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Abstract

Design of experiments (DoE) are used in various contexts such as optimiza-

tion or uncertainty quantification when relying on a time-consuming numerical

simulator. It aims to select a limited number of points at which evaluating

the simulator provides maximal knowledge on the simulator outputs of inter-

est. One motivating application is the optimal design of turbine blades in an

helicopter engine, which takes as inputs mixed continuous and binary variables.

This paper proposes two new approaches for space-filling design over the mixed

continuous and discrete space. Numerical results for three different types of

DoE problems (mixed integers, mixed binaries with cyclic symmetry, and time

series) are presented. The obtained results illustrate the good performance of

the proposed methods and the wide range of applications they can address.
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1. Introduction

In recent years, the need for efficient design of experiments (DoEs) has

emerged as a key research area for analyzing complex physical numerical mod-

els. Indeed, such models are often expensive to evaluate, requiring sometimes

several hours or even days to run one single simulation. It means that using5

them to conduct optimization studies or uncertainty quantification and sen-

sitivity analysis investigations is in general too computationally demanding.

Standard practice consists in building a surrogate model of the numerical code,

and using it as a proxy for all intensive computations required by optimiza-

tion or uncertainty propagation. However, the final surrogate accuracy heavily10

depends on the available samples of the computer code inputs/outputs relation-

ship. For this task, it is often crucial to build a design of experiments that

provides information about all parts of the experimental region. For example,

two appealing concepts are the so-called space-filling designs, [1, 2] and Latin

Hypercube Sampling (LHS) [3]. Designs of experiments for continuous vari-15

ables have been extensively studied with several space-filing criteria (minimax

and maximin [4], discrepancy [5], maximum projection [6]). However, the case

where models involve both continuous and discrete input variables has been

much less investigated and tested.

In this paper, we focus on the specific case of models involving a mixed20

design of experiments region, defined as

D = {z = (x, y) ∈ Rm × In}, (1)

where x ∈ Rm, and y ∈ In are the continuous and discrete variables, respec-

tively, and where I denotes the discrete space (e.g., integer, binary or categorical

variables). For handling mixed DoEs, the first proposed approaches consisted

mainly of simple extensions of continuous LHS, either by randomly discretiz-25

ing continuous values [3], or by rounding continuous DoEs to obtain feasible

integer candidates [7, 8]. These techniques can recover the integer domain but

may destroy the desirable properties of the original DoEs, or even worse, they
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may generate identical points, which must be avoided. On the other hand, it

is possible to generate independently a LHS for every given discrete possible30

values [2], or use a so-called sliced LHS (LHS for the continuous factors which

is sliced into groups of smaller LHS designs associated with different discrete

levels) [9]. Although popular, these last two approaches usually require a very

large number of samples that increases too rapidly with the number of discrete

variables. Recent work [10, 11] proposes to sample continuous variables through35

a single continuous LHS, while the discrete variables are obtained by randomly

assigning an equal number of data samples to each discrete value. A different

line of work mainly studied in the machine learning research area relies on the

approximation of probability measures with an empirical probability distribu-

tion supported by a small number of points, also called quantization [12]. Our40

proposal follows this point of view.

More precisely, we shall focus on the framework of kernel-embedding of prob-

ability distributions [13], which offers mathematical tools to define distances

between probability distributions that can be efficiently computed. It is then

straightforward to recast the problem of finding a DoE with good space-filling45

properties as an optimization problem that aims at finding an empirical proba-

bility distribution (the DoE) which is as close as possible to a target probability

measure (for example, the uniform measure on the feasible experimental region).

For continuous probability measures, this point of view has already been pro-

posed with the name of kernel herding in [14], or support points in [15]. Note50

that the target distribution here can either be given explicitly or it can itself be

seen as an empirical distribution but involving a large number of points. Here,

our goal is to extend this framework to the mixed case.

The paper is organized as follows. First, we present in Section 2 a naive

extension of continuous DoEs which will serve as a baseline for numerical com-55

parisons. In Section 3, two novel methods based on kernel embedding are intro-

duced and discussed with respect to their respective advantages and limitations.

Extensive numerical experiments are finally conducted in Section 4 where we

show that, on a variety of problems, the kernel point of view clearly outperforms
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standard approaches.60

2. Straightforward transformation of a continuous DoE into a mixed

DoE

Our goal is to select nDoE representative points from the region D defined

by (1). Inspired from previous works [16, 17], we first propose a straightforward

algorithm which is based on the projection from continuous space to integers65

representing the distinct indices of the discrete variables, detailed in Algorithm

1.

Algorithm 1: Projected DoE for discrete variables

Input: n, nDoE

0. Pre-processing

� Compute all nlevels distinct discrete arrangements of size n, and arrange

them in a matrix L

� Compute the weight, w =
1

nlevels

1. Main computation

� Build a continuous DoE of size nDoE in dimension 1:

U = {u1, . . . , unDoE
}

� Assign discrete values according to the following rule:

if ui ∈ [(j − 1)w, jw], i = 1, . . . , nDoE , j = 1, . . . , nlevels, then assign the

j−th row of L to yi

Return y1, . . . , ynDoE

The choice of the method to generate the continuous DoE is left to the user,

but for the sake of having a uniform distribution in the discrete space, it is

recommended to use either a low discrepancy method such as Sobol sequences,70

Halton sequences (see details in [18]), or standard space-filling DoEs such as the

minimax or maximin DoEs for example [4, 3].
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Remark that this adaptation focuses on picking distinct discrete candidates.

