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Abstract

This paper addresses the descriptors-based characterization of dense 3D microstructures using
the unifying concept of accessibility, mixing local shape features with global topology. Underly-
ing percolation and constrictivity features are jointly considered by probing the connected com-
ponents of the microstructure with structuring elements with increasing sizes. Adapted morpho-
logical operations are combined to provide a scalable protocol embedding suitable descriptors
applied on accessible volumes, yielding a sharp discrimination power. The suggested frame-
work named A-protocol can efficiently analyze complex microstructures by applying a stratified
sampling for the selection of paths’ endpoints, when connected. It stops when percolation ends,
at a critical radius value. The A-protocol is tested on Cox multi-scale Boolean models using
the Euler number as an arbitrarily chosen embedded descriptor. This computational protocol is
available in the open access software environment plug im!.

Keywords: Feature-based vector; Accessibility; Percolation; Constrictivity; Mathematical
Morphology; Porous Network

Symbols

The main symbols used in this article are exposed and defined in the following list.

• X: the microstructure of interest,

• εr(X): the eroded set of X using a sphere B(r) of radius r as structuring element,

• Dmax: maximal distance value of the distance map used for computing the erosion,

• rc: the critical radius of X,

• ρc: the critical percolation threshold of the complementary set of εrc (X),

• β: the constriction factor,

• VvA : the accessible volume fraction of εr(X),
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• NC: the number of cavities,

• VC: the average volume of cavities,

• S : the set of random points pi in X,

• t: the threshold applied to the number of connected paths npaths between points pi,

• χ: the Euler-Poincaré characteristic or Euler number.

1. Introduction

The analysis of interconnected networks is of paramount interest for many applications 
[1, 2, 3], especially in materials science [4, 5, 6]. The structural characterization of materi-
als enables valuable connections with physicochemical properties, especially in the analysis of 
porous media [7, 8]. Due to the complexity of some interconnected networks, named microstruc-
tures when real media are considered, their structural characterization often requires combina-
tion of various operators, named descriptors, focusing either on local -morphological- or global 
-topological- features [9, 10, 11].
Among topological measures, connectivity notion is considered in various descriptors, as con-
nectivity number and Euler number, and concepts too, as percolation and accessibility [1, 12, 3]. 
This latter turned out to have a central interest on various experiments considering hindrance 
phenomenon, making use of different flowing particles and measurement means [13, 14, 15, 16]. 
Indeed, hindrance in porous media is crucial as the size of flowing particles can impact transport 
properties, especially when it has the same order of magnitude as the pores dimensions [17, 18]. 
In the digital domain, after 3D microstructure segmentation, hindrance could be addressed in 
the scope of morphological accessibility, defined here by combining connectivity seen through 
percolation, i.e., ability to connect, with constrictivity, i.e., strength of bottleneck effect [19]. 
Consequently, this morphological vision of accessibility is purely structural, no physicochemical 
phenomenon is considered.
On the one hand, percolation as a theory considers accessibility in a specific way [20, 21], indi-
cating the existence of a connected path totally included in the pattern, connecting a given entry 
to a given exit (Fig.1(A-D)). This binary vision of connectivity, linked to global topological no-
tions, received several numerical implementations of distinct types, which are not constrained to 
a single binary value [22]. On the other hand, constrictivity, introduced by Petersen [23], high-
lights local hindrance through bottleneck effects quantification, usually represented by a  scalar 
value named constriction factor β [24]. Originally defined for a  single path or a  synthetic pore 
(Fig.1(e)), both concepts have been extended to whole microstructures, mainly using statistical 
representations [25, 26].

Similar ideas in literature address accessibility, reachability or penetrability by taking into ac-
count the local shape together with global assessments of proper descriptors, considering implic-
itly or explicitly percolation and constrictivity concepts. These works are of different types, in-
volving either experimental analysis or numerical simulations of transports of any kind or purely 
digital morphological characterization, or a mix of the latter [27, 28, 17, 29, 30, 18, 19]. 
Wernert et al. [17] tackle this issue with experimental analyses only, focusing on porosity, dif-
fusion and tortuosity as a function of molecular size to predict transport properties of porous 
materials. Skaug et al. [18] make use of nanoparticles tracking to study diffusion, highlighting 
the dependency of accessibility on particle size too. The needed improvement of characterization



