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I. INTRODUCTION

Soft Glassy Materials (SGM) are ubiquitous in our everyday life. They encompass a broad range of viscoelastic materials that are key to out-of-equilibrium living organisms and omnipresent in major industries, e.g., foodstuff, personal care, and building industry [START_REF] Gibaud | New routes to food gels and glasses[END_REF][START_REF] Ioannidou | The crucial effect of early-stage gelation on the mechanical properties of cement hydrates[END_REF][START_REF] Spicer | Complex fluid formulations: A source of inspiration and innovation[END_REF] . SGMs are composed of sub-units such as particles or polymers, whose interactions and volume fraction control the macroscopic mechanical properties of these soft materials [START_REF] Sciortino | One liquid, two glasses[END_REF][START_REF] Bonnecaze | Micromechanics of soft particle glasses[END_REF][START_REF] Ruiz-Franco | Tuning the rheological behavior of colloidal gels through competing interactions[END_REF] . In practice, SGMs display solid-like properties at rest and under small strains, whereas they yield and flow like liquids when submitted to a large enough strain [START_REF] Barnes | The yield stress -a review of 'panta rei'everything flows?[END_REF][START_REF] Bonn | Yield stress materials in soft condensed matter[END_REF] . At rest, their solid-like behavior originates either from the presence of attractive interactions between constituents, which form a space-spanning network at low volume fractions, or from the jamming of the constituents for large enough volume fractions. The former category of SGMs is referred to as gels, whereas the latter category is referred to as soft glasses [START_REF] Bonn | Yield stress materials in soft condensed matter[END_REF][START_REF] Zaccarelli | Colloidal glasses and gels: The interplay of bonding and caging[END_REF][START_REF] Lu | Colloidal particles: Crystals, glasses, and gels[END_REF] . Beside volume fraction and particle interactions, an additional control parameter of SGM properties at rest is the route followed towards the solid-like state through the shear history experienced during the liquid-to-solid transition. In soft glasses, oscillatory shear deformation of moderate amplitude can be used to mechanically encode some memory into the material through local plastic deformations [START_REF] Fiocco | Encoding of memory in sheared amorphous solids[END_REF][START_REF] Lavrentovich | Period proliferation in periodic states in cyclically sheared jammed solids[END_REF][START_REF] Keim | Memory formation in matter[END_REF] . The imprint of the shear protocol may subsequently be read out by a strain sweep from small to large amplitudes [START_REF] Mukherji | Strength of mechanical memories is maximal at the yield point of a soft glass[END_REF] . Similar memory effects have been identified in colloidal gels [START_REF] Schwen | Embedding orthogonal memories in a colloidal gel through oscillatory shear[END_REF] , where shear history significantly affects the microstructural and mechanical properties [START_REF] Altmann | Strong through to weak 'sheared' gels[END_REF][START_REF] Koumakis | Tuning colloidal gels by shear[END_REF][START_REF] Moghimi | Colloidal gels tuned by oscillatory shear[END_REF] . Indeed, depending on its inten-sity, mechanical shear may either enhance or compete with the attractive interactions driving the formation of clusters, which play a key role in the solid-like behavior of the sample upon flow cessation [START_REF] Zaccone | Elasticity of arrested short-ranged attractive colloids: Homogeneous and heterogeneous glasses[END_REF][START_REF] Whitaker | Colloidal gel elasticity arises from the packing of locally glassy clusters[END_REF] . Moreover, upon partial yielding, gels often break down in a spatially anisotropic way [START_REF] Varadan | Shear-induced microstructural evolution of a thermoreversible colloidal gel[END_REF][START_REF] Hoekstra | Multi length scale analysis of the microstructure in sticky sphere dispersions during shear flow[END_REF][START_REF] Rajaram | Microstructural response of dilute colloidal gels to nonlinear shear deformation[END_REF][START_REF] Masschaele | Flow-induced structure in colloidal gels: direct visualization of model 2d suspensions[END_REF][START_REF] Landrum | Delayed yield in colloidal gels: Creep, flow, and re-entrant solid regimes[END_REF][START_REF] Boromand | Structural fingerprints of yielding mechanisms in attractive colloidal gels[END_REF] , and such anisotropy gets frozen into the gel microstructure during flow cessation [START_REF] Colombo | Superposition rheology and anisotropy in rheological properties of sheared colloidal gels[END_REF][START_REF] Moghimi | Residual stresses in colloidal gels[END_REF] . In that framework, shear history strongly impacts the rheological properties of colloidal gels, both in their fluidized state as weakly aggregated suspensions and upon flow cessation, when they reform into a viscoelastic solid. The present article is devoted to the rheological fate of a colloidal gel composed of boehmite particles after shear is applied with a constant rate. In the rest of this introduction, we briefly recall the phenomenology of thixotropy in colloidal gels and how their sensitivity to shear can be used to induce "memory" effects and tune their microstructure. We then present the state-of-the-art specific to boehmite gels and summarize our main results.

When a shear stress much larger than the yield stress is applied to a colloidal gel, its microstructure is broken down into clusters of particles with attractive interactions. In such a suspension, the balance between hydrodynamic forces and internal cohesive forces determines whether shear induces aggregation, break-up or internal restructuring of the cluster [START_REF] Harshe | Experimental and modeling study of breakage and restructuring of open and dense colloidal aggregates[END_REF][START_REF] Bubakova | Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state[END_REF] , among which the latter two phenomena are thermally activated [START_REF] Conchúir | Mechanism of flow-induced biomolecular and colloidal aggregate breakup[END_REF] . Starting from a fully dispersed state, i.e., from a suspension of individual particles, increasing the shear rate accelerates the growth and decreases the size of clusters, whose steadystate properties depend on both the shear rate and the particle concentration [START_REF] Oles | Shear-induced aggregation and breakup of polystyrene latex particles[END_REF][START_REF] Serra | Aggregation and breakup of particles in a shear flow[END_REF] . More generally, for any configuration in the fluidized state, i.e., partially or fully dispersed, the gel response during transient flows depends on whether the shear is increasing or decreasing. This effect leads to thixotropy and rheological hysteresis, which are ubiquitously observed when measuring a constitutive equation, shear stress σ vs. shear rate γ34,35 . Such hysteresis loops have been characterized through their area, which is maximum for a critical sweep rate of the shear, pointing towards a thixotropic timescale that is characteristic of the sample [START_REF] Divoux | Rheological hysteresis in soft glassy materials[END_REF][START_REF] Radhakrishnan | Understanding rheological hysteresis in soft glassy materials[END_REF][START_REF] Jamali | Multiscale nature of thixotropy and rheological hysteresis in attractive colloidal suspensions under shear[END_REF] . Thixotropy thus relates to the sample "memory" of the past shear history.