If it yields badly-distributed points (this will happen if the chosen continuous

DoE is of poor quality), then the algorithm must consider postprocessing du-75

plicated discrete points (to be avoided). Algorithm 1 only provides the DoE for

In: in order to obtain the full DoE (for Rm × In) another (continuous) DoE is

generated for Rm and added to the output of Algorithm 1. In the numerical

comparisons of Section 4, we shall use a Sobol sequence and a classical LHS

for both generating continuous DoEs for Algorithm 1 and above for the adding80

step.

3. Kernel-embedding of probability distributions for mixed DoEs

This section discusses the main ingredients of our two proposals relying on

kernel-embedding of probability distributions extended to mixed continuous and

discrete space. The first part presents a literature review on kernel-embeddings85

and how defining a DoE can be seen as an optimization problem in this frame-

work. Subsections 3.1 and 3.2 detail both proposed algorithms, Greedy-MDS

and Adapted-Greedy.

For two probability distributions P and Q and a Reproducing Kernel Hilbert

Space (RKHS) H with positive-definite kernel k, the maximum mean discrep-90

ancy (MMD) distance between P and Q is defined as

MMD(P,Q) = ∥µP − µQ∥H, (2)

where µP =
∫
k(x, .)dP(x) and µQ =

∫
k(x, .)dQ(x) are the kernel embeddings

of P and Q, respectively, and serve as representations of the probability distri-

butions [13]. Interestingly, the RKHS framework makes it possible to write the

distance with only expectations of kernel functions:95

MMD2(P,Q) = Eξ,ξ′∼Pk(ξ, ξ
′) + Eζ,ζ′∼Qk(ζ, ζ

′)− 2Eξ∼P,ζ∼Qk(ξ, ζ). (3)

Kernel-embedding of probability distributions has been studied in many con-

texts, ranging from two-sample test problems [19], independence tests [20] or
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generative artificial neural networks [21]. In our context, it has also been used

as a method to quantize probability measures, i.e. how well a representative

point set approximates a target distribution [14, 15, 5]. More precisely, given100

a target probability measure Q to be quantized with an empirical distribution

P = 1
nDoE

∑nDoE

i=1 δxi of nDOE points, the problem writes

min
x1,x2,...,xnDoE

MMD2

(
1

nDoE

nDoE∑
i=1

δxi ,Q

)
. (4)

When the target Q is the uniform distribution on an hypercube, the squared

MMD actually can be written as well-known discrepancy measures, depending

on the choice of the kernel k, as elaborated in [22]. However, the choice of the105

target Q is not restricted, and several options have been discussed in previous

work. When Q is explicitly given as a parametric distribution, [15] proposes a

minimization-maximization algorithm to solve (4). On the other hand, when Q

is a posterior distribution from a Bayesian problem, [23] investigates a specific

kernel k giving rise to the so-called Stein discrepancy. Finally, Q can also be110

given itself as an empirical measure Q = 1
N

∑N
i=1 δui

, where N is typically

much larger than nDoE . This case is at the core of kernel herding [14], which

has also been studied in [15]. For the mixed DoE case, we shall only focus on

the latter, meaning that in what follows we shall always assume that we have

a large sample (ui)i=1,...,N of points distributed according to the target Q. In115

this case, problem (4) transforms into

min
x1,x2,...,xnDoE

MMD2

(
1

nDoE

nDoE∑
i=1

δxi ,
1

N

N∑
i=1

δui

)
. (5)

It remains, as a last step, to decide how this optimization problem is solved.

When the points xi can be chosen freely, efficient optimization strategies based

on minimization-maximization have been proposed [15]. However they cannot

be easily generalized to the mixed case, since they would involve developing a120

specific mixed-integer solver. This is the reason why we concentrate on the case

where the points xi are chosen among the points in the large sample U = {ui},

as in [14], [23], [24]. The optimization problem then however turns into a combi-

natorial one, with a complexity which must be leveraged with approximations.
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In kernel herding [14], a greedy sequential algorithm is proposed, which consists125

of the following steps:

x∗
1 = argmax

x∈U

1

N

N∑
j=1

k(x, uj),

x∗
t+1 = argmin

x∈U

1

t+ 1

t∑
i=1

k(x, x∗
t )−

1

N

N∑
j=1

k(x, uj).

From a computational perspective, we only precompute
1

N

N∑
j=1

k(x, uj) once for

all x ∈ U , and it is also recommended to normalize all the points before running

the algorithm to ensure its accuracy. A pseudo-code is given in Algorithm 2.

Note that this is also the approach taken in [23] (they also extend it to the130

selection of batches of several points at each iteration by resorting to a mixed-

integer quadratic programming solver).

Algorithm 2: Kernel herding: greedy algorithm for continuous vari-

ables.
Input: Target distribution given as the empirical measure supported on

the points U = (uj)j=1,2,...,N , and the size of the DoE nDoE .

