ). Therefore, the effective diffusivity REV

“radius” is around 8.5. On the other hand, the geometrical porosity REV “radius” is around 7 (see
Figure 5). The two REV’s sizes are relatively close, which could be explained by the dependency
between the porosity and the effective diffusivity (and their relative convergence). The small
difference between the two REV’s sizes could be explained by the approximation shape of the
REV’s, square for the porosity REV and circle for the effective diffusivity REV.

Figure 9 shows the trajectories of 3 particles. The particles circumvent the grains (red squares),
and that is what creates the tortuosity of the system.

As a comparison, we will now vary the porosity of the medium in order to investigate the effects
of porosity on the effective diffusivity.

4.1.2. Experiments with different porosities

Table 1 shows the results of different simulations with different Grain/Pore configurations.
In all the configurations tested in this table, the grains are taken as squares, characterized by
their size λGrain. Usually, we refer the tortuosity to be the ratio of the molecular diffusion to
the effective diffusion value. In the literature, we can find several definitions and empirical laws
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Figure 9. Plot of the trajectories (green, brown, and magenta) of 3 particles inside the
grain/pore system of Figure 4: the red squares are the grains and the white regions are the
pores. The bold blue dot is the initial position x = (0.5;0.5) of the three particles. The green,
brown, and magenta stars are the final positions of the particles.

Figure 10. Effective diffusivity versus time. The blue and green bold curves are the variance
of the positions X and Y respectively divided by (2∗ t ) with t is the time. The red bold line
is the mean value of the variance 0.753. The red dashed lines are ±1% of the bold red line.
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Figure 11. Log–log of Figure 2 effective diffusivity versus time. The blue and green bold
curves are the variance of the positions X and Y respectively divided by (2∗ t ) with t is the
time. The red bold line is the mean value of the variance 0.753. The red dashed lines are
±1% of the bold red line.

Table 1. Porosity versus effective diffusivity versus tortuosity for different configurations

λGrain/λPore 1 4 9 19 49 99
θ 75% 36% 19% 9.75% 3.96% 1.99%

Deff 0.753 0.586 0.542 0.521 0.508 0.504
τ2 1.33 1.71 1.84 1.92 1.97 1.98

θDeff, from this work 0.565 0.211 0.103 0.051 0.02 0.01
θDeff from [26] 0.583 0.213 — — — —

used to determine tortuosity values. For instance, [24,25] have developed correlations in order to
determine the tortuosity values. they are directly related to the gas saturation and the porosity.

Here the porosity is calculated using the formula (25):

θ = 1+λGrain,X +λGrain,Y

1+λGrain,X +λGrain,Y +λGrain,XλGrain,Y
. (25)

With isotropic grains we have λGrain,X =λGrain,Y =λGrain, and λPore = 1.
The tortuosity is calculated according to the definition of [23]:

τ2 = Dm

Deff
(26)

with Dm is the diffusion coefficient inside the pore (also denoted here D0).
For the two first columns, we are in an excellent agreement with the results reported by [26].

Unfortunately, the results for the other porosities are not available in order to completely validate
this set of numerical experiments.

Thus, the results of this work are compared with the following models (plotted in Figure 12):

• Maxwell [27] analyzed analytically a dilute suspension of spheres and obtained:

θDeff =
θ

1+ (1−θ)/2
. (27)

• Weissberg [28] used a variational method and proposed the following:

θDeff =
θ

1− ln(θ)/2
. (28)
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Figure 12. Plot of θDeff versus θ. The black, magenta, green, and red curves correspond,
respectively, to θDeff of Maxwel, Weissberg, θ1.4 and θ2 models. The green ×, brown +
correspond, respectively, to Ryan’s and Kim’s work. The bold blue circles correspond to the
results of this work in Table 1.

• Wakao and Smith [29] using a micropore macropore model proposed:

θDeff = θ2. (29)

• Kim et al. [30] proposed the empirical formulation:

θDeff = θ1.4. (30)

Figure 12 shows that the results of this study (the blue circles) are relatively close to results
found in the literature. The small differences might be due to the difference of grain shapes
(e.g., Maxwell [27] uses spherical grains for his study), or due to the grains arrangements (which
are different between studies [28–30]). However, for this particular isotropic periodic case, the
analytical expressions give very good approximations of the effective diffusivity.

Figure 13 shows clearly that the effective tortuosity of the Grain/Pore geometry tends toward
the geometric tortuosity:

τ= λGrain,X +λGrain,Y√
λ2

Grain,X +λ2
Grain,Y

(31)

as found in the literature [31]. When λGrain,X =λGrain,Y , then τ=p
2.