Another manifestation of shear-induced memory in colloidal gels occurs upon flow cessation. Indeed, it is now well-established that the microstructure of the gel that rebuilds once shear is stopped is strongly affected by the value of the previously applied shear rate. For instance, Koumakis et al. [START_REF] Koumakis | Tuning colloidal gels by shear[END_REF] have shown that high shear rates fully break the structure of depletion gels of poly(methyl methacrylate) colloids and lead, after shear cessation, to more homogeneous and stronger gels. In contrast, preshear at low shear rates creates largely heterogeneous and much weaker gels with reduced elasticity [START_REF] Koumakis | Tuning colloidal gels by shear[END_REF] . Such sensitivity to shear history has often been presented as a limitation that needs to be overcome to accurately control the properties of colloidal gels. However, shear history can be used as a way to finely tune the liquid-to-solid transition and the resulting microstructure of the gel formed after flow cessation [START_REF] Moghimi | Colloidal gels tuned by oscillatory shear[END_REF] . In that spirit, shear-assisted gelation of colloidal suspensions of carbon black particles was controlled through the rate of flow cessation, which allows tuning the microstructure of the gel continuously [START_REF] Helal | Simultaneous rheoelectric measurements of strongly conductive complex fluids[END_REF] . Fast flow cessations lead to strong gels with a highly connected microstructure, whereas slow flow cessations produce weaker gels composed of poorly connected aggregates. These results were further confirmed by means of a rheo-impedance study on more complex mixtures, e.g., carbon black suspensions in a semisolid flow batteries solvent [START_REF] Narayanan | Mechanical history dependence in carbon black suspensions for flow batteries: A rheo-impedance study[END_REF] , and more recently on carbon black suspensions in propylene carbonate through shear rheology coupled with small angle neutron scattering [START_REF] Hipp | Structureproperty relationships of sheared carbon black suspensions determined by simultaneous rheological and neutron scattering measurements[END_REF] .

To summarize, the microstructure of colloidal gels is exquisitely sensitive to shear history. This leads to shearinduced memory not only through reversible, thixotropic effects under flow, but also through permanent modifications of the microstructure after flow cessation. The present work is concerned with the latter type of memory effects, which we also identify with the "shear-induced tunability" of colloidal gels recently introduced in the literature [START_REF] Koumakis | Tuning colloidal gels by shear[END_REF][START_REF] Moghimi | Colloidal gels tuned by oscillatory shear[END_REF] . In the case of model spherical particles with short-range attractive interactions, the interplay between shear and microstructure can be rationalized in terms of a dimensionless ratio, called the Mason number Mn, comparing the strength of the shear flow to the interparticle bond force at contact [START_REF] Boromand | Structural fingerprints of yielding mechanisms in attractive colloidal gels[END_REF][START_REF] Markutsya | Characterization of sheared colloidal aggregation using langevin dynamics simulation[END_REF][START_REF] Varga | Large scale anisotropies in sheared colloidal gels[END_REF][START_REF] Varga | Hydrodynamics control shear-induced pattern formation in attractive suspensions[END_REF] . At low Mason number, Mn < 10 -2 , a gel behaves as a viscoelastic solid. For intermediate values, 10 -2 ≤ Mn ≤ 1, constant breakup and reformation of interparticle bonds results in a complex heterogeneous dynamics, whereas for Mn > 1 the gel is fluidized into a weakly aggregated suspension of clusters and particles [START_REF] Jamali | Time-ratetransformation framework for targeted assembly of short-range attractive colloidal suspensions[END_REF] . Yet, this framework, which holds for model spherical particles, might not account for particles with complex shape and interactions, including chemical reactions and irreversible binding, thus calling for further experimental investigations of non-spherical colloidal gels of industrial interest.

In the present paper, we study the impact of shear history on gels of boehmite, an aluminum oxyhydroxide (AlO(OH)), which is a precursor of gamma alumina (γ-Al 2 O 3 ) widely used in industries to design catalyst supports [START_REF] Euzen | Handbook of porous solids[END_REF][START_REF] Xiong | Hydrothermally stable heterogeneous catalysts for conversion of biorenewables[END_REF][START_REF] Zheng | Peptization mechanism of boehmite and its effect on the preparation of a fluid catalytic cracking catalyst[END_REF] . These gels are part of a large family of systems, whose primary sol-gel transition involves chemical reactions, which result in the formation of strong aggregates that are unbreakable, even when submitted to extended period of high shear rate. Note that aside boehmite gels, other examples include dispersions of silica colloids in presence of a sufficient amount of salt, whose addition triggers the fast and irreversible aggregation of the colloids through the formation of permanent interparticle siloxane bonds [START_REF] Depasse | The stability of amorphous colloidal silica[END_REF][START_REF] Depasse | Coagulation of colloidal silica by alkaline cations: Surface dehydration or interparticle bridging?[END_REF][START_REF] Kurokawa | Avalanche-like fluidization of a non-brownian particle gel[END_REF] . These systems are thus composed of complex building blocks most of which are unbreakable aggregates of the original colloids. Following this peculiar "primary" sol-gel transition, the properties of boehmite gels are stable in time, and cycles of shearinduced fluidization followed by gelation upon flow cessation can be consistently repeated. Such "secondary" sol-gel transitions are the topic of the present study in which we focus on the impact of the shear rate applied during the shear-rejuvenation step.

In practice, starting from a sample that has experienced a primary sol-gel transition in quiescent conditions, we impose a shear-rejuvenation step at a shear rate γp , following which the flow is stopped and the sample left at rest. The linear and nonlinear viscoelastic properties of the gel that eventually reforms are monitored before imposing a new shear-rejuvenation step with a different shear rate. We explore three decades in values of γp to determine the impact of shear history on boehmite gels over a broad range of Mason numbers. Following this protocol, we show that after a primary gelation, boehmite gels can be rejuvenated reversibly by an external shear, whose intensity strongly impacts the subsequent properties of the gels that reform following flow cessation. In particular, we identify a critical shear rate γc , above which boehmite gels display a gel-like viscoelastic response upon flow cessation, similar to that obtained following the primary gelation. However, for shear rejuvenation such that γp < γc , boehmite gels display upon flow cessation a glassy-like viscoelastic spectrum together with enhanced elastic properties. The value of γc is found to be independent of both the boehmite and acid concentration over the range explored.

In light of the framework built on the Mason number, we propose an interpretation of our observations in which gels sheared at γp > γc are fully rejuvenated and fluidized into individual unbreakable aggregates, which yields a gel upon flow cessation that shows similar mechanical and microstructural properties to that obtained after a primary gelation. On the contrary, shearing gels at γp < γc results in the shear-induced formation of marginally stable clusters of larger dimensions than in the primary gel, and of anisotropic shape, leading to enhanced elastic properties. The latter scenario, in which the gel is not fully rejuvenated but instead encodes some memory of the flow history into its microstructure, is a prototypical example of what was recently coined "directed aging" in the literature [START_REF] Pashine | Directed aging, memory, and nature's greed[END_REF][START_REF] Hexner | Effect of directed aging on nonlinear elasticity and memory formation in a material[END_REF] . Finally, we demonstrate that imposing stress ramps, instead of abrupt flow cessation, allows us to continuously tune the linear and non-linear rheological properties of boehmite gels between the two extreme cases discussed above. Our results show that shear history is a promising candidate for tailoring the microstructure of catalyst supports obtained from these soft precursors. They could also be relevant to a wider range of colloids as they do not seem to depend on the specific aggregation kinetics that initiate the gelation.