Figure 1: (A-D) Four forms of percolation: (A) directional percolation (between two opposite faces), (B) multi-
directional percolation (in at least one direction), (C) adirectional percolation (between distinct faces) [33], and (D) 
stochastic point percolation [34] (between random points). Illustration of (e) constrictivity and (f) accessibility with 
critical radius rc (see Section 2).

process is justified in [29], by the advances in computation and visualization technologies and 
not in analysis methods. As they focus on multi-scale transport models, they propose to consider 
various descriptors according to the pore scale using morphological erosions [31, 32]. Vogel 
[27] already mentions the issue of the geometric complexity of real microstructures. He uses the 
Euler-Poincaré characteristic, or Euler number, to quantify the pore connectivity which is con-
sidered as a function of the pore diameter, defining a connectivity function of the pore space. As 
in his article in 2002 [28], morphological openings, erosion followed by dilation, with different 
sizes of structural elements are used for pore size distribution assessment. For their part, Ohser et 
al. [30] explicitly take into account percolation, introducing a percolation probability depending 
on pores’ width to describe penetrability. Similarly to [19], only erosions are considered, but to 
assess the porosity percolation probability instead of the reachable volume fraction, as it is done 
in [19].
This diversity of disciplines attests to the interest of the whole materials science community about 
this concept, highlighting the need of improving the set of solutions for materials analysis. More-
over, although these studies are of distinct type, each one assesses the impact of accessibility over 
different descriptors of porous media; spherical probes of different sizes travelling through the 
network could be a common basis for accessibility, as illustrated in Fig.1(f). Nevertheless, to our 
best knowledge, in literature, no numerical solution such as computational protocol, is available 
in order to take into account accessibility, evaluating its impact on any proper descriptor to the 
application considered.

The main contribution of this article is a novel scalable framework considering morphologi-
cal accessibility, being a solution to the issue mentioned above. Thus named, the A-protocol is 
suitable for any specific application-dependent descriptors, extending it in an easily interpretable 
manner, as shown below with the Euler number as an example of possible embedded descriptor, 
while assessing the effect of pore’s/probe’s size on it. Moreover, as complex microstructures are 
targeted, usual computational methods to assess percolation have to be improved; an example is 
presented in Fig.7, being complex because of both, the porous network geometry and the random



global shape of the observed sample. Finally, the A-protocol, being freely available in plug im!
[35], provides novel solutions, targeting a more exhaustive characterization of microstructures.
Throughout the article, the term "accessibility" will mean "morphological accessibility".
The computational protocol is proposed in Section 2, providing a versatile methodology address-
ing accessibility via 3D patterns. Its effectiveness is tested on Cox multi-scale Boolean models,
focusing on the stochastic form of point percolation and point accessibility: the results quantify-
ing local anisotropy and global heterogeneity are reported in Section 3. The conclusion is drawn
in Section 4.

2. Accessibility to complex microstructures

First, discussions on percolation and on constrictivity define our vision of these two concepts, 
which are jointly considered in our definition of a ccessibility. Second, the A-protocol is defined 
and illustrated. Finally, the relationships connecting the critical radius to constrictivity and to 
percolation are given.

2.1. From percolation to constrictivity

Percolation is usually assessed utilizing a connected components labeling, assigning a specific 
label to each connected component [36]. In order to remove the constraint of choosing planar 
sections as entries and exits, Chaniot et al. [34, 37] make use of a stratified sampling [38], yield-
ing to a stochastic consideration of percolation, assessed between random points or vertices, in a 
certain way akin to graph theory [5, 11]. Therefore, the A-protocol defined below, is able to sup-
port the different forms of percolation illustrated in Fig.1(A-D), including the stochastic version 
of percolation (Fig.1(D)) dedicated to microstructures as complex as the one in Fig.7. This form 
of percolation is named stochastic point percolation.
As mentioned in the introduction, the accessibility is defined b y c onsidering j ointly percola-
tion and constrictivity; this last one is illustrated in Fig.1(e) and can be quantified by the ratio 
R2

min/R
2
max [26]. Morphological openings or erosions, considering spheres as structuring ele-

ments with increasing sizes, can be utilized for characterization purposes according to pores’ or 
particles’ size. Erosion is adapted to topological measurements, while opening is suitable for 
geometric ones. For computation time purposes, the erosion is considered in this article, effi-
ciently computed using distance transform [39], quantifying in a certain way constrictivity by 
disconnections consideration.