� Precompute

1

N

N∑
j=1

k(x, uj), ∀x ∈ U .

� Initialize

x∗
1 = argmax

x∈U

1

N

N∑
j=1

k(x, uj). (6)

� For t = 1, . . . , nDoE − 1:

x∗
t+1 = argmin

x∈U

1

t+ 1

t∑
i=1

k(x, x∗
t )−

1

N

N∑
j=1

k(x, uj). (7)

Return x∗
1, x

∗
2, . . . , x

∗
nDoE

Regarding the choice of the kernel, if (uj)j=1,...,N lie in the continuous space
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Rm, we have to specify a kernel function

k :Rm × Rm −→ R

(u, v) −→ k(u, v)
(8)

To define a m dimensional kernel k, one can typically use a tensorized kernel

k(u, v) =

m∏
l=1

k̃(ul, vl),

where k̃ : R × R −→ R denotes a one-dimensional kernel. Classical examples

include the Gaussian and Laplacian kernels

k̃Gauss(u, v) := e−γ(u−v)2 ,

k̃Lap(u, v) := e−γ|u−v|

which depend on a user-defined hyperparameter γ > 0. In our numerical exper-135

iments, we shall rely on the so-called median rule of thumb to select γ [20].

3.1. Greedy-MDS: kernel herding and multi-dimensional scaling

In this subsection, we propose a first extension of the previous greedy al-

gorithm to mixed continuous and discrete space by using Multi-Dimensional

Scaling (MDS). The main idea is to apply MDS to build a continuous encoding140

of the discrete variables.

Continuous encoding of discrete variables is a standard way to handle mixed

variables in regression or classification problems. Successful strategies rely on

a data-driven approach, where the encoding is optimized during the supervised

learning task [25, 26]. However in our unsupervised setting, such approaches145

cannot be envisioned. In order to circumvent this limitation, we take a different

road by assuming that a user-defined distance in the discrete space character-

izing any prior information is available. Such a distance can include symme-

try properties such as in the numerical experiments presented below, or hand-

crafted correlation given by experts of the phenomenon under study. Once150

this distance is available, it can be used to compute all the pairwise distances

between the points from the target distribution ui.
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MDS can then be applied to this distance matrix. Indeed, MDS is a tech-

nique that creates a map displaying the relative positions of a number of ob-

jects, given only a table of distances (or dissimilarities) between them. In other155

words, MDS translates pairwise-distance information among a set of N objects

(normally in a high-dimensional space) into a configuration of N corresponding

points in a smaller dimensional space, preserving the pairwise distances as much

as possible. Suppose that we have a set of N points {u1, u2, . . . , uN} for which

we know all the pairwise distances dij = d(ui, uj). The output of MDS is a160

new set of points v1, v2, . . . , vN in a Euclidean space such that their Euclidean

distance approximates dij , i.e., dij ≈ d̂ij = ∥vi − vj∥. The dimension of this

Euclidean space is chosen by the user, with a maximum equal to N − 1. To

measure how well the original set of data are represented by the MDS model, it

is typical to use the the goodness-of-fit value, or stress value [27], based on the165

differences between the actual distances and their predicted values:

stress =

√√√√∑i,j(dij − d̂ij)
2∑

i,j d
2
ij

. (9)

Based on the stress value, [27] asserts how the MDS model performs: if

stress = 0 the MDS model is said to be perfect, else if stress ∽ 0.025 the MDS

model is said to be excellent, else if stress ∽ 0.05 the MDS model is said to be

good, else if stress ∽ 0.1 the MDS model is said to be fair, and finally otherwise170

if stress ∽ 0.2 or stress ≥ 0.2 the MDS model is said to be poor.

Our proposal, called Greedy-MDS, is then to apply a preliminary MDS step

for all the discrete variables Y = {y1, y2, . . . , yN} in the large target sample for

which we have all the pairwise distances defined by the user. After this step, we

have a continuous encoding V = {v1, v2, . . . , vN} of the discrete variables, which175

can be stacked with the continuous variables X = {x1, x2, . . . , xN}. This gives a

new representation of the large target sample with only continuous values. Then,

we use kernel-herding from Algorithm 2 with a standard continuous kernel to

obtain a small subset of points which represents as well as possible the target

distribution. The last step is finally to invert the encoding: this is an easy task,180
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since by bijection we exactly know the correspondence between the original

discrete values and their encoding. A pseudo-code is given in Algorithm 3.

Algorithm 3: Greedy-MDS algorithm.

Input: nDoE, d, Y

1. Pre-processing step

� Compute d, the matrix of distances dij = d(yi, yj) for all yi, yj ∈ Y .

� MDS step: apply MDS to d, obtain accordingly continuous points,

u1, . . . , uN

� Stacking with continuous variables: for each ui, i = 1, . . . , N , add a

large number of continuous values, save in matrix R

2. Greedy algorithm Algorithm 2 with inputs R,nDoE.

3. Retrieve the original values by inverting MDS

A strong potential limitation of Greedy-MDS lies in the choice of the user-

defined distance. Indeed, very poor distance reconstruction performance can

occur in practice, meaning that MDS cannot find an encoding which preserves

well the pairwise distances even with a maximal dimension of N−1. To circum-

vent this issue, we observed numerically that in practice MDS has a much better

reconstruction performance if, instead of relying on a user-defined distance, we

employ a user-defined kernel k for discrete variables and build the corresponding

kernel-induced pseudo-distance

dk(u, v) =
√

k(u, u) + k(v, v)− 2k(u, v).

