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Abstract. Heterogeneous catalysis is linked to industrial considerations from its origins, so is 

computational heterogeneous catalysis. The impact of first principles calculations on 

discoveries made for industrially relevant systems is growing year after year. In an innovation 

context, key questions are related to active site structure understanding, chemical reactivity 

investigations, multi-scale modeling, and prediction of new active phases with optimal catalytic 

performance. The present short review discusses and illustrates these various stages of the 

catalyst understanding and performance prediction where computational catalysis has a crucial 

role to play. Selected achievements in the field are reviewed, with a focus on the simulation of 

complex metallic and zeolite catalysts of industrial relevance. Future directions are suggested, 

on the basis of the need for ever more exhaustive and accurate models of catalytic sites and 

catalytic reactions representative of industrial systems, and for speed up in catalyst 

understanding and discovery. 
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1. Introduction 

The control of the selectivity of reactions is a major issue in chemical reactivity, in 

particular in the transformation of multi-functional reactants undergoing several kinds of 

concurrent multi-step reactions. The tailoring of highly selective catalysts for each of the 

desired reaction pathway is key in that respect. The use of a catalyst is indeed not only a way 

to significantly increase the reaction rates, but also to tune the selectivity. Empirical 

considerations have, however, driven the choice of earlier most efficient industrial catalysts, 

aided by chemical intuition and serendipity. Making a breakthrough in the discovery of the 

most active and selective systems now requires going beyond the trial and error approach. In 

an industrial context, the problem needs to be addressed in a multi-scale dimension (Figure 1), 

keeping in mind that the catalyst is involved in a process with specific reactor geometries, flows, 

and pellet shape in the case of heterogeneous catalysts. An essential component of the rational 

design of better catalysts remains the advanced knowledge of the reaction mechanisms, of the 

key-elementary steps, of possible limitations by non-reactive steps (mass transfer), and of the 

rate constants of all of these. Atomistic simulation approaches are powerful to get a quantitative 

insight on some of these parameters.[1] They are more and more seriously considered by 

industrials actors in the field of heterogeneous catalysis,[2-7] probably more than what we can 

detect in the open literature. These approaches are fully connected with the fourth industrial 

revolution, in line with its digital transformation,[7] for the search of more sustainable 

processes. Significant effort was put so far on performing such investigations for catalytic 

reactions dealing with the transformation of hydrocarbons coming from petroleum or natural 

gas feedstock. Pollution abatement questions also motivated a large set of computational 

investigations at the atomic scale.[8, 9] Highly diverse alternative resources are now called on 

in the field of energy and chemistry, making the search of optimal catalysts ever more timely 

and challenging.[10, 11] 
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Figure 1. Various scales involved in the development of an heterogeneous catalyst: a) reactor scale 

(scheme of a catalytic reforming reactor, reproduced from ref.[12] with permission), b) pellet scale 

(catalytic reforming beads, courtesy IFPEN), c) aggregate of platelets (TEM picture of a γ-Al2O3 

support, reproduced from ref. [13] with permission), d) single platelet scale with metallic nanoparticles 

(STEM picture of a Pt/ γ-Al2O3 catalyst, reproduced from ref. [14] with permission), e) subnanometric 

particle scale, at the atomic scale (geometry optimized by DFT of a Pt13 particle on a γ-Al2O3 surface 

model, adapted from results presented in ref. [15]). 

 

First, we aim at proposing relevant structural models of complex catalytic materials, to 

obtain a high level of understanding at the atomic scale (step I- in Figure 2). Thanks to quantum 

chemistry, electronic properties can be deduced, as well as the nature of the most stable systems 

as a function of the operating conditions, based on energetic data and thermodynamic 

considerations.[4] Then, comparison of well-chosen calculated and experimental spectroscopic 

features is a key step to evaluate the degree of relevance of the model, and also to assign 

experimental spectra, if the agreement between theory and experiments is satisfactory. On 

validated models, reactivity investigations can be performed (step II- in Figure 2), first by 

quantifying the adsorption strength between reactants and active sites, as proposed in the first 