2.2. The A-protocol

The definition of a  protocol devoted to accessibility is motivated by the t ransfer of the con-
cept into a scalable digital framework embedding relevant descriptors, with efficiency concerns, 
which are then extended in order to be applied on complex microstructures.
The A-protocol is an iterative method taking into account all bottlenecks of a microstructure by 
considering increasing radii r for spheres B(r), i.e., the structuring elements of the erosions. At 
each iteration, percolation is jointly verified a fter l abeling c onnected c omponents, a nd prede-
fined embedded descriptors are a ssessed. Some cavities defined as the resulting non-accessible 
connected components for a probe of a given size, are formed due to the hindrance caused by 
the probe dilation. Geometrically, the larger the radius, the more there will be vanished volumes. 
Topologically, the trajectories between any two remaining points of the microstructure, lengthen 
until they are closed. The A-protocol ends when the critical radius rc is reached, i.e., the radius



of the biggest percolating spherical probe B(rc).
As the A-protocol is a cumulative step by step process, if residues descriptors are considered, as
cavities, the value of the descriptor for a specific size is equal to the sum over these residues from
r = 0 to the given size.
Sampling 3D patterns is optional, but required in the context of stochastic point percolation
giving rise to stochastic point accessibility, that we define herebelow,

Definition 1. Stochastic point accessibility: Let εr(X) be the eroded set of microstructure X
using a sphere B(r) as structuring element. Let S = {pi} be a set of N random points such
that S ⊂ εr(X). A connected component of εr(X) is said to percolate if at least a number t of
connected paths exists between some pairs of points (pi, p j), i , j. Eroded set εr(X) percolates if
there exists at least a percolating connected component.
Let Ccr be the union of the percolating connected components of εr(X). If Ccr , ∅, X is said to
be accessible for a probe B(r).

In order to comply with usual definitions, we take t = 1; for a connected component to be
considered as accessible, it suffices that a connected path has been found. The stochastic point
accessibility allows the A-protocol to be applied on any microstructures, reflecting the flowing
particles in the physical domain.
The focus being mainly on topological measurements and computation time efficiency, the
erosion operation is chosen instead of opening, as mentioned above, and in the case of stochastic
point accessibility, S is defined once for all at the initialization step.

The A-protocol illustrated in Fig.2 on a synthetic structure, is formally given by the algorithm
below. The estimates of accessible volume fraction V̂vA , number of cavities N̂C , and average
volume of cavities V̂C are simultaneously assessed until the critical radius r̂c is reached. These
estimates are inherent to the A-protocol definition and have to be distinguished from the arbi-
trary embedded descriptors which are selected by the user. Let us note that the skeleton of mi-
crostructure X [40] could be considered, but would lead to increase the bias over morphological
descriptors as volume fraction assessments.

2.3. Constrictivity, percolation and critical radius

Constriction factors β quantifying bottlenecks, are scalar values obtained from comparison
of minimal and maximal cross sections [24, 41]. A specific definition consists in computing
the squared ratio of the minimal to the maximal radius, which could be translated in our case
by using the critical radius rc and the maximal radius, i.e. the maximal distance value Dmax

obtained from the distance map used for the iterative erosions.

β =

(
rc

Dmax

)2

(1)

To avoid border effects, leading to overestimation of the maximal radius, a maximal distance
Dmax1 is computed over the whole image. A second computation is performed with the condition 
that the location of the maximal distance Dmax has to be further from the border than Dmax1 . 
Moreover, all the computations in the Results section are performed on points further from the
border than Dmax1 − Dmax.
The original definition of β being for a unique pore, this definition is a novel alternative to



Input: Pattern X; embedded descriptor {Dk}; (optional) sampling points set S
Output: Estimates V̂vA , N̂C , V̂C and embedded descriptor {D̂k}, as functions of r; critical

radius r̂c

Initialization: r ←− 0
while Percolation do

A-1. Connected components labeling X ←− {cci} (Fig.2(1))

A-2. Percolation assessment and computation of Ccr (Fig.2(2))
if Percolation then

A-3. Computation of estimates V̂vA (r), N̂C(r), V̂C(r) and embedded descriptor
Dk(r) over Ccr

A-4. Erosion, X ←− ε1(X) (Fig.2(4))

Incrementation: r ←− r + 1
end

end
Critical radius: r̂c ←− r − 1

Algorithm 1: A-protocol

Figure 2: Analysis of a synthetic structure (in white) by the A-protocol; directional percolation and r̂c = 1. (A-0) shows 
the pattern state at the starting of an iteration, (A-1) connected components labeling, each label being associated with 
a color, (A-2) percolation assessment with deletion of non percolating connected components, (A-3) (not displayed) 
computation of descriptors, (A-4) morphological erosion using B(1), deleted pixels being in gray.



extend it to a whole network.

