Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

SUPPORTING INFORMATION

Electronic structures of the MoS₂/TiO₂ (anatase) heterojunction:

influence of physical and chemical modifications of the interface.

Rémi Favre^a, Pascal Raybaud^{a,b} and Tangui Le Bahers^a

^aUniv Lyon, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France ^bIFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, 69360 Solaize, France

Table of Contents

SI 1. Slabs used for the TiO ₂ (101) surface and hydrated (001) surface	p.2
SI 2. Determination of the vacuum potential	р.3
SI 3. Case of TiO ₂ anatase surfaces and bulk	р.3
SI 4. Density of states (DOS) with element decomposition	p.5
SI 5. Spin polarized calculation	р.7
SI 6. Complementary density of states for MoS ₂ /TiO ₂ (001)	р.7
SI 7. Spatial localization of the most relevant interfacial states	р.8
SI 8. Convergence tests for the selection of computational parameters	p.14

SI 1. Slabs used for the TiO₂ (101) surface and hydrated (001) surface

Figure S1: Slab supercells of a)TiO₂ anatase (101) and b) TiO₂ anatase (001) hydrated

Figure S2: Slab supercells before and after multiplication for a) TiO₂ anatase (101), b) MoS₂ monolayer, c) TiO₂ anatase (001) hydrated and d) MoS₂ monolayer

SI 2. Determination of the vacuum potential

Figure S3: Plot of the electrostatic potential as a function of the Z coordinate for a TiO_2 anatase (101) surface

SI 3. Case of TiO₂ anatase surfaces and bulk

Figure S4: DOS with element decomposition for TiO₂ anatase (101)

Figure S5: DOS with element decomposition for TiO_2 anatase (001) bare

Figure S6: DOS with element decomposition for TiO₂ anatase (001) hydrated

*Figure S7: DOS with element decomposition for TiO*₂ *anatase Bulk*

Figure S8: Evolution of the band position of TiO₂ anatase (101) and (001) with implicit and explicit water solvation

SI 4. Density of states (DOS) with element decomposition

Figure S9: DOS with element decomposition associated to MoS_2 in physical interaction on TiO_2 (101) on the left and TiO_2 (001) hydrated on the right

Figure S10: DOS with element decomposition associated to MoS_2 in physical interaction on TiO_2 (101) sulfide on the left and TiO_2 (001) hydrated-sulfided on the right

Figure S11: DOS with element decomposition associated to MoS₂ in chemical interaction on a) TiO₂ (101) b) TiO₂ (001) hydrated (interaction with S-edge) and c) TiO₂ (001) hydrated (interaction with Medge)

Figure S12: DOS with element decomposition associated to MoS_2 in chemical interaction TiO_2 anatase (101) with a) 2 rows instead of 4, b) sulfidation at the edge and c) oxygenation at the interface

SI 5. Spin polarized calculations

Spin polarized calculations were performed in some epitaxial cases in order to describe better the electronic structure of the interface and in particular the localized states that appear.

Figure S13: DOS with spin differenciation for a)MoS₂/TiO₂ (101) 4Mo rows, b) MoS₂/TiO₂ (101) 2Mo rows and c) MoS₂/TiO₂ (101) sulfided

SI 6. Complementary density of states for MoS₂/TiO₂ (001)

Figure S14: DOS with material decomposition and evolution of the band position for a) MoS_2/TiO_2 (001) bare and b) MoS_2/TiO_2 (001) sulfided

SI 7. Spatial localization of the most relevant interfacial states

Figure S15: Localization of the most relevant states for MoS_2 *in chemical interaction through the Mo-edge on* TiO_2 *anatase (101)*

Figure S16: Localization of the most relevant states for MoS₂ in chemical interaction through S-edge on TiO₂ anatase (001)

Figure S17: Localization of the most indicative states for MoS_2 in chemical interaction through Moedge on TiO₂ anatase (001)

*Figure S18: Localization of the most indicative states for MoS*₂ *with 2Mo rows in chemical interaction through Mo-edge on TiO*₂ *anatase (101)*

Figure S19: Localization of the most indicative states for MoS_2 sulfided in chemical interaction through Mo-edge on TiO_2 anatase (101)

Figure S20: Localization of the most indicative states for MoS₂ oxygenated in chemical interaction through Mo-edge on TiO₂ anatase (101)

SI 8. Convergence tests for the selection of computational parameters

Figure S21: (a) structure of the TiO₂(101) and MoS₂ in physical interaction. Ti, Mo, O and S atoms are in blue, grey, red and yellow respectively. (a) convergence of the electronic energy as a function of the k-points mesh in the x direction. (b) convergence of the electronic energy as a function of the k-points mesh in the y direction. (c) convergence of the electronic energy as a function of the vacuum thickness. (d) convergence of the electronic energy as a function.

Figure S22: (a) structure of the TiO₂(101) and MoS₂ in epytaxic interaction. Ti, Mo, O and S atoms are in blue, grey, red and yellow respectively. (a) convergence of the electronic energy as a function of the k-points mesh in the x direction. (b) convergence of the electronic energy as a function of the k-points mesh in the y direction. (c) convergence of the electronic energy as a function of the vacuum thickness. (d) convergence of the electronic energy as a function.

Figure S23: (a) structure of the hydrated TiO₂(001) and MoS₂ in physical interaction. Ti, Mo, O, S and H atoms are in blue, grey, red, yellow and white respectively. (a) convergence of the electronic energy as a function of the k-points mesh in the x direction. (b) convergence of the electronic energy as a function of the k-points mesh in the y direction. (c) convergence of the electronic energy as a function of the vacuum thickness. (d) convergence of the electronic energy as a function.