step of the methodology. The determination of relevant intermediates and transition structures 

can then be undertaken for the reaction studied, in particular thanks to quantum chemistry 

calculations, often performed at the level of DFT (density functional theory[16, 17]). From the 

calculation of free energy profiles, some insights in the preferred reaction pathways can already 

be obtained. Finally, we aim at providing predictive catalytic data (step III- in Figure 2), by 

m                       mm                   μm                 nm  Å     

a) b) c) e)
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integrating quantum chemistry data into higher scale models, so as to predict the activity and 

selectivity of a given catalyst for a given reaction, thanks to multiscale kinetic modeling.[18] If 

relevant descriptors of the catalyst can be found, by comparing several compositions, one may 

introduce them in kinetic models and even try to infer new efficient catalyst compositions for a 

given catalytic process.[19, 20] In the present short review, examples of results obtained at each 

step of the rationale are presented, for catalytic systems of industrial relevance such as metallic 

nanoparticles and zeolites. Some current challenges are given to make computational catalysis 

more deeply integrated into the innovation process. Information related to the methodologies 

used in the works discussed in the present article may be found in refs. [21, 22] for example. 

 

 

Figure 2. General methodology for the simulation of heterogeneous catalytic systems of industrial 

relevance by atomic scale calculations. 

   

2. Understanding the nature of the surface active sites 

Heterogeneous catalysts interact with the reactants thanks to their surface sites. Some of 

these sites can give birth to reaction intermediates and transition states, at the origin of the 

formation of products. The characterization of the structure of the surface sites is a challenge, 

even in the simplest case where the heterogeneous catalyst is composed of a crystalline solid. 

-Model construction for active sites

-Electronic and stability analysis

- Comparison with experimental spectral feature

- Simulation of the adsorption of reactants

-Determination of intermediates and transition structures

-Calculation of free energy profiles and full reaction pathways

I- Structure understanding

II- Chemical reactivity investigations

III- Performance prediction

- Multiscale modeling : prediction of macroscopic activity / selectivity

- Identification of relevant catalytic descriptors 

for the prediction of new active phases
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Industrial catalysts combine several sources of complexity in that respect, due to their multi-

component nature. Traditional surface models, often chosen in the literature (Figure 3-a and d), 

such as extended surface models of well-defined Miller indices (for metals, oxides, other 

crystalline materials) or perfectly crystalline structure of microporous solids (such as zeolites) 

bring useful general information, but are usually insufficient to account for the complexity of 

industrial catalysts.[4, 22] 

 A typical example is the case of supported metal catalysts. They play a tremendous role 

in the industry, for reactions involving small molecules such as H2, O2, COx, N2, NOx, and 

hydrocarbons (hydrogenation, dehydrogenation, hydrogenolysis, inter alia). Examples of 

industrial processes involving metallic particles are naphtha catalytic reforming,[23] propane 

dehydrogenation,[24] Fischer-Tropsch synthesis,[25] pollution abatement catalysts,[26] inter 

alia. The simulation strategy at the atomic scale depends on the size of the particles under 

consideration, and is limited by computational resources, in particular for the most accurate 

methods, using quantum chemistry approaches. Most often, when particles are larger than a few 

nanometers, the diversity of catalytic sites can be satisfactorily described by linear 

combinations of facets, edges, and corners. Whereas the two first systems are commonly 

investigated, much scarcer is the consideration of the latter, due to the large cells required. The 

simulation of the whole metallic particle by first principles may be challenging depending on 

its size. In this context, linear-scaling DFT options are promising.[27-29] When the support 

effect needs to be taken into account, in particular for small particles (Figure 3-b), an accurate 

model of the support needs to be developed first, accounting for the surface state in operating 

conditions.[30] Then, a model of the support catalyst may be elaborated by directly constructing 

a model containing the most relevant support model and metallic atoms or a particle on top of 

it.[15, 31-33] Recent findings suggest a significant ductility of the metallic particles in the 

presence of a support, that depends strongly on the reactive atmosphere (see for example figure 
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1-e and 3-c).[34-41] Elucidating these dynamic structures requires the use of advanced 

sampling methods, such as ab initio molecular dynamics or global optimization. This raises the 

question of the long-term evolution of the structure and electronic properties of the particles, 

knowing that at the industrial scale, catalysts stay in operation for several months. The 

deactivation of metallic catalysts may also be investigated by first principles approaches.[42] 