Figure 14 plots the tortuosity versus the porosity. This figure shows that for θ ∈ [0;0.36],
the tortuosity is linear with the porosity with a determination coefficient R2 = 99.99% and the
corresponding empirical formula is

τ≈p
2−0.3θ = τgeo −0.3θ. (32)

4.2. Anisotropic grains (λx >λy )

This subsection studies micro- and macroscopic diffusion in anisotropic geometries.
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Figure 13. Plot of Table 1. Red, blue, and green bold curves correspond, respectively, to the
squared tortuosity, the effective diffusivity, and the porosity plotted versus the anisotropy
ratio. The dashed red, blue, and green lines correspond to the squared geometric tortuosity
(τ2

geo = 2), effective diffusivity (Deff;geo = 0.5), and porosity (θgeo = 0).

Figure 14. Tortuosity versus porosity. The bold blue curve with diamonds is the tortuosity
from θ ∈ [0;0.36]. The green line is a linear (τ= 1.41−0.3θ) fitting of the blue curve with an
R2 = 99.99%. The red curve with circles is the tortuosity from θ ∈ [0;0.75].

4.2.1. Representative elementary volume (REV) for anisotropic grains

Similar to the isotropic structure, the anisotropic REV is larger than one grain and three pores.
Particles need to explore this structure multiple times to extract macroscopic properties. The
REV is defined from the convergence of macroscopic properties. For elongated grains, the REV
is elongated in the same direction as the grains. On the other hand, since particles X and Y
displacements are dependent, X and Y macroscopic properties reach their convergence at the
same simulation time.
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Figure 15. 2D concentrations of particles in anisotropic geometry with θ = 75%. The ratio
between λx and λy is 8.

4.2.2. Anisotropic geometry with porosity θ = 75%

Figure 15 shows 2D concentration histogram of the result of an anisotropic test case with
elongated grain λx /λy = 8, and with the same porosity as previously used θ = 75%. According to
the previous analysis, we can extract from our results the values of Deff;X = 0.64 and Deff;Y = 0.5.
Then it could be compared with the results available in [30]. In a similar case, with λx /λy = 7.5,
they found a value of Deff;X = 0.717 and Deff;Y = 0.175. However, it might be noticed that the
microstructure is not exactly the same as the solid particles are staggered and not in line, in
addition, the shape of the pores in [30] are elongated λX Pore/λY Pore = 0.77 while the shape in
the example of this study is taken as λX Pore/λY Pore = 8. So, it could generate different values of
tortuosity.

4.2.3. Anisotropic geometry with porosity θ = 36%

Anisotropy ratio λx /λy = 2. Figures 16–18 shows the results of the diffusion of an initial source
inside the center of a pore. The domain is a periodic repetition of a motif grain/pore with
rectangular grains. The grain’s length is two times longer than its width, and six times longer than
the width of the pore. The periodic repetition of this motif creates an anisotropic infinite domain
with a porosity of θ = 36%.

Figure 19 and its zoom Figure 20 plots the mean normalized concentration on each direction
and divided by the local porosity to obtain the concentration inside the pores. These 1D effective
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Figure 16. 3D Histogram of particles in anisotropic 2D geometry with θ = 36%. The ratio
between λx and λy is 2.

Figure 17. 3D Contour of particles positions in anisotropic 2D geometry with θ = 36%. The
ratio between λx and λy is 2.

concentration profiles were obtained by directional averaging in x and y :

C y (x) = 1

Ly

∫
C (x, y)dy. (33)
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Figure 18. 2D concentrations of particles in anisotropic 2D geometry with θ = 36%. The
ratio between λx and λy is 2.

Table 2. Macroscopic properties (effective diffusion and tortuosity on the x and y direc-
tions) for different configurations (different ratios of lengths of elongated grains) with a
fixed porosity θ = 36%

λx /λy 4/4 6/3 24/2
θ 36% 36% 36%

Deff;X 0.586 0.726 0.930
Deff;Y 0.586 0.429 0.126
τ2

x 1.71 1.38 1.08
τ2

y 1.71 2.33 7.94

It is clear that the diffusion inside the pores at the microscopic level (inside the pores) behaves as
a pure diffusion in the macroscopic level with the macro-properties calculated using moments
particles positions (see Figure 21).

