

Supporting Information

Figure S 1. Evolution of perhydrophenanthrene conversion with contact time on Pt/USY, Pt/BETA catalysts with 1 wt.% zeolite in alumina binder at 280°C; and Pt/ASA (at 300°C) bifunctional catalysts.

Models used in GCMC simulations:

Since both structures (*BEA and FAU) are assimilated to be purely siliceous, the energetic description of the system is only based on the summation of two different contributions:

$$U_{TOT} = U_{LJ} + U_{intra}$$

where the term corresponding to the dispersion-repulsion energy is described *via* a Lennard-Jones potential:

$$U_{LJ}^{ij}(r) = 4 \varepsilon \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right]$$

A collection of intramolecular terms allow accounting for the energetic contribution associated to the internal deformation/flexibility of the hydrocarbons:

$$U_{intra} = U_{bonding} + U_{bending} + U_{torsion} =$$

$$=\sum_{i=1}^{n_{bonds}} \frac{1}{2}k_b^i(d-d_0)^2 + \sum_{i=1}^{n_{angles}} \frac{1}{2}k_a^i(\cos\theta - \cos\theta_0)^2 + \sum_{i=1}^{n_{dihedral angles}} \sum_{j=1}^{8}A_i^j(\cos\chi)^j$$

The different parameters used in the calculations are compiled in the following tables:

Force center	σ† [Å]	ε† [K]	δ ⁺⁺ [Å]
CH₃-AUA	3.6072	120.15	0.21584
CH ₂ -aliph-AUA	3.4612	86.291	0.38405
CH-aliph-AUA	3.3625	50.98	0.64599
C-cyc-AUA [‡]	2.440	15.035	
CH-cyc-AUA [‡]	3.3625	50.98	0.64599
CH2-cyc-AUA	3.461	90.09	0.336
O-zeolite	3.00	112.236	
Si-zeolite	0.00	0.00	

Table S1: Lennard-Jones parameters

[†]Lorentz-Berthelot mixing rules were employed to determine the interactions between different force center types.

 $^{\dagger\dagger}\delta$ is the anisotropic distance used in the AUA (Anisotropic United Atoms) potential.

[‡] borrowed from their aliphatic counterparts

Table S2: Parameters of the harmonic bonding potential

Bond	k _b [K]†	\mathbf{d}_0 [Å]
CH ₃ -AUA CH ₂ -aliph-AUA		1.535
CH ₂ -aliph-AUA CH ₂ -aliph-AUA		1.535
CH ₂ -aliph-AUA CH-aliph-AUA		1.535
CH2-cyc-AUA CH2-cyc-AUA		1.53519
CH3-AUA CH2-cyc-AUA		1.53519
CH3-AUA CH-cyc-AUA		1.53519
CH3-AUA C-cyc-AUA		1.53519

[†]Bond lengths are considered constant

Table S3: Parameters of the harmonic bending potential

Angle	k _a [K]	θ_0 [deg]
CH3-AUA CH2-aliph-AUA CH2-aliph-AUA	74900	114.00
CH2-aliph-AUA CH2-aliph-AUA CH2-aliph-AUA	74900	114.00
CH2-cyc-AUA CH2-cyc-AUA CH2-cyc-AUA	74900	114.00
CH2-cyc-AUA CH2-cyc-AUA CH-cyc-AUA	74900	114.00
CH2-cyc-AUA CH-cyc-AUA CH2-cyc-AUA	74900	114.00
CH2-cyc-AUA CH-cyc-AUA CH-cyc-AUA	74900	114.00 (105.00)†
CH-cyc-AUA CH2-cyc-AUA CH-cyc-AUA	74900	114.00 (105.00)†
CH-cyc-AUA CH-cyc-AUA CH-cyc-AUA	74900	114.00
C-cyc-AUA CH2-cyc-AUA C-cyc-AUA	74900	114.00
CH2-cyc-AUA CH-cyc-AUA CH2-cyc-AUA	74900	114.00 (105.00)†
CH2-cyc-AUA C-cyc-AUA CH3-AUA	74900	114.00

 $^{\dagger}\mbox{When 5-membered rings are involved}$

Dihedral angle	Angle	A ⁰	A ¹	A ²	A ³	A^4	A ⁵	A ⁶	A ⁷	A ⁸
(*) – CH2-aliph-AUA										
– CH2-aliph-AUA	0	1001.36	2129.52	-303.06	-3612.27	2226.71	1965.93	-4489.34	-1736.22	2817.37
(*)										
(*) – CH2-cyc-AUA –	0	1001 36	2129 52	-303.06	-3612 27	2226 71	1965 93	-4489 34	-1736 22	2817 37
CH2-cyc-AUA (*)		1001.50	2125.52	303.00	5012.27	2220.71	1903.55	++05.5+	1.00.22	
(*) – CH2-cyc-AUA –	0 10	0 1001.36	1001.36 2129.52	-303.06	-3612.27	2226.71	1965.93	-4489.34	-1736.22	2817.37
CH-cyc-AUA (*)										
(*) – CH-cyc-AUA –	0 1	1001.36	2129.52	-303.06	-3612.27	2226.71	1965.93	-4489.34	-1736.22	2817.37
CH-cyc-AUA (*)			505100	0012127	2220072	1000.00		1/00122		
(*) – CH2-cyc-AUA –	0 1001.36	0 1001 36 2129 52	2129 52	-303.06 -36	-3612 27	-3612 27 2226 71	1965 93	-4489 34	-1736 22	2817 37
C-cyc-AUA (*)		1001.50					1000.00		1, 50.22	2027.07

 Table S4: Parameters of the torsion potential