These questions are even more complex when dealing with metallic alloys, as the respective 

locations of the metals need to be addressed.[35, 43-49] The segregation of one metal with 

respect to the other is an important question, which is also affected by environmental 

parameters, such as adsorption of the reactants. This has a tremendous impact on the stability 

of the particles, on the electronic properties of the metals, and in the end on their reactivity. 

 

Figure 3. Simple models versus models accounting for part of the complexity of industrial catalysts: (a) 

Pt(111) surface model, (b) HR-HAADF-STEM picture of a 1%Pt/γ-Al2O3 reproduced from ref. [14] 

with permission, (c) Pt13/γ-Al2O3 model adapted from results of ref. [34], (d) bulk model of zeolite 

mordenite, (e) TEM picture of a hierarchical ZSM-5 zeolite, reproduced from ref. [50] with permission, 

(f) models of extra-framework aluminum in a bulk mordenite zeolite (left, adapted from ref. [51]) and 

extra-framework silicon at the external surface of ZSM-5 (adapted from refs. [52]). 

 

In the case of zeolite catalysts, extensively used industrially for the transformation of 

hydrocarbons[53] and pollution abatement,[54] inter alia, most computational investigations 

focus on the understanding of the behavior of bulk sites (Figure 3-d).[55, 56] These are located 

in the nanoporosity of the solid, so that the computational investigation starts from the 

Ideal surface / structure 

models:
Introducing complexity:

Example of 

experimental system:

a)
b)

d)

c)

e)

f)
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crystallographic structure as reported in the International Zeolite Association database.[57] In 

an industrial context, however, this level of description is far from being sufficient.[22] Real 

catalysts are scarcely purely microporous, they also exhibit mesoporosity (Figure 3-e). The 

latter is usually obtained by applying various post-treatments to the pristine zeolite sample, that 

also give birth to many defects and extra-framework species, whose structure and role is 

debated for a long time. As reviewed in ref. [22], many computational works have been 

undertaken to propose relevant models (Figure 3-f) for zeolites with defects and extra-

framework species,[58-60] accounting for the mechanism of formation of extra-framework 

species,[51, 61-66] and for the local structure of the external surface of crystallites.[52, 67-70] 

Significant differences with respect to the bulk Si-(OH)-Al ideal bulk sites were revealed, in 

terms of structure and acidity of the defect sites. However, the way to a realistic simulation of 

these systems is still long, including the understanding of the structure of the surface sites at 

mesopores, and the interconnection of the latter with micropores. Moreover, most zeolite 

catalysts are used at the industrial scale as shaped pellets, in the presence of a binder (alumina, 

silica, clays, etc.) and many other additives.[71, 72] Notably, shaping is also often undertaken 

in the case of supported metal catalysts before practical use, as illustrated in figure 1-b. 

The validation of the structural model proposed by a simulation approach is key before 

a reactivity investigation is undertaken. For atomic scale models, the confrontation of simulated 

structural and simulated features with experimental data coming from microscopy techniques 

and spectroscopies is often highly fruitful.[13, 14, 36, 43, 52, 73-75] In that respect, calculating 

the temperature and pressure dependent surface state of the catalysts is of utmost importance, 

which may be very efficiently done thanks to first principles thermodynamics.[76, 77] In an 

industrial context, this should motivate deeper analysis of the catalyst operando, meaning 

during the synthesis, post-treatment, catalysis, and regeneration steps.[78] 



8 
 

These examples illustrate the challenges that computational catalysis needs to address 

to reach a description of the active site of industrial catalysts. Many questions are common to 

the understanding of model research catalysts, but their numbers inflate with the multi-

component nature of industrial catalysts, and with the multi-step nature of their life cycle. 