Table 2 displays the results of different simulations in different configurations of grains/pores
with the same porosity θ = 36% and different anisotropy ratios a =λx /λy . For any given porosity
θ0, and any given anisotropy ratio “a”, Equation (34) gives (λx ,λy ) such that λx /λy = a, and such
that the desired macroscale porosity θ0 is satisfied:λy = 1−θ0

θ0

1+a

2a

(
1+

√
1+ 4a

(1+a)2

θ0

1−θ0

)
λx = aλy .

(34)

4.2.4. Anisotropic geometry with porosity θ = 19% and θ = 9.75%

The results shown in Tables 2–4 suggest the following trends:

• The longer a grain is in one direction, the higher its effective diffusion is in this same
direction.
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Figure 19. Effective concentration profiles C (x) and C (y) for anisotropic microgeometry:
the bold blue and red curves correspond, respectively, to the mean (on direction x and y)
concentration plotted against direction x and y . The bold green and magenta curves
correspond, respectively, to the analytical Gaussian functions with diffusive coefficient
Deff;X = 0.726 and Deff;Y = 0.429.

• When the anisotropic ratio λx /λy tends toward infinity, the effective diffusion tends
toward 1 in the direction of the elongated grains (X ), while in the opposite direction (Y )
it tends toward 0.

• For a constant porosity, we have observed that the sum of the effective diffusivity of both
directions stays constant regardless of the anisotropic ratio (see Figure 22).

The plot of effective diffusivity versus anisotropy ratio in Figure 22 shows that: for a constant
anisotropy ratio, effective diffusivities of both directions increase with the porosity. In addition,
for the configuration studied in this paper (rectangular periodic grains), the effective diffusivity
components along the X and Y directions are related to the isotropic effective diffusivity through
the following equation

Deff;iso = Deff;X +Deff;Y

2
. (35)

Equation (35) holds for a given (fixed) porosity. Deff,X and Deff,Y are effective diffusivity
components along the X and Y directions for the same anisotropic configuration, while Deff,iso

is the effective diffusivity of the isotropic configuration (λx /λy = 1).
Figure 23 shows a fit of the tortuosity obtained numerically with the following analytical

function:

τfit;Y = (τiso −τ∞)

(
λx

λy

)(3/4)

+τ∞ (36)

with τiso is the tortuosity in an isotropic configuration and τ∞ = 1 is the X tortuosity when
λx /λy →∞.
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Figure 20. Effective concentration profiles C (x) and C (y): zoom on the center of Figure 19.

Figure 21. 2D concentrations of particles in anisotropic geometry with θ = 36%. The ratio
between λx and λy is 12.
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Figure 22. Effective diffusivity versus anisotropy ratio λx /λy : the bold green curves with
stars are for porosity θ = 36%. The bold red curves with squares are for porosity θ = 19%.
The bold blue curves with circles are for porosity θ = 9.75%. For each color, the higher curve
is Deff,X and the lower curve is Deff,Y .

Figure 23. Tortuosity versus anisotropy ratio λx /λy for a porosity θ = 9.75%. The blue bold
curve with circles is τx . The bold red circles are τy . The bold green curve is the analytical
function: τfit;Y = (τiso −τ∞)(λx /λy )(3/4) +τ∞.

This fit (36) is in agreement with theoretical expectations for extreme anisotropy ratioλx /λy →
∞ (diffusion occurs only on the X direction), and for the isotropic caseλx =λy , where τfit;Y = τiso.
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Table 3. Macroscopic properties (effective diffusion and tortuosity on the x and y direc-
tions) for different configurations (different ratios of lengths of elongated grains) with a
fixed porosity θ = 19%

λx /λy 9/9 10/8 12/7 17/6 34/5
θ 19% 19% 19% 19% 19%

Deff;X 0.542 0.593 0.654 0.763 0.881
Deff;Y 0.542 0.500 0.412 0.309 0.159
τ2

X 1.84 1.686 1.53 1.31 1.13

τ2
y 1.84 2.00 2.40 3.23 6.27

Table 4. Macroscopic properties (effective diffusion and tortuosity on the x and y direc-
tions) for different configurations (different ratios of lengths of elongated grains) with a
fixed porosity θ = 9.75%

λx /λy 19/19 20/18 22/17 23/16 26/15 29/14 35/13 44/12 64/11 137/10
θ 9.75% 9.75% 9.75% 9.75% 9.75% 9.75% 9.75% 9.75% 9.75% 9.75%

Deff;X 0.521 0.534 0.583 0.605 0.628 0.673 0.715 0.782 0.852 0.948
Deff;Y 0.521 0.512 0.467 0.431 0.396 0.360 0.293 0.235 0.164 0.078

