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Abstract

In the automotive industry, the introduction of alternative fuels in the
market or even the consideration of new fluids such as lubricants requires
continuous efforts in research and development to predict and evaluate im-
pacts on materials (e.g., polymers) in contact with these fluids. We address
here the compatibility between polymers and fluids by means of both experi-
mental and modelling techniques. Three polymers were considered: a nitrile
butadiene rubber (NBR), a fluorinated elastomer (FKM) and a fluorosilicon
rubber (FVMQ), and a series of hydrocarbons mixtures were formulated to
study the swelling of the polymers. The swelling of samples has been in-
vestigated in terms of weight and not volume variations as the measure of
this former is assumed to be more accurate. Multi-gene genetic program-
ming (MGGP) was applied to experimental data obtained in order to derive
models to predict: (i) the maximum value of the mass gain (∆M) and (ii)
the sorption kinetics, i.e. the time evolution of ∆M. Predicted values are
in excellent agreement with experimental data (with R2 greater than 0.99),
and models have demonstrated their predictive capabilities when applied to
external fluids (not considered during the training procedure). Combining ex-
periments and modelling, as proposed in this work, leads to accurate models
which drastically reduce the time necessary to quantify polymeric materials
compatibility with a fluid candidates as compared to experiments.
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1. Introduction1

In the context of global warming, conclusions of research dedicated to the2

reduction of greenhouse gases emissions advocate the use of alternative fuels3

[1]. In particular, advanced fuels and biofuels including conventional renew-4

able fuels, respecting environmental criteria at a reasonable cost are of pri-5

mary interest [2]. Biofuels are issued from organic raw materials and they can6

be seen as blends of renewable molecules such as normal- and iso-paraffins,7

naphtenic and aromatic compounds, normal- and iso-olefins, alcohols, and/or8

esters [3]. Normal- and iso-paraffins can be obtained by industrial processes9

such as Fisher-Tropsch (FT) [4] and hydrotreatment of vegetable oils (HVO)10

[5]. In the same way, naphtenic and aromatic compounds can be synthesized11

from the liquefaction or pyrolysis of biomass [6, 7]. Moreover, compositions12

constantly evolving and being different from one country to another, it has13

become essential to understand the impact of the introduction of these com-14

pounds on the physical properties of alternative fuels. The presence of these15

families of molecules with different chemistry requires extensive research and16

development activities. Indeed, it drives the conditions for storage, trans-17

portation, and combustion quality.18

In combustion engine vehicles many pieces of the fuel-delivery systems19

are composed all or part of polymers. Polymeric materials in contact with20

fuels and/or biofuels may be subject to deformations such as swelling, caused21

by solvent ingress within their structure and leading to strong modifications22

and loss of their initial physical and chemical properties [8, 9]. To address23

this problem, one solution consists in using multilayer structures containing24

interleaved barrier polymers [10]. Up to date, only few works have been pub-25

lished in the litterature dealing with the compatibility between polymeric26

materials and fluids, and there is a lack of available experimental data [11].27

The group of Izák et al. have investigated experimentally and theoretically28

gases and liquids sorption into polymers over the last decades [12, 13, 14]29

; and more recently, Krajakova et al. focused on sorption of liquids into30

poly(ethylene) samples of different densities [15]. Regarding fuels, Haseeb31

et al. immersed some elastomeric materials such as nitrile butadiene rub-32

ber (NBR) and Viton® a fluorinated elastomer (FKM) in diesel and palm33

biodiesel to compare the degradation of physical properties like weight and34

volume changes, hardness and tensil strength [16, 17]. Kaas et al. studied35

the compatibility of elastomeric materials with gasoline blends containing36

ethanol and isobutanol, followed evolution of some polymer’s properties, and37
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proposed a ranking of elastomer specimens according to their swelling [18].38

Silva et al. ordered some rubbers as a function of their compatibility with39

biodiesels, and revealed that the mobility of chains of NBR in biodiesel in-40

creases without change in their chemical structures [19]. In the article by41

Trakarnpruk et al., authors studied elastomer properties after immersion42

in biodiesel, focusing among others on NBR, copolymers, and terpolymer43

FKM. Authors concluded that among tested polymers fluoroelastomers un-44

dergo fewer physical degradation [20]. Weltschev et al. focused their research45

on the resistance of sealing materials such as FKM, NBR and fluorosilicon46

rubber (FVMQ), immersed during hours in biodiesel based fuels, as a func-47

tion of the age and the temperature of fluids [21]. Authors noted that the48

percentage of degradation is proportional to the temperature and the age49

of the fuels. In regards to available experimental results, it appears that50

current methods used for the data acquisitions are time consuming, and the51

development of robust predictive models is of high relevance.52

Plota and Masek recently reviewed kinetic based models used to predict53

the lifetime of polymeric materials and conclude to the necessity of develop-54

ing new methods [22]. During last decades materials informatics has emerged55

as a new approach for the conception of new materials [23, 24, 25]. It consists56

in training learning algorithms on database content, in order to allow pre-57

dictions for materials having structures similar to those contained within the58

database, or even to propose promizing candidates for specific applications.59

Polymer informatics necessitates relevant databases which integrate knowl-60

edge about properties related to thermodynamics, mechanics, optics, and61

transport [26, 27]. Litterature reviews report developments of quantitative62

structure property relationships (QSPR) for polymer properties [28, 29, 30].63

In the case of transparent polymeric materials, QSPR methods have been64

used to model optical properties such as the refractive index, n [28, 30, 31, 32].65

