Supporting Information

Novel four dimensional approach for the structural characterization of neutral nitrogen compounds in vacuum gas oils using UHPLC-IM-QqToF analysis

Julie Guillemant[†], Alexandra Berlioz-Barbier^{*†}, Luis P. de Oliveira[†], Marion Lacoue-Nègre[†], Jean-François Joly[†], and Ludovic Duponchel^{*}[‡]

† IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, 69360 Solaize, France

‡ Univ. Lille, CNRS, UMR 8516 - LASIR – Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille, France

* Correspondence should be addressed to Dr. Alexandra Berlioz-Barbier or Prof. Ludovic Duponchel:

alexandra.berlioz-barbier@ifpen.fr or ludovic.duponchel@univ-lille.fr

Table of contents

Figure/Table	Reference	Page
Macroscopic properties of the samples	Table S1	S-2
UHPLC elution conditions	Table S2	S-3
Possible reaction pathway of benzocarbazoles hydrogenation	Figure S1	S-4
Evolution of the relative intensities of basic compounds as a function of DBE	Figure S2	S-5
Possible reaction pathway of dibenzocarbazoles hydrogenation	Figure S3	S-6
Possible hydrogenation mechanisms of N1O1 and N1S1 species leading to N1 products	Figure S4	S-7

Sample	Туре	Nitrogen content (ppm)	Basic nitrogen (ppm)	% HDN conversion
Feed	SRVGO	1335	347	-
HDT 3	HDT	534	79	62
HDT 2	HDT	825	70	41
HDT 1	HDT	1100	310	21

Table S1:	Macroscopic	properties	of the	samples

Table S2: UHPLC elution conditions

Column: Acquity UPLC CSH Phenyl-Hexyl (Waters, Milford, MA, USA) of dimensions 100 mm \times 2.1 mm \times 1.7 μm

Flow rate: 0.6 mL/min

Injection volume: 5 µL

Mobile phases: (A) H₂O + 0.5 mM ammonium acetate

(B) (50% MeOH + 50% ACN) + 0.5 mM ammonium acetate

Retention time (min)	% A	%B
0	45	55
0.5	45	55
15	20	80
20	0	100
25	0	100
25.3	45	55
30	45	55

Figure S1: Possible reaction pathway of benzocarbazoles hydrogenation

Figure S2: Evolution of the relative intensities of basic compounds as a function of DBE

Figure S3: Possible reaction pathway of dibenzocarbazoles hydrogenation

Figure S4: Possible hydrogenation mechanisms of N1O1 and N1S1 species leading to N1 products