5. Conclusion and perspectives

5.1. Conclusion

This study proposed an RWPT algorithm based on 2D/3D analytical solutions (that we have ver-
ified and proved the convergence) for zero-flux conditions. The new algorithm handles multiple
reflections in the same time step, in addition to making the time step larger with less restrictions.
With these larger time steps, the RWPT algorithm becomes computationally more efficient com-
pared to previous algorithms. This efficiency is more prominent for anisotropic configurations.
The algorithm was applied for diffusion of an initial source in an infinite domain (i.e., domain
large enough so that the particles do not reach the domain edges during the simulation) with
different configurations of grains and pores (different porosities in isotropic systems, and con-
stant porosity with different anisotropic configurations). The aim is a multi-scale study from the
microscale of grains and pores to the macroscale level. It leads to macro-properties (porosity, ef-
fective diffusivity, tortuosity in different directions). The upscaling method uses time-dependent
moments of particles positions. While previous studies used steady state simulations with pe-
riodic boundary conditions. In this study, we used dynamic transient simulations in an infinite
domain, which ultimately allowed us to define the REV from the convergence in time of macro-
properties. The time step sensitivity study validated the time step choice for simulations. Results
show the scale dependence of effective diffusion dynamically through both space and time scales.
And the macro-properties converge toward the geometric theoretical values when the Grain/Pore
geometry’s porosity tends toward zero. Finally, results lead to new correlations that can be used
to better understand the upscaling of media properties.

5.2. Perspectives

The strong analogy between the stochastic and the deterministic approaches allowed us to
propose a new 2D RWPT algorithm. Similarly, using 3D deterministic approaches, the model
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can be extended to simulation in 3D instead of 2D. The new less restrictive criterion on the time
step can also help reduce the calculation time. Simulation results obtained not only complete
previous upscaling results, but also extrapolate them into new empirical correlations that can
help expend our knowledge of the upscaling. Moreover, a velocity component could be added to
the RWPT algorithm, either by combining advective and diffusive transport in a single step, or
by separating them with one diffusive sub-step followed by one advective sub-step. In addition,
the grains can be replaced by porous aggregates with their own local porosity and diffusion
coefficient (e.g., solute diffusion in a dual porous medium, or possibly, pressure diffusion in
a dual porous medium). And finally, the deterministic microgeometries of pore–grain or pore-
aggregate structures could be randomized in order to study their macroscale properties in terms
of their random structure using the same random walk particle-based approach.

Acronyms used in this text

BC Boundary conditions
PDE Partial differential equations
PDF Probability density function
1D One-dimensional
2D Two-dimensional
RWPT Random walk particle tracking
REV Representative elementary volume

Appendix A. Detailed PDE solutions under various geometries with zero-flux BC’s

A.1. 1D zero flux, finite domain

This subsection describes the method to solve 1D zero-flux problems in finite domain. This
method will be used further below to propose the RWPT algorithm for multiple zero-flux BC.

As explained in Sections 2.1.2 and 3.1.2, the solution of a semi-infinite domain with a zero-flux
boundary condition can be expressed as: the sum of the solution in an infinite domain G and
of its symmetric relative to the position of the boundary LBC1(G). This superposition approach
takes advantage of the linearity of the diffusion PDE, and it is analogous to the method of images.
Thus, LBC1(G) added to G could be considered as a correction so that it fits the first zero-flux
condition (BC1), noting that the second condition BC2 is already taken into account in the
analytical solution “G” of (3).

∀t > 0; ∀x ∈ [xBC1; xBC2];
∂C

∂t
(x, t ) = D

∂2C

∂x2 (x, t )

∀t > 0; −θD
∂C

∂x
(xBC1, t ) = 0

∀t > 0; −θD
∂C

∂x
(xBC2, t ) = 0

∀x ∈ [xBC1; xBC2]; C (x,0) = M0

θ
δ(x −x0).

(37)

Therefore, in this paper, to solve the problem of (37) with two zero-flux BC’s, we propose to
apply the same concept for both BC’s, that is, adding also LBC2(G) to the solution G so that it
fits zero-flux BC number 2 too. However, although G has now been corrected to fit both BC’s,
LBC1(G) and LBC2(G) do not fit zero-flux BC2 and BC1, respectively. Hence, once again, using the
same algorithm LBC1(G) is corrected by adding LBC2(LBC1(G)), so that LBC1(G)+ LBC2(LBC1(G))
does fit zero-flux BC2. Similarly, LBC2(G) is corrected by adding LBC1(LBC2(G)), so that LBC2(G)+
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LBC1(LBC2(G)) does fit zero-flux BC1. Equation (38) shows how G (the solution of the infinite
domain) is corrected by adding the terms to fit BC1 and BC2, respectively. Equation (38) shows
that for each correction, we add a new layer of corrections ad infinitum:

C =G +LBC1(G)+LBC2(G)+LBC2(LBC1(G))+LBC1(LBC2(G))+·· · . (38)

Equation (38) becomes an infinite series (39) after applying the concept of correction (or super-
position) indefinitely.