Note however that requiring a user-defined kernel is much more demanding than

requiring a distance, and that if a kernel is available the following approach

should be preferred.185

3.2. Adapted-Greedy: directly using a kernel defined in the mixed space

In this subsection, we propose an adapted greedy algorithm for mixed con-

tinuous and discrete variables problems that takes into account directly an ap-
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propriate mixed kernel inside the greedy algorithm 2, appropriate being related

here to the distance and type of information that are given by the user. The

first step is to build a positive-definite kernel on the discrete variables from a

given distance d(·, ·). The naive approach consists in generalizing the Laplace

kernel as follows:

k(y, y′) = e−γd(y,y′),

for any values y and y′ of the discrete variables. Unfortunately this does not

provide a positive-definite kernel in general [28]. A particular case of interest

where this result holds concerns binary variables with the Hamming distance,

dH(y, y′), where the kernel190

kH(y, y′) = e−γdH(y,y′), (10)

is positive definite for any γ > 0, see [29]. For the general case, we have to

follow a different road and build upon the work of [30] where the so-called soft

string kernel is introduced. For any distance d between any variables u and v

in a space I, it is given by

ksoft(u, v) :=

∫
ω∈I

p(ω)e−γ(d(u,ω)+d(v,ω))dω (11)

where p(ω) : I → R is a probability distribution over I, and it can be proved195

that it is positive definite [30]. When I is a discrete space, it boils down to the

discrete sum

ksoft(u, v) :=
∑
ω∈I

p(ω)e−γ(d(u,ω)+d(v,ω)). (12)

Interestingly, for a uniform distribution, this kernel is an approximation of the

naive proposal above, by using well-known approximation results for the Log-

SumExp function (LSE). More precisely, the LSE function reads

LSE(x1, x2, . . . , xn) = log(ex1 + ex2 + . . .+ exn).

The LSE function can be seen as an approximation of the maximum function

max(x1, . . . , xn) [31]. Consequently, we also have

min(x1, . . . , xn) ≈ − log(e−x1 + e−x2 + . . .+ e−xn).
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Now if p is a uniform distribution on I, meaning that for all ω ∈ I, p(w) = p0,

then the soft string kernel simplifies as follows

ksoft(u, v) =
∑
ωi∈I

p0 e
−γ(d(u,ωi)+d(v,ωi)),

=
∑
ωi∈I

e(−γηi+log(p0)),
(13)

with ηi = d(u, ωi)+ d(v, ωi). Applying − log to both sides of this equality leads

to

− log(ksoft(u, v)) = − log

(∑
ωi∈I

e(−γηi+log(p0))

)

≈ min
i
(γηi − log(p0)),

using the approximation of the minimum given above. From the distance trian-

gle inequality, we also have ηi ≥ d(u, v), which means that min
i
(γηi− log(p0)) =

γd(u, v)− log(p0). This finally gives

ksoft(u, v) = elog(k
soft(u,v))

≈ e−(γd(u,v)−log(p0))

= p0 e
−γd(u,v).

This result can help interpret ksoft as a positive-definite approximation of the200

Laplace kernel where we would insert the distance d.

Combining one of the above kernels (10) or (12) for the discrete variables

and any kernel kcont for the continuous variables is finally straightforward with

tensorization, and leads to a mixed kernel that can directly be used in kernel

herding.205

Extension beyond mixed variables problems.

Interestingly, the Adapted-Greedy approach presented before is generic, in

the following sense: as we discussed building a kernel adapted to discrete vari-

ables, the same principle can be applied to any other type of variables (corre-

sponding to appropriate kernel and distance) provided by the user. A prominent210

example in computer experiments involves time series variables, for which it is
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usually a challenge to build a space-filling DoE. Some previous works are for ex-

ample based on the decomposition of functional data on orthogonal bases such

as in [32], but here we can directly make use of the literature on kernels for

time-series data. We can for example propose a normalized kernel between two215

time series u(t) and v(t) involving the recently proposed global alignment kernel

[33]:

KGAK(u(t), v(t)) = K(u(t), v(t))− 1

2
(K(u(t), u(t)) +K(v(t), v(t))), (14)

where K is the global alignment kernel for same length time series

K(u(t), v(t)) =

|∏
i=1

e−ϕσ(u(ti),v(ti)), (15)

with ϕσ(u(ti), v(ti)) =
1

2σ2
∥u(ti) − v(ti)∥2 + log(2 − e−

∥u(ti)−v(ti)∥
2

2σ2 ). We shall

see in Section 4 how it performs numerically on a time series example.220

4. Numerical experiments

The aim of this section is to demonstrate the large range of applicability

of the proposed design of experiment methods. The first application is the

surrogate modelling of the simulated performance of an electric engine with

respect to design parameters of the rotor component. This application deals225

with continuous, integer and categorical variables. Then, we consider the case

of cyclic-symmetry problems, with continuous and binary variables, motivated

by an application of optimal design of the turbomachine of an helicopter engine

described in [16]. For these specific problems, we address two different practical

objectives: (a) surrogate modelling illustrated on various benchmark functions,230

and (b) the choice of initial points for the shape optimization problem of the

turbomachine. Finally, our DoE methods are applied to two examples involving

time series.
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4.1. Design of experiments for a surrogate model with continuous, integer and

categorical variables235

The first application relates to the optimal design of an electric engine with

respect to the rotor component. The purpose of this study is to choose a set

of values of the design variables that will be used to perform simulations of the

engine operation in order to build surrogate models of the maximal power and

of the maximal torque of the engine. The simulations are performed with the240

FEMM simulator1 designed for electromagnetic problems. The design variables

are composed of one continuous variables (the rotor length), two integer vari-

ables (the number of wires and the number of coils with respectively four and

eleven possible values) and one categorical variable that characterizes the type

of rotor geometry (with 16 possible types of rotor). For this problem, we use245

a tensorized kernel composed of a Gaussian kernel for continuous variables and

the kernel (10) based on the Hamming distance applied to mixed binary vari-

ables resulting from the encoding of the integer and the categorical variables.

Here we compare designs of experiments built with Adapted-Greedy approach

to the projected LHS (Algorithm 1) with a number of points ranging from 20250

to 100. Surrogate models based on Gaussian processes and adapted kernel for

mixed continuous and categorical variables ([34] , [9]) are built from simulations

performed on these designs. The accuracy of the obtained surrogate models is

assessed by

1−Q2(F, F̂ ) =
1
Nv

∑Nv

i=1(Fi − F̂i)
2

1
N

∑N
i=1(Fi − F̄ )2

, (16)

where Q2, the predictive accuracy coefficient, is computed on a new set of255

validation points of cardinality Nv, N = Nv + nDOE is the total number of

simulations including the points of the DoE, F is the vector of simulated values,

F̂ is the vector of the values predicted by the surrogate model, and F̄ is the

mean of F . In our experiments, we choose Nv = 300 validation points obtained

1https://www.femm.info/wiki/HomePage
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by a projected LHS method. Figure 1 compares the predictivity of each model260

built from the designs of experiments for the two simulator outputs of interest:

the maximal torque and the maximal power of the electric machine. We achieve

a better predictivity of the surrogate models for the Adapted-Greedy method,

that is smaller values of 1−Q2 than projected LHS for both responses of interest

and for all the design sizes.265

Figure 1: Accuracy of the surrogate models of the maximal torque (left) and the maximal

power (right) built with designs of experiments obtained by the projected LHS method (in

blue) and by the Adapted-Greedy algorithm (in red) with respect to the size of the designs.

4.2. Design of experiments for cyclic-symmetry problems involving continuous

and binary variables

The study of cyclic-symmetry problems is motivated by an application of

optimal design for turbine blades in an helicopter engine [35], which involves

mixed continuous and binary input variables.270

We first apply our novel DoE methods on a set of benchmark functions (all

with cyclic symmetry) with the aim of estimating the expectation of the actual

functions. The second experiment presented in this section focuses on the choice

of the initial points of an optimization method.

For both experiments, the value of the function of interest, f , is not affected275

by cyclic permutations of the vector of binary variables y. More precisely, for

any given value of the continuous-variable vector x ∈ Rm and for any y′ ∈
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{0, 1}n such that there exists an index i ∈ {1, 2, . . . , n} such that Roti(y′) =

y, (where Roti(y) is the rotation of y by i positions), one has f(x, y′) = f(x, y).

For the Greedy-MDS and the Adapted-Greedy methods, we use a tensorized280

kernel with, for the binary variables, the soft kernel (12) with the necklace

distance [16]:

dneck(y, y
′) = min

i=1,2,...,n
dH(y,Roti(y′)), (17)

where dH denotes the Hamming distance. A necklace of binary variables y ∈

{0, 1}n is defined as the equivalence class of binary vectors considering all ro-

tations as equivalent vectors (analogy with a necklace of n beads of two colors285

represented by 0 and 1 values): Ny = {Roti(y), i = 1, 2, . . . , n}.

4.2.1. Results for expectation estimation

The benchmark consists of 6 different functions chosen from [36, 37, 38, 14],

and listed in Table 1. These functions were set up originally for continuous

optimization purposes. We transform them into mixed binary functions with290

cyclic symmetry following the methodology of [16]. The problem dimensions

are listed in Table 1 with a number m of continuous variables ranging from 1

to 10, and a number n of binary variables from 4 to 7 (corresponding to 6 to 20

distinct necklaces, i.e., 6 to 20 equivalent classes of binary vector).

Test problem Dimension # distinct binary source Reference

([m,n]) vectors (necklaces) instance

sin(∥x∥)-nl 2× 7 20 sin(∥x∥) [14]

Wong2-nl 10× 4 6 Wong2 [36]

Branin-nl 1× 7 20 Branin [38]

Hartman3-nl 3× 6 14 Hartman3 [38]

Perm6-nl 5× 5 10 Perm6 [37]

Perm8-nl 7× 5 20 Perm8 [37]

Table 1: Benchmark functions for expectation estimation.