II. MATERIALS AND METHODS

A. Preparation of boehmite gels

Boehmite gels are prepared by adding a boehmite powder (Plural SB3, Sasol) to an aqueous solution of nitric acid [START_REF] Ramsay | Structure and stability of concentrated boehmite sols[END_REF][START_REF] Drouin | Rheology and structure of peptized boehmite pastes[END_REF][START_REF] Cristiani | Study of the physico-chemical characteristics and rheological behaviour of boehmite dispersions for dip-coating applications[END_REF] . Unless specified otherwise, the boehmite and acid concentrations are respectively 123 g.L -1 and 14 g.L -1 , which corresponds to a solid volume fraction of 4% in boehmite. These concentrations were chosen to produce dilute gels, whose secondary gelation takes place within a few seconds after flow cessation. In practice, the boehmite powder is dispersed into a solution of nitric acid, first by mixing at 600 rpm during 20 min before mixing at 1800 rpm during 15 min. The result is a suspension containing anisotropic primary particles with a typical size of about 10 nm 48,57-59 (see sketch in Fig. 1). This suspension is left at rest for at least one week prior to any rheological test. Indeed, while the primary sol-gel transition occurs after a couple of hours, it takes several days for the pH of the suspensions to stabilize at pH = 3.5 due to the dissolution and the surface charging of the alumina [START_REF] Cristiani | Study of the physico-chemical characteristics and rheological behaviour of boehmite dispersions for dip-coating applications[END_REF][START_REF] Fauchadour | Peptization mechanisms of boehmite used as precursors for catalysts[END_REF] . The presence of the nitrate anion NO - 3 screens the electrostatic repulsive interactions between the positively charged surfaces of the boehmite particles [START_REF] Zheng | Peptization mechanism of boehmite and its effect on the preparation of a fluid catalytic cracking catalyst[END_REF][START_REF] Speyer | Peptization of boehmites with different peptization index: An electron microscopy and synchrotron small-angle x-ray scattering study[END_REF][START_REF] Wood | Electrochemistry of the boehmite-water interface[END_REF][START_REF] Raybaud | Morphology and surface properties of boehmite (γ-AlOOH): A density functional theory study[END_REF] , which eventually self-assemble into unbreakable aggregates of diameter 2R ag 100 nm as determined from light scattering measurements on sheared dilutions of primary gels 62 , and in good agreement with previous cryo-TEM measurements on similar boehmite dispersions [START_REF] Fauchadour | Peptization mechanisms of boehmite used as precursors for catalysts[END_REF] . These aggregates are subject to short-range van der Waals attractive interactions and, as sketched in Fig. 1, further assemble into a percolated network of large clusters of typical diameter 2R cl 300-1200 nm as determined from light scattering measurements 62 . The elastic properties of these gels are dominated by the fractal nature of the clusters, which results in a power-law increase of the gel storage modulus with the boehmite content [START_REF] Drouin | Rheology and structure of peptized boehmite pastes[END_REF][START_REF] Shih | Scaling behavior of the elastic properties of colloidal gels[END_REF] . Finally, under external shear, these gels display a strong thixotropic behaviour as evidenced by broad hysteresis loops up to large shear rates [START_REF] Chang | Rheological properties of aluminum hydroxide sols during sol-gel transition[END_REF] [see Fig. 8 in Appendix A].

B. Experimental set-up and protocol

Rheological measurements are performed in a smooth cylindrical Couette geometry (height 58 mm, rotating inner cylinder of radius 24 mm, fixed outer cylinder of radius 25 mm, gap e = 1 mm). The cell is topped with a homemade lid to minimize evaporation, and the rotor is connected to a stress-controlled rheometer (AR-G2, TA Instruments). The Couette cell is immersed in a water bath, allowing all the experiments to be performed at a fixed temperature of (20.0 ± 0.1) • C.

First, we determine the rheological properties of a pristine or "primary" gel, which forms for the first time in quiescent conditions, i.e., in the absence of any external shear. In practice, a fresh sample is loaded in the Couette cell right after its preparation and submitted to the three following steps : (i) a period of rest of 3000 s during which the linear viscoelastic properties are monitored under small-amplitude oscillatory shear (f = 1 Hz, γ = 0.1%), followed by (ii) a frequency sweep of total duration 156 s from f = 10 Hz to f = 0.1 Hz at γ = 0.1%. Finally, we perform (iii) a strain amplitude sweep of total duration 275 s from γ = 0.01 % to γ = 100 % at f = 1 Hz to determine the nonlinear response and the yield strain of the sample.

Following the primary sol-gel transition, the properties of the samples are stable in time, provided that the sample does not suffer from evaporation, i.e., typically over 12 h with our experimental setup. The core of the present study is performed on non-pristine samples, i.e., gels obtained by "secondary" gelations, which experience multiple sequences of shear and rest periods following their primary gelation. In practice, a large batch of about 75 mL of pristine gel is prepared and kept at rest in a closed container of volume 100 mL for at least seven days. For a given series of measurements, 7.5 mL of this pristine gel is transferred into the Couette cell. The sample is then rejuvenated by shearing at a constant shear rate γp during 600 s. After shear rejuvenation, the secondary gelation process is characterized by the exact same three-step protocol (i), (ii), and (iii) described above. Such shear rejuvenation and secondary gelation are successively repeated for nine values of shear rates γp ranging from 2 s -1 to 1000 s -1 . Since the experiments are performed on the same sample, the values of γp are chosen in a random order to make sure that the elastic modulus obtained afterwards is related to γp and not to some aging phenomena associated with accumulated strain.

III. EXPERIMENTAL RESULTS

A. Impact of the shear-rejuvenation step on the gel linear viscoelastic properties

Figure 2 shows the temporal evolution of the gel linear viscoelastic properties during the primary gelation, and for a series of four subsequent secondary gelations, each preceded by a 600 s preshear of constant intensity γp = 2, 10, 100 s -1 and 500 s -1 . During the primary gelation, the formation of a space-spanning colloidal network, defined as a first estimate by the crossover point between G and G , occurs after about t 100 s. The gelation dynamics are noticeably faster for the subsequent gelations, where the crossover takes place within the first 20 s, independently of the shear rate γp applied during the rejuvenation step. Moreover, for all the secondary gelations, the storage modulus G increases over time and reaches a plateau at t 1000 s, which value G 0 depends on the applied shear rate γp during the rejuvenation step. A first important result is that the terminal values of G 0 and G 0 reached at the end of a secondary gelation following strong shear rejuvenation (i.e., γp = 100 s -1 and 500 s -1 ) are comparable with those obtained after the primary gelation. On the contrary, gels obtained after shear rejuvenation at a low intensity show stronger viscoelastic properties, by a factor of about 2.5 for the storage modulus and 4 for the loss modulus.