By definition, the critical radius rc is linked to the critical percolation threshold ρc, which can
be assessed using a statistical approach [25] when stochastic models are considered, then defined
as the volume fraction where exactly 50% of the realizations percolate.
Boolean models [42, 43, 44], a specific stochastic model, are based on a Poisson Point process of
intensity θ [45]. Random primary grains A′ (overlapping allowed) are located at Poisson points
xk. A′ and θ define the Boolean model A, being equal to the union of grains A′. Eq. 2 shows
dependency of θ with respect to the average volume V̄(A′) of the grains and to the total volume
fraction Vv.

1 − Vv = exp(−θ.V̄(A′)) (2)

Let Ar = A⊕B(r) be a Boolean model defined as the dilation of A by B(r), and Vv,r be the volume
fraction of Ar. As we focus on the complementary set of A, this operation represents the erosion
of the microstructure.
As Vv,r ≥ Vv, there exists a function α, ∀r ≥ 1 α(r) ≥ 1, such that V̄(A′r) = α(r).V̄(A′). Therefore,
with eq.2, 1 − Vv,r = (1 − Vv)α(r).
Henceforth, rc is a limit value of r, obtained when 1 − Vv,r is equal to the threshold ρc of the
eroded complementary set. Therefore, there exists αc = α(rc) and,

ρc = 1 − Vv,rc

ρc = (1 − Vv)αc

αc = ln(ρc)/ ln(1 − Vv).
(3)

In the case of a Boolean model of sphere of radius R, A′ = B(R), therefore αc = V̄(A′rc
)/V̄(A′) =

((R + rc) /R)3 and,
rc =

(
3
√

ln(ρc)/ ln(1 − Vv) − 1
)
.R. (4)

The same rationale with the Cox multi-scale Boolean models, as considered below, is proposed.
The total volume fraction of primary grains Vv,TOT is defined by,

Vv,TOT = Vv,INC .Vv,IN + (1 − Vv,INC).Vv,OUT (5)

with Vv,INC the volume fraction of inclusions or aggregates, with higher density, Vv,IN the volume
fraction of grains inside aggregates, and Vv,OUT the volume fraction of grains outside aggregates.
Eq.2 is valid for each volume fraction, leading to,

ρc = (1 − Vv)αc − (1 − Vv,INC).((1 − Vv)αc − (1 − Vv,OUT )αc ). (6)

These equations define our critical radius in the specific cases of Boolean models and Cox
multi-scale Boolean models, while highlighting the relationship between the critical percolation
threshold ρc and the critical radius rc.

3. Results

For testing the A-protocol and illustrating its properties on complex microstructures, stochastic
models or numerical twins are considered. In particular, we insist on the stochastic point acces-
sibility. For these purposes, Cox multi-scale Boolean models which are suitable for statistical 



analyses of computational methods and usual investigation of stereological operators are used
[46]. Therefore, the A-protocol’s behavior analysis with respect to specific features is practica-
ble; impact of the grains’ anisotropy and the geometric heterogeneity over the accessibility to
the microstructure. This is preceded by the presentation of the stochastic models considered, and
by the comparative study of the parametric stochastic point percolation with the other forms of
percolation.

3.1. Stochastic models

Boolean models are first considered in order to generate homogeneous microstructures made
of isotropic or anisotropic grains A′, located at Poisson points. A homogeneous microstructure is
defined as a structure possessing a unique scale of grains’ density, quantified by a unique volume
fraction Vv. Consequently, hereafter, they are defined by this single volume fraction of grains Vv.
Multi-scale microstructures can be modeled by using Cox multi-scale Boolean models [47, 48],
simulating heterogeneous materials with aggregates or inclusions, i.e., areas of higher density of
grains. In the following, two-scale models are considered, defined by three volume fractions:
Vv,INC , Vv,IN and Vv,OUT .
Boolean models of spheres (Fig.3(a)) and of spherocylinders with random orientations (Fig.3(b))
are generated; Vv is fixed at 0.4 for both models, having a similar fixed average volume of grain,
V̄(A′) = 4188.8 for spheres and V̄(A′) = 4215.0 for spherocylinders.