C = [i = 0]+∞∑
(id+LBC1)(LBC2LBC1)i (id+LBC2)(G). (39)

Equation (39) can also be written as the following infinite series:

∀t > 0; ∀xBC1 ≤ x ≤ xBC2;
θ

M0
C x

BC12(x, t )

=G(x0,2Dt , x)+ [i = 1]+∞∑
(G(−2i lx1−2 +x0,2Dt , x)

+G(2i lx1−2 +x0,2Dt , x)+G(−2i lx1−2 +xBC1 −x0,2Dt , x)

+G(2i lx1−2 +xBC2 −x0,2Dt , x) ), (40)

where lx1−2 = xBC1 −xBC2.

A.2. 2D zero flux, finite in x and infinite in y

This subsection describes the solution for a 2D zero-flux problem, finite in x and infinite in y
directions. This configuration (see Figure 24) correspond to a particle positioned between two
infinite planes, it will be used to propose the 2D RWPT algorithm for multiple zero-flux boundary
conditions.

In 2D, the solution is the product obtained by multiplying the 1D solution in x direction and
in y direction. Thus, the solution in the x and y directions are independent. In Figure 24, the
2D zero-flux finite domain in x direction and infinite in y direction, there is no BC in the y
direction. Therefore, the solution is a Gaussian in the y direction multiplied by the solution in
the x direction (40) obtained in Appendix A.1. This yields

∀t ≥ 0; ∀x1:2 ≤ x ≤ x2:3; ∀y ∈R;

θ

M0
C (x, y, t ) =G(y0,2Dt , y)× θx

M0
C x

BC12(x, t ). (41)

A.3. 2D zero flux, semi-infinite domain in x and y directions

The configuration studied in this subsection (Figure 25) correspond to a case where a particle is
located near the intersection of two interfaces.

In this problem, there is one zero-flux BC for the x and y directions. Hence, the principle of
correction (explained in Appendix A.1) must be applied so that the solution fits the zero-flux BC
in x and y directions (instead of BC1 and BC2 of the same direction as in Appendix A.1). Since x
and y are independent, then the solution of this problem (see Figure 25) is the solution of the 1D
semi-infinite problem in x multiplied by the solution of the 1D semi-infinite problem in y . Hence,
in this case the solution is not an infinite series but only the sum of four Gaussian functions.

C = (id+Lx
BC)(id+Ly

BC)(G) (42)

θ

M0
C (x, y, t ) = G((x0, y0),2Dt , (x, y))+G((2x12 −x0, y0),2Dt , (x, y))

+G((x0,2y23 − y0),2Dt , (x, y))+G((2x12 −x0,2y23 − y0),2Dt , (x, y)). (43)
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Figure 24. 2D parallel zero-flux interfaces.

Figure 25. 2D semi-infinite domain in x and y directions.

A.4. 2D zero flux, finite domain in x, finite or semi-infinite in y

This subsection describes analytical solutions for problems with different configurations (see
Figures 26, 27). The RWPT algorithm proposed further below must be able to handle particles
displacements in such configurations.

The solution of the initial-value problem finite in x and semi-infinite in y (see Figure 26) is
the solution of the 1D finite in x problem multiplied by the solution of the 1D semi-infinite in y
problem.

∀t ≥ 0; ∀x1:2 ≤ x ≤ x2:3;

θ

M0
C (x, y, t ) = [G(y0,2Dt , y)+G(2yBC − y0,2Dt , y)]

θx

M0
C x

BC12(x, t ). (44)

The solution of the initial-value problem finite in x and y (see Figure 27) is the solution of the
1D finite in x multiplied by the solution of the 1D finite in y problem.
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Figure 26. 2D finite domain in x and semi-infinite in y .

Figure 27. 2D finite domain in x and y .

∀t ≥ 0; ∀x1:2 ≤ x ≤ x2:3;

θ

M0
C (x, y, t ) = θy

M0
C y

BC12(y, t )
θx

M0
C x

BC12(x, t ). (45)
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