Already at the structural level, multi-scale issues are to be addressed: the accessibility of active 

sites is dictated by the pore system that surrounds it, which is a consequence of synthesis, post-

treatment and shaping procedures. The micrometer to millimeter scale involved requires 

connecting the findings from quantum chemistry (atomic and molecular scales) with other 

simulation techniques suited for higher scales, such as dissipative particle dynamics and kinetic 

Monte Carlo.  

 

3. Quantification of reaction profiles 

Once we have a model in which we are confident enough, thanks to the comparison of 

simulated and experimental spectroscopic features for example, a reactivity investigation may 

be undertaken at the atomic scale (step II- in Figure 2). This includes the computation of the 

adsorption of reactants, the identification of the reaction intermediates, and ultimately of 

transition states for all elementary steps for the considered reaction network. Quantum 

chemistry calculations, mainly at the DFT level, have proven to be powerful to elucidate the 

nature of active sites and mechanisms of reactions taking place at the active sites of many kinds 

of heterogeneous catalysts of industrial relevance. The quantification of the free energy profiles 

is crucial in that respect (an example is given in Figure 4-a). For metallic catalysts, usual static 

DFT methods appeared to be accurate, due to the highly covalent nature of the bonds between 

the catalytic site and the key atoms of the intermediates and transition states. For example, for 

alkene/alkyne hydrogenation and alkane dehydrogenation reactions (provided the chain length 

is short), very strong C-Metal and H-Metal bonds are involved, that make the transition state 
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poorly flexible close to the active center.[79-84] However, for other kinds of catalysts such as 

large pore proton exchanged zeolites, for reactions such as hydrocarbon isomerization and 

cracking, using ab initio molecular dynamics (AIMD) appeared to be crucial to correctly 

describe the relevant species and to properly quantify their free energy, due to their significant 

mobility in the large zeolite pores.[56, 85-89] This makes the static estimation poorly accurate, 

both from enthalpy and entropy points of view. For the latter point, the required level of theory 

(beyond DFT) is also currently questioned. The duality of the requirements for an accurate free 

energy profile quantification, in terms of quality of the sampling and of the level of theory, may 

be asked for any kind of catalytic system. The available computational resources often 

determine the choice made in practice, so that these questions may be revisited with 

methodological improvements.  

In particular, due to limited computational resources, AIMD is limited to short time scales, 

basically tens or hundreds of picoseconds. Chemical reactions are very rare as such time scales, 

a problem that is efficiently circumvented thanks to advanced AIMD methods, to enhance the 

sampling of the most interesting parts of the free energy surface, for example following a given 

path, once a proper variable coordinate is chosen.[56] Classical forcefield molecular dynamics 

opens the opportunity to accelerate the calculation of the trajectories, provided accurate enough 

forcefields are available. This is unfortunately not the case for all systems, and generally not 

for the accurate description of reactions. Reactive forcefield are highly promising in that respect 

and have already been developed and applied to study reactions within zeolites.[90-94] 

However, optimizing an accurate and transferable reactive forcefield is highly challenging. 
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Figure 4. (a) Free energy profiles for the isomerization and ring opening of ethylcyclohexene in the EU-

1 zeolite, calculated by periodic DFT. The structure of the intermediates and transition states is given. 

The species depicted by a star refer to π-complexes, not shown. (b) Distribution of isomerization 

products measured experimentally on a Pt/EU-1 bifunctional catalyst (dots) and predicted by a 

microkinetic model constructed from ab initio free energy profiles (lines). Adapted from ref. [95]. 

 

In an industrial context, some of the specific questions arising for this part of the work 

are inherited from the structural complexity (section 2). The effective catalytic behavior will 

not be pictured by the analysis of a single kind of active sites, but by the diversity of these, and 

with possible interplay between these sites. Moreover, above the complexity of the catalyst 

itself, the complexity (in practice, its size) of the reaction network itself is a hurdle, when 

considering elementary steps at the atomic step explicitly. Highly illustrative are examples such 

as the Methanol-to-Olefin process,[56, 96] or hydroconversion of alkanes,[97, 98] even in the 

case of rather small chain lengths. Some approximations can however be looked at to limit the 

number of transitions structure to be determined, such as unity bond index quadratic exponential 

potential (UBI-QEP) approaches,[99, 100] with estimation of the transition state energy from 

adsorption energies of fragments (for example, determined by DFT) and dissociation energy of 

the molecule into fragments. 