Holder et al. have shown that the use of dimeric repeating units for descriptor66

calculation leads to the most accurate models [33]. Duchowicz et al. used a67

Simplified Molecular Input Line Entry System (SMILES) − not dependent of68

3D-molecular geometries − based model to predict n for 234 structurally di-69

verse polymers [34]. Jabeen et al. developed a four-descriptor QSPR model70

with accurate predictions for a highly diverse set of 133 organic polymers71

[35]. Numerous works reported attempts to predict polymer properties such72

as glass transition temperature, Tg using QSPR [29, 36, 37, 38, 39]. The73

knowledge of Tg defines domains of rigid structure or rubber-like properties74

for polymeric materials, and thus is of utmost importance for many appli-75
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cations. Mercader et al. have demonstrated that Tg can be well predicted76

with QSPR and advocated the use of trimeric moities for descriptor cal-77

culation [37]. QSPR were also developed to predict mechanical properties78

for polymeric materials [40], and Cravero et al. proposed QSPR models to79

estimate tensile strength of polymers [41]. Another possible application of80

QSPR modelling is to predict sorption of chemicals into polymer matrices.81

Zhu et al. proposed a QSPR based model for the prediction of diffusion82

coefficients of hydrophobic organic contaminants in low density polyethylene83

[42]. Li et al. proposed models for predicting polymer/brine partition co-84

efficients for chemicals, with polymers such as polyethylene, polypropylene85

and polystyrene [43]. Our group has previously proposed QSPR models to86

predict sorption values for neat compounds and up to quinary mixtures of87

hydrocarbons, alcohols, and ethers, and demonstrated their applicability to88

predict sorption values for some alternative fuels into a poly(ethylene) [44].89

In the present work, we report the acquisition of new experimental sorp-90

tion values at room temperature for neat compounds and alternative jet fuels91

based fluids into three polymers. Additionaly, we present QSPR based mod-92

els developed using machine learning methods, and its application to model93

new experimental data. The paper is organized as follows: we present exper-94

imental data methods and the strategy followed to build new QSPR based95

models, new experimental data and the predictive performance of models are96

then exposed and discussed, and the last section gives our conclusions.97

2. Materials and methods98

2.1. Experimental procedure99

2.1.1. Materials and Samples100

Three polymers commonly considered for the design of fuel-delivery sys-101

tems were selected for this study: NBR, FKM, and FVMQ. Polymers raw102

materials − plane square sheets with 0.3m size and 2.10−3m thickness −103

were supplied either by Zodiac Aerotechnics or by Stacem. Rectangular104

parallelepiped shapes with 60x10x2 mm3 were extracted from the polymer105

sheets using a cutting shape, and samples were subsequently used for the106

sorption tests. Some characteristics (grades for aerospace applications) for107

these materials are presented in Table 1. We also performed measurements,108

the Dynamic Mechanical Analysis (DMA) was used to determine the glass109

transition temperature for the three polymers. A sinusoidal stress was ap-110

plied to each sample while the strain was measured, allowing one to determine111
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Table 1: Characteristics for polymeric materials considered in this study.

Polymer Type Standards
Hardness Tg Plasticizer
(IRHDa) (℃) (% wt.)

NBR 20B8 NF L 17-120 78 -36 11.0
FVMQ 61D8 NF L 17-261 80 -55 1.2
FKM 60C8 NF L 17-164 80 -1 0.5

aIRHD: International Rubber Hardness Degree. The dial of the durometer is
graduated according to the Shore D scale, from 0 (soft) to 100 (hard) IRHD,
with uncertainties associated to measurements of +5/-4 IRHD.

the complex modulus and the loss factor. So-obtained Tg values, reported112

in Table 1, correspond to the peak value of tan δ, the damping, a measure113

of the energy dissipation of a material. Additionally, the Thermal Gravi-114

metric Analysis (TGA) was used, it consists in following the mass variations115

of a sample with the time as the temperature changes. This measurement116

provides information about chemical phenomena including thermal decom-117

position but also physical phenomena, such as the desorption of additives.118

This technique has allowed the determination of the plasticizer amount ini-119

tially present in each studied polymer. It led to plasticizer amounts of 0.5 %120

wt. for FKM, 1.2 % wt. for FVMQ, and 11 % wt. for NBR, indicating that121

the amount in NBR is not negligible and may lead to measurement artifacts.122

Fluids under consideration in this study are pure liquids and aviation123

fuels. Naphthenic and aromatic hydrocarbons (decaline (labeled D), xylene124

(labeled X), tetraline (labeled T), iso-propylbenzene (or cumene, labeled C),125

n-propylbenzene (labeled P), and methylnaphtalene (labeled M)), with high126

purity grades were purchased from Merck, and no additional purification was127

performed. One Jet A-1 (labeled J) being one of the fuels most commonly128

used in commercial aviation was selected for sorption measurements. Addi-129

tionally, we considered alternative jet fuels approved for certification such as:130

Synthetic Paraffinic Kerosene (SPK) and Hydroprocessed Esters and Fatty131

Acids (HEFA). For instance, SPK can be FT fuels − composed of normal132

and isoparaffins, or Alcohol to Jet Synthetic Paraffinic Kerosene (ATJ-SPK)133

created from isobutanol which is derived from feedstocks. HEFA − similar134

to HVO − includes hydrocarbon-based jet fuels (100% paraffinic) produced135

from animal or vegetable oils by hydroprocessing [45]. The current certifica-136

tion for the use of HEFA in mixture with jet fuel allows a maximum of 50%137

5



vol. We considered three HEFA with different cold flow properties such as138

crystallization temperatures: -50 ℃, -30 ℃, and -20 ℃ labeled H(50), H(30),139

and H(20), respectively. We considered three additional fuels (labeled A1,140

B1, and C1) to assess their compatibility with the polymers through sorption141

measurements, and later used to assess the predictive capability of models.142

A1 is a Jet A-1 fuel, noting that its composition sligthly differs from that of J.143