The terminal state of the four secondary gelations are further characterized by measuring the linear viscoelastic spectrum over two decades of frequency. For both the primary and secondary gelations, the storage modulus shows a logarithmic increase with the frequency [Fig. 3(a)], whose slope is larger in the case of gels formed after a rejuvenation step of low shear rate, whereas the loss modulus hardly depends on f [Fig. 3(b)]. Concomitantly, the loss factor tan δ allows us to split the data into two groups: the loss factor is an increasing function of the frequency for the primary gel and secondary gels formed after a rejuvenation step of high shear rate, whereas the loss factor is a decreasing function of f for FIG. 2. Temporal evolution of (a) the storage modulus G and (b) the loss modulus G for a primary gelation (×), and for subsequent secondary gelations all preceded by a 600 s shear rejuvenation under various shear rates γp = 2 s -1 ( ), 10 s -1 ( ), 100 s -1 (•), 500 s -1 ( ). For secondary gelations, the origin of time is taken at the end of the shear-rejuvenation step. Viscoelastic properties are measured under small-amplitude oscillatory shear (f = 1 Hz, γ = 0.1 %).

secondary gels formed after a rejuvenation step of low shear rate [Fig. 3(c)]. This second remarkable result suggests that gels formed after a low shear rate display a different microstructure than the primary gel and secondary gels formed after a rejuvenation step of high shear rate.

To get a better sense of the impact of the shear rate applied during the rejuvenation step, we have systematically explored the impact of γp applied during the shearrejuvenation step preceding secondary gelations. The results are gathered in Fig. 4, where we report over three decades of γp , the stress σ p at the end of the shearrejuvenation step, the terminal value of the gel storage modulus G 0 determined 3000 s after the end of the rejuvenation step, and the slope n characterizing the logarithmic dependence of the loss factor with f , i.e., G ∼ n log f . These three observables exhibit two distinct behaviors separated by a critical shear rate γc = 30±10 s -1 . More specifically, the stress at the end of the shearrejuvenation step σ p does not exhibit a clear dependence on γp for γp < γc , whereas σ p increases logarithmically with γp for γp > γc [Fig. 4(a)]. Moreover, secondary gelations following a rejuvenation step such that γp < γc lead to stronger gels, with G 0 = 1250 ± 150 Pa, whereas secondary gelations following a rejuvenation step such that γp > γc lead to gels of elasticity comparable to that of a primary gel, i.e., G 0 = 500 ± 150 Pa vs G 0 = 580 Pa, respectively [Fig. 4(b)]. Remarkably, the storage modulus is roughly independent of the shear rate on both sides of γc . Finally, a similar binary outcome is found on the slope n of the logarithmic scaling of the loss factor tan δ with frequency [Fig. 4(c)]. For γp < γc , n is negative, whereas for γp > γc , n is positive similarly to what is observed for a primary gelation [Fig. 3(c)]. This last result shows that on both sides of γc , the gels display opposite relaxation behaviors [START_REF] Winter | Glass transition as the rheological inverse of gelation[END_REF] , which points to significant differences in the microstructure of gels reformed after shear rejuvenation above or below γc . 

B. Impact of the shear-rejuvenation step on the gel nonlinear viscoelastic properties

We now turn to the impact of the shear rate γp on the nonlinear response of boehmite gels and on their yielding scenario. Figure 5(a) shows the evolution of G and G during a strain sweep for gels obtained after two rejuvenation steps performed at low and high shear rate, respectively γp = 2 s -1 and 500 s -1 . At low strain amplitude, i.e., γ 1 %, both gels display a strain-independent response, which is mainly elastic, i.e., such that G 0 G 0 . Upon increasing the strain amplitude γ, the storage modulus decreases monotonically and departs from the linear regime at a strain γ 0 defined arbitrarily as G (γ 0 ) = 0.95G 0 . Concomitantly, the loss modulus increases and shows a maximum in the vicinity of the yield strain γ y , defined as the locus of the crossover between G and G , before decreasing for γ > γ y . Throughout the linear regime and above γ 0 , the amplitude σ of the oscillatory stress response increases up to the yield point, beyond which it becomes roughly strain independent [Fig. 5(b)]. Finally, the loss factor shows a similar monotonic trend for both gels, which is indicative of the transition from a solid-like response to a liquid-like one beyond γ y [Fig. 5(c)]. To summarize, the monotonic decrease of G (γ) and the non-monotonic shape of G (γ), which are prototypical of the nonlinear response of numerous yield stress fluids including colloidal gels [START_REF] Gibaud | Shear-induced fragmentation of laponite suspensions[END_REF][START_REF] Gibaud | Heterogeneous yielding dynamics in a colloidal gel[END_REF][START_REF] Grenard | Timescales in creep and yielding of attractive gels[END_REF] and glasses [START_REF] Mason | Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition[END_REF] , dense emulsions, and foams [START_REF] Mason | Elasticity of com-pressed emulsions[END_REF][START_REF] Cohen-Addad | Rheology of foams and highly concentrated emulsions[END_REF] , are qualitatively insensitive to the shear rate γp of the shear-rejuvenation step.

We note, however, that the strain γ 0 that marks the end of the linear regime and the yield strain γ y show a similar evolution for the whole range of shear rates γp under study, as illustrated in Figs. 6(a) and 6(c). More precisely, secondary gelations following shear rejuvenation at γp < γc yield gels where γ 0 and γ y increase for increasing γp , whereas γp > γc leads to gels with con-stant strain values, i.e, γ 0 3.5% and γ y 38%, independent of γp . These values are comparable to those measured following a primary gelation, namely γ 0 5% and γ y 29%.

We now focus on the stress σ 0 at the onset of the nonlinear regime and the yield stress σ y , which respectively correspond to the amplitudes of the stress responses measured for strain amplitudes γ 0 and γ y [see Fig. 5(b)]. The dependence of σ 0 and σ y with the shear rate γp applied during the shear-rejuvenation step is reported in Figs. 6(b) and 6(d). Except perhaps for a weak maximum at γp γc , the two characteristic stresses σ 0 and σ y do not show any clear systematic trend with γp . Note that the evolution of σ 0 and σ y are very similar to those of G 0 γ 0 and G 0 γ y , respectively [see grey squares in Figs. 6(b) and 6(d)], which suggests that σ 0 and σ y are essentially governed by the product of the elastic modulus and the corresponding characteristic strain. The fact that the stress mainly coincides with the product of the elastic modulus and the strain at the yield point suggests that the yielding transition, which can be described as a continuous transition from recoverable to non-recoverable strains [START_REF] Petekidis | Yielding and flow of colloidal glasses[END_REF][START_REF] Donley | Elucidating the g overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition[END_REF] , is here rather abrupt.