DoEs are built with the methods introduced in Section 3: two projected de-295
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signs (1) based on LHS and Sobol sequence, and our two methods based on

kernel embeddings: Greedy-MDS and Adapted-Greedy. These results are com-

pared with random sampling and standard LHS with rounded values for the

binary variables. The empirical means of the benchmark functions for each

necklace are computed from the points of the DoE and compared with the em-300

pirical means computed with a large set of points obtained by Monte-Carlo

sampling (104 evaluations). For each DoE, the accuracy of the estimations is

rated by the mean squared errors of the function expectations at the different

necklaces: √√√√ 1

nneck

nneck∑
h=1

(F ref
h − FDoE

h )2, (18)

where nneck is the number of necklaces, F ref
h and FDoE

h are respectively the305

empirical expectations of the function for the Monte-Carlo sampling points and

the points of the DoE for the necklace h.

The results of 20 repeated runs of the 6 methods with a design size nDOE =

k nneck, where k is ranging from 1 to 27, are shown in Figure 2. Figure 3

provides the distributions of estimation errors for each necklace obtained by310

one run of the 6 methods on the Branin-nl test case with a design size of 100

points (k = 5). We observe on both figures that the approximation errors are

much smaller for Greedy-MDS and Adapted-Greedy methods than for the four

other methods. We also note that the two projected methods based on LHS and

Sobol sequences provide slightly better global results on the benchmark when315

compared with standard methods using rounded values (Figure 2).

4.2.2. Results for initial design of optimization

The aim of the turbine application presented in [35, 16] is to design the

turbine blades of an helicopter engine in order to minimize the vibrations of

the compressor. This optimization problem involves m = 1 continuous param-320

eter controlling the frequency amplitude, and a vector of n = 12 binary vari-

ables describing the repartition of two reference blade geometries on the turbine

disk. In [16], the authors propose an adapted optimization method based on

17



Figure 2: Median RMSE (in logscale) of the estimation of benchmark function expectation

obtained with 5 repetitions of the 6 methods: a random sampling and a standard LHS with

rounded values for binary variables, 2 projected methods based on Sobol sequence and pro-

jected LHS, the Greedy-MDS and Adapted-Greedy methods, for nDoE = knneck.
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Figure 3: Distributions of estimation errors for each of the 20 necklaces of the Branin-nl

function obtained with 6 methods: random sampling and standard LHS with rounded values

for the binary variables, 2 projected methods based on Sobol sequence and projected LHS,

the Greedy-MDS and Adapted-Greedy methods, for nDoE = 100.
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a derivative-free trust-region method that uses the necklace distance (17) to

take into account the cyclic symmetry of the problem. In [16], the initial set of325

points are chosen by a LHS procedure with rounded values for binary variables.

We compare here these optimization results with the results obtained with the

same optimization method coupled with two types of initial DoE: the projected

LHS and Adapted-Greedy methods. As for the previous benchmark functions,

the chosen kernel for the latter is a tensorized kernel of a Gaussian kernel for330

continuous variables and the softmax kernel with necklace distance. The size of

the initial DoE is nDoE = n+m+1 = 14, and 100 repetitions of each DoE meth-

ods and associated optimizations are run. The results are reported as data and

performance profiles in Figures 4 and 5, respectively. As explained in [39], data

and performances profiles with respect to the number of function evaluations335

are standard tools to compare the performances of derivative-free optimization

methods, counting the ratio of successful runs for each solver with respect to

a chosen criterion, the number of simulations in our study. We consider that

an optimization run is successful if the best solution z̄ obtained within a given

number of function evaluations satisfies340

f(z0)− f(z̄) ≥ (1− τ)(f(z0)− f∗), (19)

where, in the sequel, f∗ denote the best function value found by any solver (or

the global-minimum value, if known), z0 is the best point of the initial points

for each run, and τ is the desired accuracy, a user-defined tolerance value (in

our tests, τ = 10−5). If a run does not provide a solution that satisfies (19), we

consider that it fails. The data profile displays the ratio of successful runs of each345

solver over the total number of runs with respect to the number of simulations

(normalized by the number of optimization variables n+m+ 1 = 14), whereas

the performance profile displays this ratio with respect to a performance ratio

that is, in our case, the ratio of the number of evaluations needed by a given

method to satisfy the condition (19), and the smallest number of evaluations350

for all the compared methods.