B1 is an ATJ-SPK mainly composed of i-paraffins. C1 is a jet fuel surrogate144

with high aromatics content (ca. 20 vol%). Note that Hall et al. recently145

considered these conventional and synthetic fuels [46], and representations146

for these fluids are proposed hereafter.147

In order to deeply explore effects of the fluid composition on polymer148

mass variations when the polymer is immersed in a fluid, we defined differ-149

ent mixtures varying compositions for instance, in terms of naphthenes and150

aromatics content, paraffins chain length. . .Mixtures containing J and 25,151

50, and 75 % vol. of H(50) were formulated. Nine mixtures containing H(50)152

and amounts 1, 5, and 10 % vol. of X, T, and D were also elaborated. Three153

blends of 90 % vol. of H(30) and 10 % vol. of C, P, and M were designed. J154

was mixed with X in 75, and 25 % vol. proportions, and a tenary mixtures155

containing J, X, and H(30) in equal volumetric proportions was formulated.156

2.1.2. Sorption measurements157

The term sorption is commonly used to describe the dissolution of a pen-158

etrant into a polymer matrix. Measurements of liquid sorption into polymers159

were performed using a gravimetric method, as detailed in our previous works160

[44]. Experiments consists in recording the mass variation (weight gain or161

loss) of a polymer sample with time when immersed into a large excess of162

the studied liquid. Noting that from sorption values, at equilibrium or sat-163

uration, it is possible to derive the solubility coefficient, and measurements164

must be accurately performed as the absorbed quantities are often very small.165

Rectangular parallelepiped polymer samples were first weighted (mt=0) us-166

ing an analytical balance METTLER TOLEDO (capacity up to 30 g, with167

a precision of 0.026 g), and then immersed in a large excess of studied liquid168

in a closed 100 ml glass vessel. Glass vessels were placed at ambient temper-169

ature (20 ± 1 ℃) in an air-conditioned laboratory, for all the duration of the170

sorption experiments. Polymer samples were regularly removed from glass171

vessels, wiped carefully, and weighted (mt) in order to follow mass variations172

of each polymer materials in considered liquids. The mass variation (∆M)173

is expressed in percent as the ratio between the amount of sorbed fluid and174
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the initial polymer weight, as follows:175

∆M = 100× mt −mt=0

mt=0

, (1)

It has been checked that the repeatibility of the sorption values is excel-176

lent, with less than 2% of variation coefficients. Measurements are performed177

until the curve ∆M as a function of time reaches its equilibrium value, ex-178

hibiting a plateau. According to the considered polymer-fluid couple up to 40179

days were needed to reach the plateau value. We emphasize that the sample180

swelling has been investigated in terms of weight variations and not volume181

swellings as this former is assumed to be more accurate. We previously noted182

the presence of plasticizers in NBR which can cause a weight loss of the sam-183

ples during sorption tests, and can produce misleading results. Therefore, all184

NBR samples were pretreated to remove plasticizers, as follows: they have185

been washed with toluene during 3 weeks (at 50 ℃ to speed up the diffusion186

mechanism) and then dried.187

2.2. Modelling Method188

These last years, we have devoted large efforts in the development of189

QSPR based models for the prediction of various property values [47]. These190

approaches aim at identifying non-obvious correlations between property val-191

ues of the matter and some features rendering information about the matter.192

Reviews have been published dealing with developments and applications of193

QSPR based models, and best practices in developing such models [29, 48].194

2.2.1. Data Sets195

The accuracy of predictive QSPR is related to the quality of data, and196

thus a keystone of such works is the database used to develop models. The197

used database contains reference sorption values, ∆M measured following the198

experimental procedure described above. The database contains 521 sorption199

values measured at room temperature, for neat compounds and mixtures.200

Table 2 presents an extract of our database, i.e. the maximum amounts of201

each fluid sorbed into NBR, FVMQ, and FKM. Indeed, the database contains202

the complete isotherms − evolution with time of the amount of sorbed fluid203

through NBR −, with in between 20 and 25 data points for each isotherm.204

During last decades of QSPR model developments, the use of external205

validation has been shown as necessary to ensure its ability to extrapolate206

to new fluids, i.e. not considered within the database used to train the207
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Table 2: Maximum amounts of sorbed fluid (∆M, in %) into NBR, FVMQ, and FKM.
Fluids are labeled as follows: X, T, D, C, P, and M stand for xylene, tetraline, decaline,
iso-propylbenzene, n-propylbenzene, and methylnaphtalene, respectively ; fluids mixtures
are labeled as follows, for instance, H(50)90-T10 contains 90 % vol. of H(50) in mixture
with 10 % vol. of tetraline.

Label Fluid
∆M (%)

NBR FVMQ FKM
F01 X 120.0 9.6 6.0
F02 T 97.4 4.8 0.5
F03 D 18.7 3.6 0.0
F04 J 16.8 4.3 0.2
F05 H(20) 3.5 1.5 0.1
F06 H(50) 4.1 1.8 0.0
F07 J75-H(50)25 12.3 3.6 0.1
F08 J50-H(50)50 9.1 3.1 0.1
F09 J25-H(50)75 6.8 2.5 0.1
F10 H(50)99-X01 4.5 1.9 0.1
F11 H(50)95-X05 6.2 2.5 0.1
F12 H(50)90-X10 8.4 3.0 0.2
F13 H(50)99-T01 4.5 1.9 0.0
F14 H(50)95-T05 6.7 2.3 0.1
F15 H(50)90-T10 9.4 2.6 0.1
F16 H(50)99-D01 4.1 1.9 0.0
F17 H(50)95-D05 4.6 2.0 0.0
F18 H(50)90-D10 5.1 2.1 0.0
F19 H(30)90-C10 7.6 2.6 0.1
F20 H(30)90-P10 7.9 2.6 0.1
F21 H(30)90-M10 14.8 3.0 0.2
F22 J75-X25 30.5 6.2 0.8
F23 J25-X75 81.6 8.8 3.7
F24 J33-X33-H(30)33 27.2 5.9 0.8
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model [49]. Its popular version is the n-fold cross-validation (n-CV) in which208