1. sphere R = 10,
2. spherocylinder R = 5 and L = 47.

Cox multi-scale Boolean models of platelets are considered; platelets’ shape is fixed (Fig.3(c)):
L = 6, l = 5 and H = 3, aggregates’ size and volume fraction are fixed too: RINC = 10,
Vv,INC = 0.5, as well as the total volume fraction of grains Vv,TOT which is equal to 0.4.

3. Vv,IN = 0.5 and Vv,OUT = 0.3,
4. Vv,IN = 0.6 and Vv,OUT = 0.2,
5. Vv,IN = 0.7 and Vv,OUT = 0.1.

40 realizations of size 4003 of each model are generated (Fig.3). The A-protocol is applied to the 
complementary set of the grains union (black areas in Fig.3), representing the microstructure of 
interest. Consequently, a volume fraction of grains Vv equal to 0.4 leads to an accessible volume 
fraction VvA equal to 0.6, if and only if the whole microstructure is accessible.
Confidence intervals with 95 % confidence level, represented by vertical bars in the results dis-

play, are equal to 2lσ, with lσ = 2σ/ 
√

nr, and σ the standard deviation over the nr realizations. Finally, in this case, the A-protocol provides averaged assessments; let π be a given descriptor, 
then π̂ is an averaged estimator over all realizations.

3.2. Stochastic point accessibility

Let us now restrict our attention to the model (1). Only r̂c and V̂vA are displayed in Tab.1 and 
Fig.4. As a global statement, the low values of lσ attest to the representativity of the considered 
volume, i.e. the realizations’ volume times the realizations number. Confidence intervals of all 
curves are represented, but too small to be visible before a certain value; the larger the radius r, 
the bigger the representative volume element, the lower the representativity [49].
The stratified s ampling, as defined in  [3 4], is  a pa rametric me thod, wi th NT  an d N the target 
number of random points given by the user and the final number of random points, respectively.



Figure 3: The different grain’s shapes used in this paper: (a) sphere, (b) spherocylinder and (c) platelet. Volume repre-
sentation and 2D slice of a realization of each Boolean model: (1) spheres and (2) spherocylinders, and Cox multi-scale 
Boolean models of platelets: (3) Vv,IN = 0.5, (4) Vv,IN = 0.6 and (5) Vv,IN = 0.7. Volumes generated and rendered using 
[35].



Table 1: 1st line: r̂c for the stochastic accessibility with different e values. 2nd line: r̂c for the various accessibility types.
Display of lσ, the half length of the confidence interval, with 95 % confidence level.

Model Percolation r̂c lσ

(1) Sphere

Stochastic e = 133 9.175 0.311
Stochastic e = 100 9.050 0.237
Stochastic e = 80 9.400 0.266
Stochastic e = 66 10.950 0.531

(1) Sphere

A 8.900 0.096
B 8.975 0.050
C 13.950 0.423
D 9.050 0.237

None of them is meaningful because they are both dependent of the size of the considered 
images, but the length of the cubic sub-images’ edges e is. During the stratified sampling 
process, the image is cut into cubic sub-images of exact same volume in which one point is 
randomly drawn; e is the length of their edge, then equal to the average Euclidean distance 
between two neighbouring points. The purpose is to assess its optimal value with respect to an 
arbitrary reference. Hereafter, we choose the percolation (A) as the reference (r̂c,re f , V̂vA,re f ).

The A-protocol with stochastic point accessibility, is analyzed as a function of e = 
{133, 100, 80, 66} (Fig.4(a)). One can notice some slight differences with (A) due to negligi-
ble volumes (Fig.4 bottom right); Fig.4(a) shows the similarities of V̂vA whatever e. The best 
assessment of (r̂c,re f , V̂vA,re f ) is reached for e = 100 (N = 64), as shown in Tab.1. The same 
process is performed on each model showing a necessary refinement for the more complex ones;
(1) e = 100, (2) e = 100, and (3) e = 100, (4) e = 80 (N = 125), (5) e = 80. Hereafter, these 
values are considered in percolation (D).

