Phase diagram, structure and rheology of boehmite dispersions: role of electrostatic interactions

Maria Dronova^{*a,b*}, Eric Lécolier^{*a**}, Loïc Barré^{*a*} and Laurent J. Michot^{*b*}

^aIFP Energies nouvelles, 1 & 4, Avenue de Bois-Préau, 92852, Rueil-Malmaison, FRANCE ^bLaboratoire PHENIX, CNRS-Sorbonne Université UMR8234, 4, place Jussieu, 75005 Paris, FRANCE

Supplementary material

^{*} Corresponding authors. E-mail : <u>eric.lecolier@ifpen.fr</u> . Tel : (33) 1 47 52 57 17.

Appendix A. Supplementary data

SP.1. TEM image of peptised boehmite dispersion. Initial conditions 143 g \cdot L⁻¹ in an aqueous solution containing 0.186 mol \cdot L⁻¹ of nitric acid. Dilution factor ×20 000 on a carbon grid.

Appendix B. Supplementary data

SP.2. Small-angle X-ray spectra for boehmite dispersions at different volume fractions at ionic strengths $I_1 = 8 \cdot 10^{-5}$ M and $I_3 = 1 \cdot 10^{-2}$ M).

Appendix C. Supplementary data

SP.3. Moduli G' (closed symbols) and G'' (open symbols) from frequency sweep measurements for boehmite dispersions at ionic strengths (from top to bottom) of $8 \cdot 10^{-5}$ M, $8 \cdot 10^{-4}$ M and $1 \cdot 10^{-2}$ M. For clarity, not all experimental curves are presented

SP.4. High frequency elastic modulus G'_∞ as a function of reduced volume fraction ($\varphi - \varphi_{sol-gel}$) for boehmite dispersions at ionic strength of $8\cdot 10^{-5}$ M, $8\cdot 10^{-4}$ M and $1\cdot 10^{-2}$ M.

Appendix D. Supplementary data

SP.5. Evolution with pH of the zeta potential ζ of boehmite dispersions at ionic strengths of $8 \cdot 10^{-5}$ M, $8 \cdot 10^{-4}$ M and $1.93 \cdot 10^{-3}$ M.

Appendix E. Supplementary data

SP.6. (Top) Example of hydrodynamic radius *a* obtained from SBL fit of DLS autocorrelation function for boehmite suspension at ionic strength of $8 \cdot 10^{-4}$ M. (Bottom) Residue from SBL fit.