the data set is randomly divided in approximately equal n portions. An209

aggregate of (n-1) portions forms the Training set − used to train models,210

and the remaining portion constitutes the Test set − used to evaluate model’s211

performance. We emphasize that no data point belonging to external sets212

is used to derived models. This procedure is repeated n times choosing at213

each new fold another portion of data as a Test set. The subject of external214

validation for QSPR analysis of mixtures has been addressed by Muratov et215

al. [50], and the authors-defined ”mixture out” strategy was applied in this216

study.217

2.2.2. Fluids characterisation and representation218

A fuel contains thousands of diverse chemicals and its exact composition is219

never known. The characterization of such complex fluids and identification220

of representative compounds or surrogates are of utmost importance when221

developing predictive models for application in the industry [51, 52]. The use222

of modern analytical instruments such as chromatography, helps in obtaining223

information about the composition and structure of fluids components. The224

two-dimensional gas chromatography (labeled GC-2D or GCxGC) has been225

proved as an interesting analysis technique for detailed characterisation of226

petroleum products [53]. Fuel candidates considered in this study were ana-227

lyzed by means of GCxGC, and their compositions expressed as distributions228

of mass fractions as a function of the number of carbon atoms for hydrocarbon229

families such as n-paraffins, i-paraffins, naphthenes, aromatics. . . A molecu-230

lar structure is attributed for each hydrocarbon family/number of carbon231

atom bin, and each fuel is thus represented by a maximum of 120 molecular232

structures. Figure 1 presents compositions of fluids A1, B1, C1, J, H(20),233

H(30), and H(50), simplified to four chemical families: n-paraffins, i-paraffins,234

naphthenes, and aromatics. It shows that ATJ-SPK (B1) and HEFA fuels235

are clearly mainly paraffinics, with B1 purely n-paraffinics. A1 and J have236

similar compositions with for J, slightly (ca. 3 %) lower and higher i-paraffins237

and aromatics contents, repsectively. The surrogate C1 is poor in paraffins238

and rich in naphthenes as compared to other fluids.239

2.2.3. Molecular and mixture descriptors240

From conclusions drawn in previous studies [2, 44], we chose to solely241

consider functional group count descriptors (FGCD). Such a simple repre-242

sentation of compounds has been shown to provide relevant descriptors us-243
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Table 3: Ranges of number of carbon atoms to represent jet fuel candidates.

Formulae Family
Number of
C atoms

CnH2n+2 n-paraffins 5 to 20
CnH2n+2 i-paraffins 5 to 30
CnH2n mono-naphthenes 6 to 18
CnH2n−2 di-naphthenes 9 to 29
CnH2n−4 tri-naphthenes 13 to 16
CnH2n−6 mono-aromatics 7 to 17
CnH2n−8 naphthenes mono-aromatics 9 to 16
CnH2n−10 naphthenes mono-aromatics 10 to 15
CnH2n−12 di-aromatics 10 to 16
CnH2n−14 naphthenes di-aromatics 12 to 16
CnH2n−16 naphthenes di-aromatics 13 to 15
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Figure 1: Simplified chemical compositions described in terms of n-paraffins, i-paraffins,
naphthenes, and aromatics, for fluids A1, B1, C1, J, H(20), H(30), and H(50).
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Table 4: List of the Functional Group Count Descriptors (FGCD) used to describe fluids
in the database and associated SMARTS codes or definitions.

Label SMARTS/Definition Label SMARTS/Definition
X1 [H] X18 [C][CR]([!C])([!C])[C]
X2 [C,c] X19 [C][CR]([!C])([C])[C]
X3 [CX4H3] X20 [C]=[C]([C])[!C]
X4 [CX4H2] X21 [CX3H1]=[CX3H1]
X5 [CX4H1] X22 [c][CX4H3]
X6 [CX4H0] X23 [c][CX4H2]
X7 [CX3H1] X24 [c][CX4H1]
X8 [CX4H2R] X25 [R]
X9 [CX4H1R] X26 aromatic rings
X10 [cX3H1](:*):* X27 non-aromatic rings
X11 [cX3H0](:*)(:*)* X28 aliphatic rings
X12 [cX3H0](:*)(:*):* X29 number of rings
X13 [cX3H0]-[cX3] X30 MM
X14 [cX3H0](:*)(:*)(-[CX4H2R]) X31 [C;R]
X15 [CX4H2]-[CX4H1]-[CX4H2] X32 [c;R]
X16 [C][C]([!CX1])([!CX1])[!CX1] X33 C1CCCCC1
X17 [!C][C]([C])([C])[C]

able in QSPR procedure [3, 44]. This family of molecular descriptors gathers244

some counts of groups identified as relevant under chemical aspects. Table 4245

gives the list of FGCD under consideration in this study and labelled from246

X1 to X33. For instance, the FGCD labelled X25 denotes the number of247

carbon atoms involved in a ring. As Villanueva et al. did [44], we have248

also computed the molar mass (MM) of neat compounds, this information249

being used as an additional descriptor (labelled X30). Simplified molecular250

input line entry specification (SMILES) notations were assigned to each neat251

compound considered in this sutdy. FGCD were counted using the RDKit’s252

SMILES arbitrary target specification (SMARTS) matching functionalities253

[54, 55], and SMARTS codes corresponding to FGCD are given in Table 4.254

The calculation of descriptors for mixtures has been addressed similarly255

as in previous works [44, 56]. We assumed mixture descriptors Xmix as linear256

combinations of pure component descriptors weighted with the associated257

molar fractions xi. This approach has already been shown effective in pre-258
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dicting sorption values for some alternative fuels in a poly(ethylene) [44].259

For instance, in the case of descriptor X1, the corresponding descriptor for a260

mixture X1mix, is defined as follows:261

X1mix =
N∑

i=1

xi × X1i, (2)

where i runs over the N constituants in the mixture.262

2.2.4. Chemical space representation263

We preprocessed the data by applying a principal component analysis264

(PCA) on fluid descriptor values. Figure 2 represents the projections of F01265

to F24 in the space formed by the three main principal components resulting266

from the PCA, providing one approximated representation of the chemical267

space for our database. Some of fluid candidates are at edges of the domain,268

isolated from all other samples, this is typically the case for fluids F01, F03,269