Let us compare now the four percolation forms (Fig.4(b)). Globally, the curves are quite 
similar whatever the percolation. The considered models being isotropic, the percolations (A) 
and (B) exhibit very similar results, as for the percolation (D), which is highlighted in Tab.1 too. 
Nevertheless, the percolation (C) having a less constrained definition (percolation between faces 
with a common edge is allowed), it overestimates (A) in terms of r̂c (Tab.1) and V̂vA , but the low 
representativity of the remaining connected components is shown with the bigger confidence 
intervals when r̂c,re f is passed. The accessible volume in Fig.4 bottom, places in evidence the 
similarities and differences; in particular with (C) for r = 10, where the remaining connected 
components are placed at edges and corners of the cubic image.

3.3. Microstructures characterization

The focus is now on the A-protocol with stochastic point accessibility only. Although r̂c is suf-
ficient to discriminate the models in Tab.2, additional information is provided by the constriction 
factor β̂, and also the behavior of the estimates, inherent to the A-protocol, and of the embedded 
descriptor, being the Euler number χ.

The Euler number χ is arbitrarily selected as an example of embedded descriptor. χ is one of



Figure 4: V̂vA for (a) the stochastic percolation (e ∈ {133, 100, 80, 66}) and (b) the four forms of percolation ((A), (B),
(C), (D)), applied to Boolean models (1). Confidence intervals, with 95 % confidence level, are represented by vertical
bars. The accessible volume of a realization of the Boolean model (1) for specific r adii: r  =  9  =  r̂c,re f  and r  =  10. 
Volumes rendered using [35].



Figure 5: A-protocol with stochastic point accessibility applied to the Boolean models: (a) V̂vA and (b) χ̂A ((b) is an
enlargment, orange rectangle, of original curves, small and blurred). Confidence intervals, with 95 % confidence level,
are represented by vertical bars.



Table 2: r̂c and β̂ for the stochastic point accessibility with optimal e values, for all models. Display of lσ, the half length
of the confidence interval, with 95 % confidence level.

Model r̂c lσ β̂ lσ
(1) Sphere 9.050 0.237 0.182 0.012

(2) Spherocylinder 6.325 0.166 0.123 0.007
(3) Vv,IN = 0.5 2.000 0.000 0.077 0.002
(4) Vv,IN = 0.6 2.575 0.158 0.096 0.011
(5) Vv,IN = 0.7 3.575 0.174 0.118 0.011

the main topological descriptor of microstructures, characterizing their connectivity or intercon-
nectivity [50, 51, 52]. This feature, connected to the Minkowski functionals [53, 42, 43], has
been the subject of various works [54, 55, 56, 57]. χ can be expressed as a combination of some
classic topological measures,

χ = nCC − cR + h (7)

with nCC the number of isolated objects or connected components, i.e. pores or set of pores, 
cR the number of redundant connections and h the number of cavities, equal to zero in our 
case as they are removed at each iteration. Consequently, a negative value represents a high 
interconnectivity and a positive value represents a low interconnectivity.
Hereafter, χ is assessed as a function of the probe’s radius; its extension produced by the 
A-protocol, the accessible Euler number, and its numerical estimator are named χA and χ̂A, 
respectively.

First, let focus on the models (1) and (2), i.e., the Boolean models, which are clearly 
discriminated in Fig.5. Although the anisotropy of the spherocylinder, characterized by its 
morphological diameter too, provides a smaller value of r̂c, its global constriction factor β̂ is 
smaller than for the spheres (Tab.2). Moreover, as shown in Fig.5(a-c), this grains’ anisotropy 
strongly induces the creation of cavities, which are bigger too, when r increases; the more 
pronounced the local bottleneck effects, the faster the pores’ closing, the faster the decrease 
of accessible volume. Fig.5(a) displays this decrease of volume accessibility with the grains’ 
anisotropy. Finally, these phenomena linked to the higher anisotropy of spherocylinders lead to 
a faster decrease of interconnectivity, i.e., χA tends faster toward zero from an initial negative 
value (Fig.5(d)).

Considering the models (3-5), Fig.6(a-d) underlines the good discrimination between the dis-
tinct heterogeneities. Indeed, heterogeneity naturally involving cavities formation (Fig.6(b-c)). 
For Vv,TOT fixed a nd V v,INC =  0 .5, g lobally, t he m ore h eterogeneous t he m icrostructure, the 
less dense the exterior of aggregates, the slower the porous network closes because of the en-
larging of the pores size, decreasing the strength of local bottleneck effects outside aggregates. 
Nevertheless, the more heterogeneous the microstructure, the more dense the aggregates, the 
faster the aggregates close, increasing the strength of local bottleneck effects inside aggregates. 
Consequently, with these two opposite phenomena, the global bottleneck effect increases with 
heterogeneity; the more heterogeneous the microstructure, the bigger β̂. This second case attests 
also to the slower decrease of interconnectivity with heterogeneity for large enough particles, if



the outside of the aggregates percolates (Fig.6(d)).