Finally, beyond the yield point, the decrease of the storage and loss modulus are both well fitted by powerlaw decays G ∼ γ -ν G and G ∼ γ -ν G [see Fig. 9 in Appendix B]. The dependence of the exponents ν G and ν G with γp is reported in Fig. 6(e), while that of the ratio ν G /ν G is reported in Fig. 6(f). The decrease in G beyond the yield point is all the more steep than γp is large, i.e., ν G increases with γp , whereas the corresponding exponent for G is poorly sensitive to the shear rate γp . Interestingly, for γp < γc , the ratio ν G /ν G is roughly constant, with ν G /ν G 2. Such a ratio of about 2 has been reported in other soft glassy materials such as carbopol microgels [START_REF] Migliozzi | Investigation of the swollen state of carbopol molecules in non-aqueous solvents through rheological characterization[END_REF] , fumed silica grease [START_REF] Zakani | Dynamic rheological properties of a fumed silica grease[END_REF] , or colloid-polymers mixtures [START_REF] Koumakis | Direct comparison of the rheology of model hard and soft particle glasses[END_REF][START_REF] Truzzolillo | Rheological detection of caging and solid-liquid transitions in soft colloidpolymer mixtures[END_REF] , and is linked to the way the relaxation time of the sample changes under large strains. The specific ratio ν G /ν G = 2 has been interpreted through simple arguments based upon a Maxwell model, and derived theoretically from Mode-Coupling Theory [START_REF] Miyazaki | Nonlinear viscoelasticity of metastable complex fluids[END_REF][START_REF] Wyss | Strain-rate frequency superposition: A rheological probe of structural relaxation in soft materials[END_REF] . Here, for γp > γc , the ratio continuously increases up to ν G /ν G 3 for the largest explored shear rates, which shows that shear rejuvenation of large intensity yields a microstructure with a strikingly different evolution of its relaxation time across the yielding transition.

C. Impact of flow cessation following shear rejuvenation on the gel viscoelastic properties

In all the experiments reported above, the 600 s shearrejuvenation step was performed at a fixed intensity γp , to allow for a direct comparison of the evolution of G 0 γy with that of σy. Same symbols, color code, and error bar estimations as in Fig. 4.

and followed by an abrupt flow cessation by imposing γ = 0 s -1 . In the present section, we explore the impact of flow cessation when performed over a finite duration ∆t by means of a decreasing ramp of shear stress. In practice, after 600 s of shear rejuvenation at γp = 500 s -1 , the flow is switched to stress-controlled by imposing σ = σ p 50 Pa, the latest stress value recorded at the end of the 600 s rate-controlled period. The stress is then swept down from σ p to 0 Pa by discrete steps of amplitude 1 Pa over a total duration ∆t ranging from ∆t = 0 s to ∆t 13000 s As shown in the previous two sections, shear rejuvenation at γp > γc followed by an abrupt flow cessation yields a gel of storage modulus G 500 Pa. When the flow cessation is performed over a finite duration of increasing value, the storage modulus increases up to a value G 1000 Pa that is comparable to that obtained after shear rejuvenation at γp < γc followed by an abrupt flow cessation [see black arrow in To conclude, varying the duration of the flow cessation following shear rejuvenation at γp > γc allows us to tune continuously the viscoelastic properties of boehmite gels. Moreover, slow enough flow cessation following shear rejuvenation at γp > γc provides the boehmite gel with the same properties as shear rejuvenation at γp < γc followed by an abrupt flow cessation (see Fig. 10 in Appendix C). This result shows that the key parameter controlling the terminal properties of the gel at rest is not the largest shear rate imposed to the gel, but rather the period of time during which the sample was sheared at γ < γc .

IV. DISCUSSION

Let us now summarize and discuss the results of the present study. The primary sol-gel transition of a boehmite suspension leads to the aggregation of colloidal particles with a typical size of 10 nm, into aggregates of radius about 100 nm. These aggregates are unbreakable under shear and act as the new building blocks for any subsequent gelation. The primary gel is therefore constituted of a space-spanning percolated network of clusters of such aggregates. Under external shear the gel yields and turns into a suspension of these clusters, which reorganize under flow and reassemble upon flow cessation, through a secondary gelation. Such a secondary gelation yields consistent and reproducible results that can be repeated numerous times on the same sample provided that it does not suffer from solvent evaporation.

Here we have shown that the terminal properties of the gel depend on the exact value of the shear rate γp applied during the shear-rejuvenation step. We have identified a critical shear rate γc that delineates two different macroscopic viscoelastic properties upon flow cessation. As shown in Appendix D where we use a rough shearing geometry, this phenomenology is a robust property of boehmite gels. Thus, our results suggest that shear rejuvenation leads to two different microstructures that we now proceed to tentatively describe on both sides of γc .

On the one hand, a boehmite gel obtained by an abrupt flow cessation following shear rejuvenation at γp > γc is characterized by a storage modulus G 500 Pa comparable to that of the primary gel, and by a viscoelastic spectrum where both the storage and loss moduli are increasing functions of frequency. Moreover, the loss factor tan δ also increases with frequency in the same way as the primary gel. Such a viscoelastic spectrum is typical of a weak colloidal gel [START_REF] Trappe | Scaling of the viscoelasticity of weakly attractive particles[END_REF][START_REF] Prasad | Universal features of the fluid to solid transition for attractive colloidal particles[END_REF] , in which the fastest relaxation modes (associated with high frequencies) dominate [START_REF] Winter | Glass transition as the rheological inverse of gelation[END_REF] . These observations strongly suggest that the sample is fully fluidized for γp > γc , and that the microstructure that reforms upon flow cessation is similar to that of the primary gel, i.e., a percolated network of small clusters of a few hundred nanometers [see sketch in Fig. 7(b)].

On the other hand, a boehmite gel obtained by an abrupt flow cessation following shear rejuvenation at γp < γc is characterized by a storage modulus larger than that of the primary gel by a factor of up to 3. Moreover, the viscoelastic spectrum involves a storage modulus that is an increasing function of frequency, whereas the loss modulus is independent or a mildly decreasing function of frequency, similar to aging systems including gels [START_REF] Aime | Power law viscoelasticity of a fractal colloidal gel[END_REF][START_REF] Mills | Relating chemical composition, structure, and rheology in alkali-activated aluminosilicate gels[END_REF] and soft glasses [START_REF] Purnomo | Glass transition and aging in dense suspensions of thermosensitive microgel particles[END_REF] . Within the studied frequency range, the loss factor tan δ decreases with increasing frequency, i.e., the slowest relaxation modes dominate, which is reminiscent of a glass-like viscoelastic spectrum [START_REF] Winter | Glass transition as the rheological inverse of gelation[END_REF][START_REF] Del Gado | Slow dynamics in gelation phenomena: from chemical gels to colloidal glasses[END_REF][START_REF] De Michele | Scaling between structural relaxation and particle caging in a model colloidal gel[END_REF] . This suggests that the boehmite gel sheared at γp < γc displays a microstructure composed of clusters larger than those constituting the microstructure of the primary gel. Such a conclusion is supported by previous experimental and numerical observations that moderate shear during the sol-gel transition of a colloidal suspension favors the growth of denser and thus stronger aggregates [START_REF] Becker | Restructuring of colloidal aggregates in shear flows and limitations of the free-draining approximation[END_REF][START_REF] Lieu | Restructuring capability of nonfractal aggregate in simple shear flow[END_REF] . Yet, our observation that the elasticity of boehmite gels is enhanced for γp < γc strikingly contrasts with the results of Ref. [START_REF] Koumakis | Tuning colloidal gels by shear[END_REF] on gels of spherical colloidal particles formed through depletion attraction. There, it was shown that preshear at "low" rates yielded weaker gels with reduced elasticity due to a largely heterogeneous microstructure inherited from that acquired during shear. To resolve this apparent contradiction, we propose that the shearassisted growth of the clusters of boehmite unbreakable aggregates results in some structural anisotropy within the clusters [see sketch in Fig. 7(a)].