F04, and F05. These latter datapoints appear as outliers for the following270

reasons: (i) F01, xylene, is a pure compound with the highest property271

value ; (ii) F03, decaline, is a pure compound and has the highest value on272

PC2 axis ; (iii) F04, Jet-A1, has the highest value on PC3 axis ; (iv) F05,273

HEFA-20, has the lowest property value. The presence of outliers in external274

sets during the CV procedure may induce applicability domain violations.275

Fluids F01, F03, F04, and F05 were fixed, meaning they are placed in a fold276

always used to form Training sets. We used a 5 -CV procedure applied on the277

remaining 20 fluids candidates − four fluids per fold. The Training and Test278

sets thus represent 83% and 17% of the database, respectively. In Figure 2,279

each symbol is filled according to the fold the fluid belongs to.280

2.2.5. Machine learning algorithm281

In the frame of past studies [47], we have observed that QSPR models de-282

rived from Support Vector Machine (SVM) algorithms frequently outperform283

others evaluated learning algorithms such as neural networks, partial least284

squares, genetic algorithm. . . Table 2 shows that the number of data points285

− fluids candidates − is quite limited and the application of SVM does not286

seem appropriate in this case. We focused on developing multilinear equa-287

tions which moreover have the advantage to be explicit models and easily288

implemented in a spreadsheet. Such multilinear models can be, for instance,289

generated by means of Evolutionary Algorithms (EA) techniques inspired290
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from the Darwinian evolution theory of biological species. The application291

of EA to regression problems consists in an iterative evolution of a population292

of equations initially randomly set. Equations can be summarized under the293

general following form:294

Property = λ0 +
N∑

i=1

λiGi, (3)

where λ0 is the inercept, λi denotes a weight associated to the gene i (Gi),295

and N is the total number of genes in the model. Each gene consists in a296

combination of descriptors (see Table 4) and mathematical functions (see Ta-297

ble 5), and can be though as a tree with nodes and branches (Figure 3). Such298

construction allows to catch non-linearity in property variations. Multi-Gene299

Genetic Programming (MGGP) was applied to generate models, using the300

genetic programming toolbox for the identification of physical systems (GP-301

TIPS) coded in the MATLAB environment [57, 58, 59]. The evolution of the302

initial population − initial equations − is ensured by survival of fitter individ-303

uals, and reproduction of individuals consists in applying crossover as well as304

mutation operations to produce child equations. Genetic operators act upon305

sub-tree elements, thus making the structure of trees evolve during the itera-306

tive procedure. The procedure ends when one of the pre-defined criteria such307

as maximum number of generations, best fitness values. . . is reached. Some308

of GPTIPS parameters such as the maximum numbers of genes and nodes309

per tree, must be lowered to prevent any overfitting problems. Similarly, the310

maximum numbers of generations and runs have to be optimized to ensure311

convergence of calculations for reasonable computational ressources [60, 61].312

Parameters of performed GPTIPS calculations were optimized according to313

the procedure defined by Creton et al. [60]. Table 5 reports details about314

values and/or ranges of investigated GPTIPS settings in this work.315

Models are evaluated according to their capability in predicting fluids316

properties. Predicted values are compared to reference experimental data,317

and performances of models are evaluated by means of metrics such as MAE318

(Mean Absolute Error, equation (4)), RMSE (Root Mean Squared Error,319

equation (5)) or R2 (Coefficient of determination, equation (6)), defined as320

follows:321

MAE =
1

N

N∑

i=1

|ŷi − yi|, (4)

14



/

X1

X1

X2

+

�

G =
X1 / (X2 +    X1)�

—

Figure 3: Example of a gene G, and its tree-like architecture as considered in MGGP.

Table 5: Investigated parameter settings for the MGGP based method.

Parameter Corresponding values
Function set +, -, ×, ÷,

√
, exp, ln

Population size 250
Number of runs 1, 5, 10, 15, 20,25, 30, 40
Tournament size 25
Maximum tree depth 4
Number of generations 100, 500, 1000, 2000
Maximum number of genes 1 to 5
Maximum number of nodes per tree 1 to 8
Mutation events 0.1
Crossover events 0.85
Reproduction events 0.05
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RMSE =

√√√√ 1

N

N∑

i=1

(ŷi − yi)2, (5)

R2 =

∑N

i=1
(ŷi − y)2

∑N

i=1
(yi − y)2

, (6)

where in equations (4) to (6), ŷi stands for the predicted value, yi represents322

the experimental value, y denotes the mean property value calculated on323

experimental data set candidates, and N is the number of data.324

3. Results and discussion325

3.1. Experimental results326

We performed sorption experiments to evaluate polymers (i.e., NBR,327

FVMQ, and FKM) compatibility with a series of hydrocarbons mixtures and328

more specially, to mixtures containing different amounts and types of aro-329

matics. Details about tested fluids mixtures are given in the Table 2. The330

weight variation of the polymer is very dependent on the considered system,331

the chemical compositions of both the polymer and the fluid. The measured332

maximum uptakes of hydrocarbons in each polymer (or maximum ∆M) are333

presented in Table 2. From tested polymer/fluid couples, ∆M values range334

from ca. 0% (FKM immersed in HEFA) to 120% (NBR immersed in xylene).335

Clearly, none of tested hydrocarbons is significantly absorbed into FKM, and336

from measured values, FKM can be assumed as a barrier polymer in case of337

hydrocarboned fluids. ∆M values obtained for the FVMQ polymer are neg-338

ligible as compared to those of NBR. Within the fluids matrix (Table 2), we339

considered mixtures having from about 0% vol. aromatics (e.g., HEFA) to340

100% vol. aromatics (e.g., xylene). In Figure 4, we plot the ∆M plateau341

value for NBR as a function of mono-aromatics content in the fluid tested.342

Considering all these systems, deplasticized NBR presents a higher level of343

sorption and is very sensitive to the aromatics content of the fluids. Figure 4344