At a finer scale, the A-protocol puts in evidence the classification reversal of topological mea-
sures N̂C , V̂C and χ̂A, attesting to the heterogeneity of these models (Fig.6(b-d)). Indeed, this
behavior, corresponding to the very "moment" of the aggregates closing, provides models’ dis-
crimination; in particular between homogeneous (models (1-2)) and heterogeneous materials
(models (3-5)), highlighted by the comparison of Fig.5 and Fig.6. Consequently, together, these
cases bring novel information about heterogeneity detection, while giving intels about the im-
pact of grains’ anisotropy over isotropic and homogeneous models. Furthermore, they highlight
the improvement in sensitivity of the embedded descriptors, which are extended by accessibility
consideration.

4. Conclusion

The A-protocol combines state-of-the-art definitions dynamically considering the accessibil-
ity, aiming to extend any given numerical descriptor definition with topological notions. The A-
protocol integrates all bottleneck effects, detected by the spherical probes with increasing radii,
and gives rise at the end to estimates as the critical radius, the accessible volume fraction and
the number and the average size of cavities. The A-protocol is illustrated using Cox multi-scale
Boolean models, validating its interest as a new "extractor" of morphological and topological
information. The A-protocol with the stochastic point accessibility, providing a less restrictive
method through the existence of a connected path between random points, is discussed. This
analysis attests to the similarities of this definition with the most common definition in the lit-
erature, yielding a good estimator. The Euler number is then considered, illustrating together
with the estimates, the enhancement of discriminative power when characterizing multi-scale
microstructures; anisotropy discrimination and heterogeneity detection and discrimination.
The A-protocol exacerbating initially imperceptible differences, is able to characterize mi-
crostructures whatever their complexity, inherent to the materials and/or stemming from the
image acquisition device, thanks to the stochastic point accessibility. Consequently, real ma-
terials as the γ-alumina (Fig.7), can be characterized with any proper morphological descriptors,
extending the work of Moreaud et al. [58] and opening wide application perspectives. Also,
a deterministic extension of the A-protocol will be defined, similarly to [59], yielding to a de-
terministic point accessibility. Finally, a grayscale extension would allow the consideration of
continuous fields, as mentioned in [28].
The A-protocol procedure is available in the open access software environment plug im! [35].

Data Availability

The data, i.e. binary images, required to reproduce these findings can be generated using
the open access software environment plug im! at www.plugim.fr; all the needed parameters
are explicitly given in the article. Moreover, the numerical tools used for any image processing
considered are also freely available in this same website.
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Figure 6: A-protocol with stochastic point accessibility applied to the Cox multi-scale Boolean models: (a-c) A-protocol
estimates and (d) χ̂A ((c-d) are enlargments, orange rectangle, of original curves, small and blurred). Confidence intervals,
with 95 % confidence level, are represented by vertical bars.

Figure 7: A sample of a specific γ -alumina, obtained by electron tomography, reconstructed, filtered, and segmented:
(left) the porous volume, (right) a slice. Volumes rendered using [35].



References

[1] A. Kruglova, M. Engstler, G. Gaiselmann, O. Stenzel, V. Schmidt, M. Roland, S. Diebels, F. Mücklich, 3d connec-
tivity of eutectic si as a key property defining strength of al–si alloys, Computational Materials Science 120 (2016)
99–107.

[2] D. Bujoreanu, H. Dorez, W. Boutegrabet, D. Moussata, R. Sablong, D. Rousseau, Robust graph representation of
images with underlying structural networks. application to the classification of vascular networks of mice’s colon,
Pattern Recognition Letters 87 (2017) 29–37.

[3] A. Aryanfar, S. Medlej, A. Tarhini, S. Damadi, A. Tehrani B., W. Goddard III, 3d percolation modeling for pre-
dicting the thermal conductivity of graphene-polymer composites, Computational Materials Science 197 (2021)
110650.