Shear-induced anisotropy has indeed been reported many times both in 2D colloidal assemblies through direct visualization [START_REF] Masschaele | Flow-induced structure in colloidal gels: direct visualization of model 2d suspensions[END_REF][START_REF] Hoekstra | Flow-induced anisotropy and reversible aggregation in twodimensional suspensions[END_REF] and in 3D colloidal gels through small-angle light and x-ray scattering [START_REF] Varadan | Shear-induced microstructural evolution of a thermoreversible colloidal gel[END_REF][START_REF] Hoekstra | Multi length scale analysis of the microstructure in sticky sphere dispersions during shear flow[END_REF] . Very recently, Kao et al. [START_REF] Kao | Shape anisotropy enhances the elasticity of colloidal gels through mechanisms that act multiplicatively[END_REF] have demonstrated that, for a given volume fraction in aggregating particles, increasing the particle anisotropy yields gels with a lower fractal dimension and enhanced elastic properties up to a factor 10. In our case, the shape anisotropy would affect the clusters that form under shear, while the building blocks, i.e., the unbreakable aggregates formed upon the primary gelation, remain unchanged. Although more structural investigations are obviously required to confirm such a scenario, we believe that shear-induced anisotropy could easily account for an increase by a factor of 3 in the gel elastic modulus obtained upon cessation of shear at γp < γc . Note also that an indirect proof of such anisotropy could lie in the decrease of the yield strain for decreasing shear rejuvenation intensity [Fig. 6(d)]. Indeed, the anisotropy encoded in the gel microstructure by a continuous shear is expected to strengthen the material along that specific direction of shear [START_REF] Larson | A review of thixotropy and its rheological modeling[END_REF][START_REF] Wei | Time-dependent shear rate inhomogeneities and shear bands in a thixotropic yield-stress fluid under transient shear[END_REF] . Moreover, a more anisotropic microstructure should also result in a lower resistance of the gel to a change in the shear direction [START_REF] Grenard | Timescales in creep and yielding of attractive gels[END_REF] . Since the yield strain is determined by a strain amplitude sweep during which the flow direction changes periodically, we may interpret the decreasing trend seen in γ y upon decreasing γp as the signature of an increasing level of anisotropy.

In that framework, we may further propose a microscopic origin for the critical shear rate γc . Assuming that a gel rejuvenated at γp < γc displays a microstructure involving clusters made of several unbreakable aggregates of the primary gel, the transition at γc = 30 s -1 corresponds to a critical Mason number Mn c = 6πη s R 2 cl γc /F , where η s = 1 mPa.s is the solvent viscosity, here water, R cl 150-600 nm the typical cluster radius, and F the interaction force between two aggregates in a cluster. We may further estimate F as the van der Waals force between two aggregates of radius R ag , namely F = -A H R ag /(24h 2 ), with A H the Hamaker constant and h the typical distance between the two aggregates [START_REF] Hamaker | The london-van der waals attraction between spherical particles[END_REF] . This leads to Mn c = 144πη s h 2 R 2 cl γc /(A H R ag ). Taking A H = 5.2kT and h 10 nm for boehmite particles [START_REF] Nakouzi | Impact of solution chemistry and particle anisotropy on the collective dynamics of oriented aggregation[END_REF][START_REF] Krzysko | Correlating interparticle forces and particle shape to shear-induced aggregation/fragmentation and rheology for dilute anisotropic particle suspensions: A complementary study via capillary rheometry and in-situ small and ultra-small angle x-ray scattering[END_REF] , we get Mn c = 0.03-0.5, which is compatible with a transition controlled by the Mason number [START_REF] Jamali | Time-ratetransformation framework for targeted assembly of short-range attractive colloidal suspensions[END_REF] .

In other words, as pictured in Fig. 7, shear rejuvenation at γp > γc leads to the complete separation of all clusters into unbreakable aggregates that subsequently percolate at rest into an isotropic microstructure similar to that of the primary gel. For γp < γc , however, moderate shear allows for the growth of larger and denser clusters of anisotropic shape. The microstructure of a gel exposed to low shear rates is shaped by the external shear, thus bearing some memory of the rejuvenation step through the anisotropy of the microstructure. In this context, stronger gels are obtained when the sample is sheared for a sufficient period of time at γp < γc , which suggests that (i) shear rejuvenation at γp < γc followed by an abrupt flow cessation, and (ii) shear rejuvenation at γp > γc followed by a slow decreasing ramp of stress should lead to similar microstructures and mechanical properties, in agreement with the results discussed in section III C.

The above scenario is mostly based on the shearinduced anisotropy of clusters that form a percolated network. As such, this scenario should neither depend on the boehmite concentration, nor on the acid concentration. To check this hypothesis, we have repeated the measurements reported in sections III A and III B for four different gel compositions. The results summarized in Figs. 13 and14 in Appendix E confirm the robustness of the phenomenology reported in the main text and that the critical shear rate γc does not change over a broad range of boehmite and acid concentrations.