shows that mixtures rich in paraffins such as HEFA fuels (left part of the di-345

agram) lead to low ∆M values as compared to mono-aromatics rich mixtures346

(right part of the diagram). From these elements a quadratic (of the % vol.347

of mono-aromatics) trend could describe the observed behavior. Noting that348

fluids containing polyaromatic compounds, e.g. the fluid F21 containing 10%349

vol. methylnaphtalene, deviate from this trend with upper ∆M values.350
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Figure 4: Evolution of the ∆M plateau value for NBR, with the mono-aromatics volumetric
percent of the fluid. Fluids are labeled as in Table 2: X, C, P, and J stand for xylene,
iso-propylbenzene, n-propylbenzene, and Jet-A1, respectively. The dashed line stands for
values predicted using equation 7.

17



Table 6: Maximum amounts of sorbed (∆M) A1, B1, and C1 into NBR, FVMQ, and
FKM.

Fluid
∆M (%)

NBR FVMQ FKM
A1 14.2 4.7 0.3
B1 2.7 4.4 0.1
C1 30 3.9 0.4

Fluids A1, B1 and C1 − conventional and synthetic jet fuels − were351

considered to experimentally assess their compatibility with the three poly-352

mers of interest, and Table 6 presents measured ∆M values. In agreement353

with conclusions drawn previously, amounts of fluids adsorbed into FKM or354

FVMQ are roughly much lower than that measured for NBR. On the basis355

of compositions proposed in Figure 1 for A1, B1, and C1, ∆M plateau val-356

ues appear to follow the previously observed relationships with paraffins and357

aromatics contents.358

3.2. Machine learning models359

Obtained experimental values were used to feed machine learning tech-360

niques in order to derive predictive models. Based on the conclusions drawn361

in the previous section, small quantities of hydrocarbons were adsorbed into362

FKM and FVMQ and therefore, we only focus on modelling of the sorption of363

hydrocarbons into NBR. We hereafter report the development of two types of364

predictive models: models which predict the maximum mass gain (maximum365

∆M) and models which predict the sorption kinetics i.e. the time evolution366

of ∆M, in NBR.367

3.2.1. Modelling plateau values368

As a first attempt, we considered a subpart of our database extracting369

for each fluid the sorption plateau value − the maximum mass percentage370

gain −, and data are presented in Table 2. Parameters of the MGGP such as371

numbers of runs, generations, genes, and nodes that will further be used to372

develop models were optimized using a 5-CV and according to the procedure373

proposed by Creton et al. [60]. This procedure can be summarized as follows:374

The numbers of genes and nodes are first set to their respective maximum375

allowed value to consider models having the highest complexity. Numbers of376
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Table 7: Performance characteristics (statistical indices) of MGGP based models applied
to plateau values. Fold-i stands for performances calculated on the fold i when it is
external to the learning procedure.

Indices Fold-01 Fold-02 Fold-03 Fold-04 Fold-05
MAE 9.21 1.90 0.63 1.60 0.42
RMSE 17.23 2.87 0.75 2.80 0.54
R2 0.786 0.992 0.995 0.614 0.929

generations and runs are optimized within the response surface with bound-377

aries as defined in Table 5. Then, numbers of generations and runs are set to378

optimized values, and numbers of genes and nodes are optimized within the379

response surface defined according to boundaries indicated in Table 5. The380

optimization procedure applied to our regression problem led to numbers of381

runs, generations, genes, and nodes of 20, 500, 4, and 3, respectively.382

Five MGGP based models were developed using the GPTIPS code and383

following a 5 -fold cross-validation procedure. All models exhibit excellent384

performances over the Training sets. Performances of models evaluated on385

external fluids are presented in Table 7. Values returned by indices for Fold-386

01 and Fold-04 indicate overfitting trends for these two models that can387

originate from fold constitution. For instance, Fold-01 contains the fluid F02388

having the second highest property value in the database, and the model389

fails in predicting this value. Among the three remaining models, best per-390

formances on external sets are obtained for Fold-05, Fold-03, and then Fold-391

02. However, the chemical diversity is not similar for these three folds. The392

model that best generalizes the database has been developed using Fold-02393

as Test set. Details about this latter model such as the four weighted genes394

and the intercept value are presented in Equation (7).395

λ0 = Intercept = −30.12

λ1G1 = −36.70 ∗ exp (− exp (-X4))

λ2G2 = 70.87 ∗ exp (X26)
λ3G3 = −12.38 ∗ 4

√
X21

λ4G4 = 7.26 ∗ exp (X33 - X10)

(7)

where Xi stands for descriptors as defined in the Table 4. In Equation (7),396
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Figure 5: Scatterplots of experimental sorption values vs. predicted sorption values using
Equation (7). Symbols + stand for fluids in Table 2, and © represent fuels A1, B1, and
C1.

each gene non-linearly contributes to the predicted sorption value, and Equa-397

tion (7) highlights some interesting contributions of chemical function to the398

amount of fluid sorbed into NBR. For instance, Equation (7) indicates that399

increasing the number of -CH2- groups (X4) in fluid decreases the sorption400

value. On the contrary, increasing the number of aromatic rings (X26) in401

fluid increases its amount sorbed into NBR. These elements are in line with402

the analysis of Figure 4. G4 is a combination between numbers of saturated403

6-rings (X33) and hydrogenated aromatic carbon atom bonded to two atoms404

by aromatic bonds (X10). Figure 5 presents scatterplots of experimental405

sorption values vs. predicted sorption values using equation (7). All data406

points are roughly located on the bisector (dashed line) indicating that pre-407

dicted plateau values are in excellent agreement with reference experimental408

data. Moreover, values predicted for fuels A1, B1, and C1 (14.2, 4.1, and409

31.1, respectively) are in excellent agreement with corresponding experimen-410

tal values as reported in Table 6.411
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Table 8: Optimized parameter settings used to train MGGP based models on our database.