[4] B. Prifling, D. Westhoff, D. Schmidt, H. Markoetter, I. Manke, V. Knoblauch, V. Schmidt, Parametric microstruc-
ture modeling of compressed cathode materials for li-ion batteries, Computational Materials Science 169 (2019)
109083.

[5] U. Bhardwaj, A. Sand, M. Warrier, Graph theory based approach to characterize self interstitial defect morphology,
Computational Materials Science 195 (2021) 110474.

[6] B. Prifling, M. Ademmer, F. Single, O. Benevolenski, A. Hilger, M. Osenberg, I. Manke, V. Schmidt, Stochas-
tic 3d microstructure modeling of anodes in lithium-ion batteries with a particular focus on local heterogeneity,
Computational Materials Science 192 (2021) 110354.

[7] F. Dullien, Porous media: fluid transport and pore structure, Academic Press, 1979.
[8] P. Adler, J.-F. Thovert, Real porous media: Local geometry and macroscopic properties, Applied Mechanics Re-

views 51 (9) (1998) 537–585.
[9] K. Michielsen, H. De Raedt, Morphological image analysis, Computer Physics Communications 132 (1-2) (2000)

94–103.
[10] É. Kaeshammer, L. Borne, F. Willot, P. Dokládal, S. Belon, Morphological characterization and elastic response of

a granular material, Computational Materials Science 190 (2021) 110247.
[11] B. Prifling, M. Neumann, D. Hlushkou, C. Kübel, U. Tallarek, V. Schmidt, Generating digital twins of mesoporous

silica by graph-based stochastic microstructure modeling, Computational Materials Science 187 (2021) 109934.
[12] G. Hahn, M. Fleck, Automatic etch pit density analysis in multicrystalline silicon, Computational Materials Science

183 (2020) 109886.
[13] F. Thibault-Starzyk, I. Stan, S. Abelló, A. Bonilla, K. Thomas, C. Fernandez, J.-P. Gilson, J. Pérez-Ramírez, Quan-

tification of enhanced acid site accessibility in hierarchical zeolites–the accessibility index, Journal of Catalysis
264 (1) (2009) 11–14.

[14] D. Do, L. Herrera, C. Fan, A. Wongkoblap, D. Nicholson, The role of accessibility in the characterization of porous
solids and their adsorption properties, Adsorption 16 (1-2) (2010) 3–15.

[15] N. Nishiyama, T. Yokoyama, Permeability of porous media: role of the critical pore size, Journal of Geophysical
Research: Solid Earth 122 (9) (2017) 6955–6971.

[16] Y. She, J. Lee, B. Diroll, T. Scharf, E. Shevchenko, D. Berman, Accessibility of the pores in highly porous alumina
films synthesized via sequential infiltration synthesis, Nanotechnology 29 (49) (2018) 495703.

[17] V. Wernert, R. Bouchet, R. Denoyel, Influence of molecule size on its transport properties through a porous medium,
Analytical Chemistry 82 (7) (2010) 2668–2679.

[18] M. Skaug, L. Wang, Y. Ding, D. Schwartz, Hindered nanoparticle diffusion and void accessibility in a three-
dimensional porous medium, ACS nano 9 (2) (2015) 2148–2156.

[19] J. Chaniot, M. Moreaud, T. Fournel, J.-M. Becker, The reachable volume fraction in porous media in the vicinity
of percolation threshold: a numerical approach used on multi-scale boolean schemes, in: 2017 16th Workshop on
Information Optics (WIO), IEEE, 2017, pp. 1–3.

[20] S. Broadbent, J. Hammersley, Percolation processes: I. crystals and mazes, in: Mathematical Proceedings of the
Cambridge Philosophical Society, Vol. 53, Cambridge University Press, 1957, pp. 629–641.

[21] D. Stauffer, Introduction to percolation theory, Francis & Taylor, 1985.
[22] M. Sahimi, Applications of percolation theory, CRC Press, 1994.
[23] E. Petersen, Diffusion in a pore of varying cross section, AIChE Journal 4 (3) (1958) 343–345.
[24] L. Holzer, D. Wiedenmann, B. Münch, L. Keller, M. Prestat, P. Gasser, I. Robertson, B. Grobéty, The influence of

constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells, Journal of Materials
Science 48 (7) (2013) 2934–2952.

[25] D. Jeulin, M. Moreaud, Percolation of random cylinder aggregates, Image Analysis & Stereology 26 (3) (2007)
121–127.
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