Figures 4 and 5 show that the optimization method coupled with DoEs
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generated by projected LHS is the most robust method with 90% of successful

runs, while the optimization coupled with Adapted-Greedy method succeeds

to solve 88% of problems. The optimization method coupled with LHS with355

rounded values for binary variables is the least robust method with only 82%

of successful runs. The optimization method coupled with Adapted-Greedy

DoE appears to be less efficient for small budgets of simulations. For this kind

of derivative-free optimization methods coupled with expensive simulators, the

size of the initial set is generally small in order to limit the number of expensive360

simulations. In the presented application, the size of the initial set (14) is small

compared to the number of necklaces (equal to 352). This can explain the small

differences between the results of the optimization method coupled with the

three DoE methods: the exploration of the input space is done essentially along

the optimization iterations and not during the initial phase.365

4.3. Design of experiments for times series

To illustrate the ability of the proposed DoEs to be relevant for other types

of variables than the mixed discrete case, we propose in this section to apply

the Greedy-MDS and the Adapted-Greedy approaches coupled with the global

alignment kernel (see (14) in Section 3) to two time series examples, and we370

compare the results with those obtained with some state-of-the-art approaches.

Adapted Greedy LHS Quant.

Greedy MDS + FPCA +FPCA

nDoE t(s) errors t(s) errors t(s) errors t(s) errors

20 0.04 8.10−8 0.02 2.10−7 0.08 2.10−7 0.36 1.3.10−7

40 0.07 9.10−8 0.03 2.10−7 0.09 3.10−8 0.94 7−9

60 0.11 2.10−8 0.030 4.10−8 0.11 6.10−8 2.04 2−8

Table 2: Computational times and relative errors of the expectation estimation obtained for

the function f1 with the functional data of Brownian motion using 4 methods: the Adapted-

Greedy and Greedy-MDS methods coupled with the global alignment kernel; the LHS method

and the quantization method coupled with the FPCA dimension reduction method.
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Figure 4: Turbine blade design: data profiles of the optimization runs with 100 initial DoE

obtained with 3 methods: LHS with rounded values for binary variables, projected LHS, and

Adapted-Greedy methods.

We consider two analytical functions with a functional input random variable

V (t) that is known through a sample of 200 realizations. Two cases are studied:

V is either a standard Brownian motion, denoted by BM, (Figure 6) or a max-

stable process, denoted by MS (Figure 7). The aim of these experiments is to375

estimate the expectation of the function with respect to the functional variable

V (t) with a limited number of samples of V . To achieve this goal, [40, 41]

propose a greedy functional data-driven quantization approach coupled with a

functional principal component analysis (FPCA) to reduce the dimension of V

to a finite (small) dimension. The impact of the number of components in FPCA380

on the explained variance of the functional data for two types of uncertainties

(Brownian and max-stable processes) is discussed in [42]. For the presented

numerical experiments, we choose 8 components that explain respectively 97.6%
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Figure 5: Safran’s application: of the optimization runs with 100 initial DoE obtained with 3

methods: LHS with rounded values for binary variables, projected LHS, and Adapted-Greedy

methods.

and 70% of the data variance. We propose here to compare this quantization

method with our two DoE methods applied directly to the functional domain385

with the global alignment kernel, KGAK , introduced in Section 3 for time series.

The Greedy-MDS method relies on the associated GAK kernel distance, dGAK ,

defined as

d2GAK(u(t), v(t)) = KGAK(u(t), u(t)) +KGAK(v(t), v(t))− 2KGAK(u(t), v(t)).

(20)

A standard LHS method applied to the reduced space obtained by FPCA is also

evaluated. The two studied functions are defined as390

f1 : (x, V ) → x2
1 + 2x2

2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7 +

T∫
0

eVtdt, (21)
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Figure 6: 200 realizations of a Brownian motion: the thick blue curves are the 10 curves

selected by the first iterations of the Adapted-Greedy algorithm.

where we fix x1 = 50 and x2 = −80, and

f2 : (x, V ) → 2x2
1+x2

2−0.3 cos(3πx1)−0.4 cos(4πx2)+0.7+

T∫
0

2 sin(Vt)dt, (22)

where x1 = 2.95 and x2 = 3.97.

We apply the 4 DoE methods to the functions f1 and f2 and the two func-

tional data, Brownian motion and max-stable process, with various sizes of DoE

nDoE = 20, 40 and 60 chosen among the 200 available realizations of V . The395

performances of the methods are measured in terms of accuracy and computa-

tional time in Tables 2, 3, 4, and 5. The errors are computed as the relative

errors of the expectation estimations based on the obtained DoE, and the es-

timation based on the 200 realizations. The best values among the 4 methods

are indicated in bold. The results of LHS and the quantization methods are the400

means of the results obtained for 50 repeated runs.
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Figure 7: 200 realizations of a Max-stable process. The thick blue curves are the 10 curves

selected by the first iterations of the Adapted-Greedy algorithm.

The quantization method which is dedicated to the expectation estimation

often yields the best results. Our two methods provide results that are close to

it in terms of accuracy, whereas the results of the LHS method applied to the405

reduced space are in general not as accurate. In terms of computational time,

our two methods are more efficient than the quantization method implemen-

tation of [41]. Moreover, our methods directly consider the functional variable

and do not require to apply a dimension reduction method.

5. Conclusions410

The aim of the paper is to propose design of experiment methods adapted

to mixed discrete and continuous variable problems. A first proposal is the
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Adapted Greedy LHS Quant.