Parameter Optimized values
Number of runs 20
Number of generations 1000
Maximum number of genes 4
Maximum number of nodes 6

3.2.2. Modelling the sorption kinetic412

We then considered the whole content of our database with for each fluid,413

the time evolution of the maximum mass percentage gain. Parameters of the414

MGGP as implemented in the GPTIPS code were optimized according to415

the procedure proposed by Creton et al. [60]. Additionally, we applied a416

5-CV procedure together with folds’ chemistry − the same fluids in each417

fold − associated to the above described development of models to predict418

plateau values. Table 8 presents obtained optimized parameter values subse-419

quently used in GPTIPS to develop QSPR models. The number of nodes is420

twice higher as compared to parameters values optimized to derive Equation421

(7), and most probably due to this increase in complexity, the number of422

generations is here 1000.423

Five MGGP based models were developed removing for each, one of the424

five folds defined for the 5-CV procedure. Performances of models evaluated425

on the Training and Test (external fluids) sets are presented in Table 9. All426

models exhibit excellent performances over the Training sets with RMSE427

lower than 2.6 (in ∆M unit) and R2 greater than 0.99. Indices calculated for428

Test sets of models indicate various trends regarding their prective capabil-429

ities. However, as discussed previously, the chemical diversity is not similar430

within the five folds, and external validation performed for these five scenar-431

ios are difficult to compare with each other. Values taken by indices over432

the database are presented in Table 9. Considering these latter values, the433

model developed using Fold-01 as Test set leads to a greater RMSE value434

as compared to others. Although none of models outperforms others, the435

model that best generalizes the database was obtained using Fold-05 as Test436

set. Details about this latter model such as the four weighted genes and the437

intercept value are presented in Equation (8).438
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Table 9: Performance characteristics (statistical indices) of MGGP based models applied
to sorption curves. Fold-i stands for performances calculated on the fold i when it is
external to the learning procedure.

Metrics Fold-01 Fold-02 Fold-03 Fold-04 Fold-05
Training:
MAE 1.02 1.29 1.52 1.49 1.38
RMSE 1.82 2.45 2.56 2.52 2.53
R2 0.995 0.992 0.993 0.993 0.993
Test:
MAE 2.96 1.42 1.27 1.54 0.69
RMSE 5.54 2.63 1.64 2.24 0.96
R2 0.975 0.992 0.978 0.776 0.859
Database:
MAE 1.34 1.31 1.48 1.50 1.26
RMSE 2.80 2.48 2.42 2.48 2.34
R2 0.990 0.992 0.992 0.992 0.993

λ0 = Intercept = −38.40

λ1G1 = 12.23 ∗ exp (exp (X26))
λ2G2 = 0.86 ∗

(
X94 +X223

)

λ3G3 = 4.51 ∗
√
exp (X10) ∗ ln (t)

λ4G4 = −2.35 ∗ exp (X10)

(8)

where t is the time (expressed in hours) and Xi stands for descriptors as439

defined in Table 4. In Equation (8), G1 reveals that increasing the number440

of aromatic rings (X26) in fluid increases its amount sorbed into NBR. G2441

can be considered as a sum of contributions of branchings on saturated (X9)442

and aromatic (X22) rings. The descriptor X10 − number of hydrogenated443

aromatic carbon atom bonded to two atoms by aromatic bonds − is involved444

both in genes G3 and G4 where in this former, X10 acts as a weight for the445

time evolution. Figure 6 presents scatterplots of experimental sorption values446

vs. predicted sorption values using Equation (8). All data points are not too447

scattered on both sides of the bisector indicating that predicted values are in448

good agreement with reference experimental data. However, Figure 6 shows449
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Figure 6: Scatterplots of experimental sorption values vs. predicted sorption values using
Equation (8).

that one point is poorly predicted, the sorption value measured after 5 hours450

immersion in tetraline is 36.1 (%) while the model returns 61 (%). Noting451

that for tetraline, only this data point is poorly predicted.452

We performed consensus modelling to investigate whether combining mod-453

els’ predictions can lead to more accurate predicted values. It reveals that454

combining predictions of models obtained using Fold-04 and Fold-05 as Test455

sets improve performances as compared to individual models. We used this456

combinaison to predict the time evolutions of sorption values for real fuels457

A1, B1, and C1. Figure 7 presents comparisons between predicted values and458

experimental data measured in this study. The models successfully reproduce459

the sorption kinetics for the fluids A1 and C1, with however significant devi-460

ations from experimental values for the first hours. The models well predict461

B1 as a low ingress fluid in NBR but a shift of few percents is observed with462

reference experimental values.463

4. Conclusion464

We proposed here an investigation of fuels’ sorption into polymers by465

means of experimental and machine learning techniques. Three polymers466
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Figure 7: Time evolutions of sorption values for fuels A1, B1, and C1 predicted using the
consensus model. Red circles stand for experimental values obtained in this work.
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commonly considered for the design of fuel-delivery systems were selected467

for this study: NBR, FKM, and FVMQ. Polymers samples were immersed468

into liquids, and fluids under consideration were pure liquids and aviation469

fuels − conventional and synthetic jet fuels. Sorption measurements were470

performed for polymer/fluid couples, and experimental values were analysed471

with chemoinformatics tools, and a machine learning method (i.e. MGGP)472

and molecular descriptors (i.e. FGCD) were used to derive predictive models.473

Performed sorption experiments to evaluate NBR, FVMQ, and FKM474

compatibility with a series of hydrocarbons mixtures, have shown that FKM475

can be assumed as a barrier polymer in case of such fluids, and that ∆M476

values obtained for the FVMQ are small as compared to those for NBR. If477

n- and iso-paraffins are fewly ingress into the NBR matrix, we demonstrated478

that the swelling of NBR is strongly related to the amount of aromatics in479

the studied liquids.480

Machine learning techniques were used to derive two types of predictive481

models. The first type of models aimed in predicting plateau ∆M values,482

the maximum mass percentage gains. Models successfully reproduced exper-483

imental data, and indicate that increasing the number of -CH2- groups and484

aromatic rings in the fluid leads to decreasing and increasing the amount of485

liquid sorbed into NBR, respectively. Application of the models to external486

multi-component mixtures (not considered during the training procedure)487

have demonstrated their predictive capabilities. The second type of models488

aimed in predicting the sorption kinetics, i.e. the time evolution of ∆M.489

Models reasonably reproduced experimental data, and in these models too,490

increasing the number of aromatic rings in fluid contributes in increasing pre-491