Finally, our results on boehmite gels show some apparent similarities with previous studies on shear-induced flocculation in colloidal suspensions destabilized by salt. For instance, a critical shear rate γc 100 s -1 was previously identified, while monitoring the aggregate size in flocculating suspensions of latex particles under shear in a Taylor-Couette cell [START_REF] Selomulya | Aggregation mechanisms of latex of different particle sizes in a controlled shear environment[END_REF] . For γ > γc , the aggregate size increases monotonically in time to reach a steady-state value, whereas for γ < γc , the aggregates size displays an overshoot, characterized at long times by a substan-tial decrease at constant mass, hence corresponding to a restructuring and a densification of the aggregates. As reviewed in Ref. [START_REF] Bubakova | Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state[END_REF] , similar results were reported in different geometries, e.g., a mixing tank equipped with various types of impellers [START_REF] Spicer | The effect of impeller type on floc size and structure during shear-induced flocculation[END_REF][START_REF] Selomulya | Evidence of shear rate dependence on restructuring and breakup of latex aggregates[END_REF] , and for non-Brownian particles, e.g., precipitated calcium carbonate [START_REF] Antunes | Modelling pcc flocculation by bridging mechanism using population balances: Effect of polymer characteristics on flocculation[END_REF][START_REF] Sang | Flocculation of precipitated calcium carbonate (PCC) by cationic tapioca starch with different charge densities. I: Experimental[END_REF] . These reports from the literature indicate that γc ∼ 50 -100 s -1 for a broad variety of systems and experimental configurations. This suggests that the restructuring of the aggregates under shear in the limit of low shear rate, i.e., low Peclet number, is generically linked to the strengthening of the elastic properties observed in gels rejuvenated at γp < γc . Nonetheless, the comparison between the literature on shear-induced flocculation and our results cannot be pushed further for none of these previous studies have characterized the rheological properties of the gels that form upon flow cessation after shear rejuvenation below or above γc . Moreover, previous cluster size measurements were performed on fully dispersed suspensions, whereas our experiments are performed on boehmite gels in their solid-like state. Therefore, comparisons with previous studies should be considered with caution. In order to fully unveil the restructuring scenario below γc , future experiments will focus on (i) measuring the flow profiles during shear rejuvenation, in order to determine whether the flow remains spatially homogeneous or whether it displays heterogeneities such as shear bands, wall slip or fractures, and (ii) characterizing the microstructural differences, including the anisotropy, induced by the shear history thanks to small-angle light and x-ray scattering measurements. The method used to fit the decay of the storage and loss moduli beyond the yield point defined by γ y is illustrated in Fig. 9. Both G and G are fitted for γ ≥ γ y with power laws whose exponents n G and n G respectively, are reported in Fig. 6(e) in the main text. Note that the exact range of strain fitted to determine these exponents may vary by one or two points between data sets. Figure 10 illustrates the impact of the rate of flow cessation on the frequency dependence of the loss factor tan δ. Abrupt flow cessation from γp > γc yields a gel such that tan δ increases with the frequency f . Decreasing the rate of flow cessation yields gels whose loss factor is less dependent on f . Finally, gels obtained after a slow flow cessation show a loss factor that is a decreasing function of f and resembles that of gels prepared through an abrupt flow cessation from γp < γc [compare with Fig. 3(c) in the main text].

Appendix D: Impact of boundary conditions

To address quantitatively the impact of boundary conditions on the main results of the present work, the shear protocol reported in the main text has been repeated using a rough rotor (surface roughness δ 40 µm obtained by gluing sandpaper) instead of a smooth rotor.

Figures 11 and12 show a direct comparison of the linear and non-linear viscoelastic properties of the same boehmite gel measured with either a smooth rotor (red squares) or a rough rotor (pink diamonds). Up to experimental uncertainty, the results are the same over the entire range of shear rates γ applied during the rejuvenation step, except maybe for σ p at low γ. These experimental results show that, if present, wall slip does not affect the conclusions presented in the manuscript, and that the critical shear rate γc , which separates the two different rheological regimes, is a robust property of boehmite gels. 

Appendix E: Impact of the gel chemical composition

On top of the sample with 123 g.L -1 of boehmite and 14 g.L -1 of nitric acid reported in the main text, we have investigated the four supplementary compositions gathered in Table I by following the same shear rejuvenation and characterization protocols. The impact of boehmite and acid concentrations on the various linear and nonlinear rheological observables is reported in Figs. 13 and14, respectively. For the sake of clarity, the storage modulus G 0 is normalized by G c , defined as the value of G 0 extrapolated at γp = γc , while the shear rate γp used for shear rejuvenation is normalized by γc .

The storage modulus G 0 of boehmite gels increases steeply with the concentration of boehmite [inset in Fig. 13(a)], whereas it is roughly insensitive to a change of the acid concentration for a given boehmite content [inset in Fig. 14(a)]. Yet, for all gel compositions, the storage modulus G 0 can be rescaled onto a master curve that shows two distinct values on both sides of a critical shear rate γc . Shear rejuvenation at γp < γc always yields a higher storage modulus than shear rejuvenation at γp > γc [Figs. 13(a) and 14(a)]. Moreover, γc appears to be independent of the boehmite and acid contents over the range of compositions under study [see Table I]. These results confirm the robustness of the conclusions presented in the main text in Fig. 4(b).

As for the linear viscoelastic spectrum, Fig. 13(b) and 14(b) show that the slope n of the linear regression of the loss factor versus log f is negative for γp < γc , whereas n > 0 for γp > γc . Therefore, for all the compositions investigated here, boehmite gels display two different relaxation spectra on both sides of γc , and two different microstructures. Note that the lower boehmite concentrations yield larger values of n, which is otherwise insensitive to the acid concentration. Finally, both the strain γ 0 at the onset of the nonlinear regime and the yield strain γ y display a dual behavior on both sides of γc for all the compositions investigated, in agreement with Figs. [Figs. 14(c) and 14(d)]. This points to a dependence of the gel microstructure with the concentration of nitric acid that remains to be elucidated through structural measurements. 

FIG. 1 .

 1 FIG.1. Sketch of the structure of a reversible cluster (highlighted by a light grey disk) composed of several unbreakable aggregates of primary particles and formed during the primary sol-gel transition.

FIG. 3 .

 3 FIG.3. Frequency dependence of (a) the storage modulus G , (b) the loss modulus G , and (c) the loss factor tan δ following a primary gelation of 3000 s (×) or a secondary gelation including a rest period of 3000 s preceded by a 600 s shear-rejuvenation step under a shear rate γp = 2 s -1 ( ), 10 s -1 ( ), 100 s -1 (•), 500 s -1 ( ). Viscoelastic spectra measured with a strain amplitude γ = 0.1 %.

FIG. 4 .

 4 FIG.4. Dependence on the shear rate γp used for shear rejuvenation of (a) the stress σp measured at the end of the shearrejuvenation step, (b) the storage modulus G measured after 3000 s of rest period following the shear-rejuvenation step, and (c) the slope n of the linear regression of the loss factor tan δ versus log f . The shear-rejuvenation step is either stopped abruptly ( γ = 0 s -1 , red symbols) or stopped over a finite duration ∆t using a linear decreasing ramp of stress following a 600 s shear rejuvenation at γp = 500 s -1 (other colored symbols). The duration ∆t of the ramp is ∆t = 0 s ( ), ∆t = 54 s ( ), ∆t = 270 s ( ), ∆t = 540 s ( ), ∆t = 3240 s ( ) and ∆t = 12960 s ( ). The inset in (b) shows the storage modulus G vs γp measured at different points in time t following the abrupt cessation of shear rejuvenation [t = 6 s ( ), 13 s ( ), 26 s ( ), 63 s ( ), 300 s ( ), and 3000 s ( )]. Error bars in (a) and (b) represent one standard deviation computed on three to eight independent tests. Error bars in (c) represent the root-mean-square error of the linear regression. The grey rectangle highlights the critical shear rate γc = 30±10 s -1 .

FIG. 5 .