Greedy MDS + FPCA +FPCA

nDoE t(s) errors t(s) errors t(s) errors t(s) errors

20 0.04 2.10−7 0.03 2.10−6 0.07 2.10−6 0.4 5.10−7

40 0.07 2.10−6 0.03 2.10−8 0.1 8.10−7 0.9 3−7

60 0.11 5.10−7 0.04 4.10−7 0.11 4.10−7 1.9 2.10−7

Table 3: Computational times and relative errors of the expectation estimation obtained for

the function f1 with the functional data of Max-stable process. 4 methods are evaluated:

the Adapted-Greedy and Greedy-MDS methods coupled with the global alignment kernel,

the LHS method and the quantization method coupled with the FPCA dimension reduction

method.

straightforward extension of continuous DoE techniques such as low discrep-

ancy methods or standard space filling approaches coupled with the projection

from continuous space to integers representing the distinct indices of discrete415

variables. A second proposed approach relies on kernel-embedding of probabil-

ity distributions extended to mixed continuous and discrete space, which leads

to two new methods: Greedy-MDS and Adapted-Greedy methods. These meth-

ods are generic and can address types of other objects than mixed discrete and

continuous variables, provided that a suitable kernel is available. A variety of420

useful kernels are presented: in particular, the softmax kernel that can be built

from any distance and ensures the positive-definite property, and the global

alignment kernel that is suited to time series.

We illustrated the performances of the proposed DoE methods in various

contexts: building a training data set for a surrogate model handling continuous,425

integer and categorical variables, and for the estimation of the expectation of a

function with cyclic symmetry for a vector of binary variables, choosing initial

points of a mixed binary and continuous shape optimization problem for an

helicopter engine, and finally DoE for time series for expectation estimation of

a function that depends on a functional variable.430

Future studies can be carried on with other types of objects and associated

26



Adapted Greedy LHS Quant.

Greedy MDS + FPCA +FPCA

nDoE t(s) errors t(s) errors t(s) errors t(s) errors

20 0.04 3.10−7 0.02 6.10−7 0.05 6.10−7 0.3 2.10−7

40 0.07 3.10−7 0.03 8.10−7 0.07 2.10−7 0.89 6.10−8

60 0.11 3.10−8 0.03 1.10−8 0.09 1.10−7 1.9 3.10−8

Table 4: Computational times and relative errors of the expectation estimation obtained

for the function f2 with the functional data of Brownian motion. 4 methods are evaluated:

the Adapted-Greedy and Greedy-MDS methods coupled with the global alignment kernel,

the LHS method and the quantization method coupled with the FPCA dimension reduction

method.

kernels (such as images or graphs) and also with different operational objectives.

For instance, the exploration step in global optimization methods such as surro-

gate optimization or direct search methods could exploit the proposed DoEs for

mixed continuous and discrete problems or involving other types of variables435

provided that some prior information is available and can be associated to a

kernel or a distance (as we did for cyclic symmetry).
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Adapted Greedy LHS Quant.

Greedy MDS + FPCA +FPCA

nDoE t(s) errors t(s) errors t(s) errors t(s) errors

20 0.04 5.10−7 0.03 1.10−6 0.07 3.10−6 0.35 2.10−6

40 0.07 2.10−6 0.03 2.10−6 0.09 1.10−6 0.9 9.10−7

60 0.11 4.10−7 0.04 2.10−6 0.11 8.10−7 1.9 6.10−7

Table 5: Computational times and relative errors of the expectation estimation obtained for

the function f2 with the functional data of Max-stable process. 4 methods are evaluated:

the Adapted-Greedy and Greedy-MDS methods coupled with the global alignment kernel,

the LHS method and the quantization method coupled with the FPCA dimension reduction

method.
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pour la simulation des phénomènes complexes, Ph.D. thesis (2008).

[19] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, A. Smola, A

kernel two-sample test, The Journal of Machine Learning Research 13 (1)

(2012) 723–773.505

[20] A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf, A. J. Smola, A

kernel statistical test of independence, in: Advances in neural information

processing systems, 2008, pp. 585–592.

30

https://hal.archives-ouvertes.fr/hal-02494138
https://hal.archives-ouvertes.fr/hal-02494138
https://hal.archives-ouvertes.fr/hal-02494138
https://hal.archives-ouvertes.fr/hal-02494138
https://hal.archives-ouvertes.fr/hal-02494138
http://dx.doi.org/10.1007/978-3-030-38364-0
https://hal.archives-ouvertes.fr/hal-02494138
https://doi.org/10.1007/s11081-021-09685-1
https://doi.org/10.1007/s11081-021-09685-1
https://doi.org/10.1007/s11081-021-09685-1
https://doi.org/10.1007/s11081-021-09685-1


[21] Y. Li, K. Swersky, R. Zemel, Generative moment matching networks, in:

International Conference on Machine Learning, Proceedings of Machine510

Learning Research, 2015, pp. 1718–1727.

[22] F. Hickernell, A generalized discrepancy and quadrature error bound,

Mathematics of Computation 67 (221) (1998) 299–322.

[23] L. F. South, M. Riabiz, O. Teymur, C. Oates, Post-processing of MCMC

(2021).515

[24] J. Yang, Q. Liu, V. Rao, J. Neville, Goodness-of-fit testing for discrete dis-

tributions via Stein discrepancy, Vol. 80 of Proceedings of Machine Learn-
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