dicted values of ∆M, in NBR. Application of these models to external fluids492

have demonstrated their capabilities in predicting both the kinetics and the493

maximum ∆M values.494

The determination of gases and liquids sorption into polymers is funda-495

mental in many applications: fuels, lubricants, packaging, gas and liquids496

transport and storage, among others. Our work shows that when using a497

good quality database and relevant descriptions of fluids, machine learning498

approaches are capable to catch soprtion phenomenon, and the so-obtained499

predictive models are powerful tools to accurately estimate the sorption of500

chemicals into a polymer. Moreover, such a modelling approach contributes501

to drastically reduce the time necessary to quantify polymeric materials com-502

patibility with a fluid candidate only knowing some of its structural charac-503

teristics. This work is to be extended to other families of polymers and504
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fluids, as well as to explore new conditions of temperature and pressure. The505

use of such models is interesting for assessing the impact of advanced fuels506

formulations, for evaluating the impact of certain chemical families, or even507

for determining the maximum amounts of biomass-based fluids into fuels.508

In addition, these models could be used to replace the current qualitative509

information − green, orange, and red symbols − in polymer compatibility510

charts provided by resellers on their websites. The inversion of models based511

on machine learning represents another interesting prospect for the design of512

new polymers with desired properties [62, 63, 64].513
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[14] A. Randová, L. Bartovská, P. Izák, K. Friess, A new prediction method566

for organic liquids sorption into polymers, Journal of Membrane Science567

475 (2015) 545–551.568

27

http://dx.doi.org/10.1021/bk-1990-0423.ch013
http://dx.doi.org/10.5772/65551


[15] L. Krajakova, M. Laskova, J. Chmelar, K. Jindrova, J. Kosek, Sorption569

of liquid diluents in polyethylene: Comprehensive experimental data for570

slurry polymerization, Industrial & Engineering Chemistry Research 58571

(2019) 7037–7043.572

[16] A. Haseeb, M. A. Fazal, M. I. Jahirul, H. H. Masjuki, Compatibility of573

automotive materials in biodiesel: A review, Fuel 90 (2011) 922–931.574

[17] A. Haseeb, T. S. Jun, M. A. Fazal, H. H. Masjuki, Degradation of phys-575

ical properties of different elastomers upon exposure to palm biodiesel,576

Energy 36 (2011) 1814–1819.577

[18] M. D. Kass, T. Theiss, S. Pawel, J. Baustian, L. Wolf, W. Koch,578

C. Janke, Compatibility assessment of elastomer materials to test fuels579

representing gasoline blends containing ethanol and isobutanol, SAE580

Int. J. Fuels Lubr. 7 (2014) 445–456.581

[19] L. M. Silva, E. G. Filho, A. J. Simpson, M. R. Monteiro, T. Venâncio,582
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[44] N. Villanueva, B. Flaconnèche, B. Creton, Prediction of alternative663

gasoline sorption in a semicrystalline poly(ethylene), ACS combinatorial664

science 17 (2015) 631–640.665

[45] L. Starck, L. Pidol, N. Jeuland, T. Chapus, P. Bogers, J. Bauldreay,666

Production of hydroprocessed esters and fatty acids (HEFA) - optimisa-667

tion of process yield, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles668

71 (2016) 10.669

[46] C. Hall, B. Rauch, U. Bauder, P. Le Clercq, M. Aigner, Predictive ca-670

pability assessment of probabilistic machine learning models for density671

prediction of conventional and synthetic jet fuels, Energy & Fuels 35672

(2021) 2520–2530.673

[47] B. Creton, Chemoinformatics at IFP energies nouvelles: Applications in674

the fields of energy, transport, and environment, Molecular Informatics675

36 (2017) 1700028.676

[48] C. Nieto-Draghi, G. Fayet, B. Creton, X. Rozanska, P. Rotureau, J.-677

C. de Hemptinne, P. Ungerer, B. Rousseau, C. Adamo, A general678

guidebook for the theoretical prediction of physicochemical properties of679

chemicals for regulatory purposes, Chemical Reviews 115 (2015) 13093–680

13164.681

[49] P. Gramatica, Principles of QSAR models validation: Internal and ex-682

ternal, QSAR and Combinatorial Science 26 (2007) 694–701.683

[50] E. N. Muratov, E. V. Varlamova, A. G. Artemenko, P. G. Polishchuk,684

V. E. Kuz’Min, Existing and developing approaches for QSAR analysis685

of mixtures, Molecular Informatics 31 (2012) 202–221.686

[51] T.-B. Nguyen, J.-C. de Hemptinne, B. Creton, G. M. Kontogeorgis,687

Characterization scheme for property prediction of fluid fractions origi-688

nating from biomass, Energy & Fuels 29 (2015) 7230–7241.689

[52] D. Steinmetz, K. R. Arriola Gonzlez, R. Lugo, J. Verstraete, V. Lachet,690

A. Mouret, B. Creton, C. Nieto-Draghi, Experimental and mesoscopic691

modeling study of water/crude oil interfacial tension, Energy & Fuels692

(2021).693

31



[53] C. Vendeuvre, R. Ruiz-Guerrero, F. Bertoncini, L. Duval, D. Thiébaut,694
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