 5 FIG.5. Strain dependence of (a) the storage modulus G (full symbols) and the loss modulus G (empty symbols), (b) the stress amplitude σ, and (c) the loss factor tan δ of a boehmite gel obtained in a secondary gelation following a rejuvenation step of intensity: γp = 2 s -1 ( ) and 500 s -1 (•). Strain sweep experiment performed at f = 1 Hz. In (a)-(c), the vertical dashed and dashed-dotted lines respectively mark the strain γ0 beyond which the gel response becomes nonlinear and the yield strain γy defined as the crossover of G and G .

FIG. 6 .

 6 FIG. 6. (a) Strain amplitude γ0 at the onset of the nonlinear regime and (b) corresponding stress amplitude σ0 vs the shear rate γp applied during the shear-rejuvenation step. (c) Yield strain γy and (d) yield stress σy vs γp. (e) Exponent ν G (filled symbols) and ν G (open symbols) characterizing the power-law decrease of G and G beyond the yield point vs γp and (f) ratio ν G /ν G vs γp. Grey squares in (b) and (d) respectively show G 0 γ0 and G 0 γy/3.3. The scaling factor 3.3 has been chosen to allow for a direct comparison of the evolution of G 0 γy with that of σy. Same symbols, color code, and error bar estimations as in Fig. 4.

  Fig 4(b)]. Concomitantly, the loss factor, which is a decreasing function of frequency in the reference case of shear rejuvenation at γp > γc followed by an abrupt flow cessation, becomes an increasing function of frequency, i.e., n < 0 [see black arrow in Fig 4(c)]. A similar trend is visible on the nonlinear properties of the boehmite gel when increasing the duration of the flow cessation: the strain γ 0 at the on-set of the nonlinear regime and the yield strain γ y both decrease for increasing ∆t [see black arrow in Figs. 6(b) and 6(d)]. Moreover, the exponent ν G of the power-law decrease of G (γ) beyond the yield point, and the ratio ν G /ν G both decrease to values comparable to those obtained by shear rejuvenation at γp < γc followed by an abrupt flow cessation [see black arrow in Figs. 6(e) and 6(f)].

FIG. 7 .

 7 FIG. 7. Sketch of the gel network microstructure obtained after a shear-rejuvenation step at (a) γp < γc yielding large, dense, and anisotropic clusters, and at (b) γp > γc, yielding smaller, isotropic clusters forming a more open network.

FIG. 10 .

 10 FIG.10. Frequency dependence of the loss factor tan δ depending on the rate of flow cessation from a 600 s shear rejuvenation at γp = 500 s -1 . The flow is stopped over a finite duration ∆t using a linear decreasing ramp of shear stress. The duration of the ramp is ∆t = 0 ( ), 54 ( ), 270 ( ), 540 ( ), 3240 ( ), and 12,960 s ( ). Viscoelastic spectra measured with a strain amplitude γ = 0.1 %.

FIG. 11

 11 FIG. 11. (a) Strain amplitude γ0 at the onset of the nonlinear regime and (b) corresponding stress amplitude σ0 vs the shear rate γp applied during the shear-rejuvenation step. (c) Yield strain γy and (d) yield stress σy vs γp for a smooth rotor ( ) and a rough rotor (radius of 23.9 mm) ( ).

FIG. 12 .

 12 FIG.12. Dependence on the shear rate γp used for shear rejuvenation of (a) the stress σp measured at the end of the shear-rejuvenation step, (b) the storage modulus G measured after 3000 s of rest period following the shear-rejuvenation step, and (c) the slope n of the linear regression of the loss factor tan δ versus log f . Same symbols and color code as in Fig.11.

FIG. 13 .

 13 FIG.13. Impact of boehmite concentration. (a) Normalized storage modulus G 0 /G c measured 3000 s after the abrupt cessation of a 600 s shear rejuvenation performed at γp, (b) slope of the linear regression of the loss factor versus log f , (c) strain γ0 at the onset of the nonlinear regime, and (d) yield strain γy as a function of γp/ γc, where γc is the critical shear rate (see TableI). Symbols stand for gels with different boehmite concentrations and the same nitric acid concentration [B = 93, A = 14] (•), [B = 123, A = 14] ( ) and [B = 147, A = 14] ( ). In (a), G c is the value of G 0 extrapolated at γp = γc and the inset shows G 0 vs the boehmite concentration. The grey rectangle highlights the transition region around γc.

FIG. 14 .

 14 FIG. 14. Impact of the acid concentration. (a) Normalized storage modulus G 0 /G c measured 3000 s after the abrupt cessation of a 600 s shear rejuvenation performed at γp, (b) slope of the linear regression of the loss factor versus log f , (c) strain γ0 at the onset of the nonlinear regime, and (d) yield strain γy as a function of γp/ γc, where γc is the critical shear rate (see Table I). Symbols stand for gels with different acid concentrations and the same boehmite concentration [B = 123, A = 12] ( ), [B = 123, A = 14] ( ) and [B = 123, A = 17] ( ). In (a), G c is the value of G 0 extrapolated at γp = γc and the inset shows G 0 vs the acid concentration. The grey rectangle highlights the transition region around γc.

  FIG.9. Storage modulus G and loss modulus G vs strain amplitude γ during a strain sweep performed at frequency f = 1 Hz on a boehmite gel following shear rejuvenation at γp = 2 s -1 for 600 s, and a rest period of 3000 s. The continuous and dashed lines respectively correspond to the best power-law fits of G and G for γ ≥ γy.
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	FIG. 8. Flow curve, shear stress σ vs shear rate γ, measured
	upon imposing a downward sweep in shear rate (full symbols)
	followed by an upward sweep (empty symbols). The waiting
	time per point is ∆t = 3 ( ), 7.5 ( ), 30 ( ), and 150 s per
	point ( ). Measurements are performed in a smooth cylindri-
	cal Couette geometry (height 58 mm, rotating inner cylinder
	of radius 24 mm, fixed outer cylinder of radius 25 mm, gap
	1 mm).				
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TABLE I .

 I 

	Gel	Boehmite concentration (g.L -1 )	Acid concentration (g.L -1 )	γc (s -1 )	G c (Pa)
	[B = 93, A = 14]	93	14	30 ± 10	330 ± 25
	[B = 123, A = 14]	123	14	30 ± 10	760 ± 60
	[B = 147, A = 14]	147	14	30 ± 10	1380 ± 70
	[B = 123, A = 13]				
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Appendix A: Rheological hysteresis

To illustrate the thixotropy of boehmite gels, downward sweeps in shear rate followed by upward sweeps were performed with different waiting times per point, ranging from 3 s to 150 s per point. As shown in Fig. 8, for all sweep rates, the flow curves show a large hysteresis, which extends up to shear rates way above 10-100 s -1 , where one usually expects the sample to be fully fluidized [START_REF] Divoux | Rheological hysteresis in soft glassy materials[END_REF]100 . These observations confirm that boehmite gels are thixotropic, and that one can expect strong memory effects, as evidenced by the results discussed in the main text.