The search for Brønsted–Evans–Polanyi (BEP) relationships is an interesting simplification 

strategy.[101, 102] This principle states that for a set of given reactions, a linear relationship 

between the (free) energy barrier and the corresponding (free) reaction energy may exist. Thus, 

once knowing the reaction (free) energy, the corresponding reaction barrier can be determined 

-40

-20

0

20

40

60

80

G
a

d
s

(k
J
/m

o
l)

a

a*

A

b*

b

c

c*

B

d

d*

C

e

e*=f* f

D

g

g*=o*

h

h*

E

i

i*

F

n

k

k*=j*

G

l

l*

m*

q

r
H

I

q*=p*

(a)

n*

100

r*

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

0 100 200 300 400
0

10

20

30

40

50

Y
ie

ld
(%

)

W/FECH
(g s / mol)

DMCH

EMCP

TMCP

PropCP

(b)



11 
 

without its explicit calculation. BEP and more generally linear scaling relations appeared to be 

a valuable tool for several kinds of catalyzed reactions,[103, 104] but it appears more and more 

often that they are not general.[105, 106] 

On top of this, as mentioned in the end of section 2, the question of the accessibility of the 

active site within catalyst pellets, is to be asked. Non-reactive events, such as diffusion in the 

pore system or convection, may become limiting. The performances of industrial catalysts in 

large-scale reactors are indeed scarcely limited by the reaction kinetics only. This again refers 

to a multi-scale approach of the problem, that we address more specifically in the next section. 

 

4. Prediction of the reaction rates and of catalytic performance 

After the in-depth investigation of the structure of surface sites, and the identification of 

active sites in given reactions, the quantification of free energy profiles opens the door to the 

calculation of macroscopic catalytic data (step III- in Figure 2). The approach undertaken rather 

often in the literature is the integration of quantum chemistry data obtained at the atomic scale 

into higher scales models, so as to predict the activity and selectivity of a given catalyst for a 

given reaction.[107, 108] Sabbe et al. [21] proposed in 2012 an industrial perspective on first-

principles kinetic modeling, that remains valid to define best practices. 

Indeed, the development of predictive kinetic models is fundamentally important for any 

industrial process involving matter conversion reactions.[109] This makes it possible to 

anticipate process performance, particularly under the effect of a change in operating conditions 

(temperature, pressures or concentrations, etc.). It is common practice for such models to be 

parameterized using reaction rate constants k that are unknown in advance, the value of which 

is determined by adjusting rates and selectivities predicted based on reference experimental 

data. When several models are being considered, according to the mechanistic hypotheses 

advanced, the one giving the best mathematic agreement with the reference data is generally 
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retained. However, this approach makes developing models that are valid for ranges of 

conditions outside those sampled in advance an arduous task. 

A recent strategy adopted to overcome this obstacle was hinged around the construction 

of kinetic models based on mechanisms identified by atomic scale modeling, and not only based 

on hypotheses.[18, 21, 107] The reaction rate constants k itself may be directly taken from the 

quantum chemistry approach, without the need for a parameterization step. As a result, this 

multi-scale approach provides a platform for moving directly to the kinetic model on the reactor 

scale from atomic scale calculations. Moreover, given their more robust foundations, the kinetic 

models thus obtained should theoretically prove better in terms of predictive capacity. 

Thus, a key-ingredient of such a simulation procedure is the rate constant of each 

relevant elementary step, in the forward and backward directions. Microkinetics then consists 

in the integration of all the corresponding rate equations, in a mean-field approach of the active 

site. Useful information is obtained, such as the concentration of each intermediate and product, 

as a function of time, for a given reactor model (example in Figure 4-b). This appeared to be 

feasible only for reaction networks encompassing a reasonable number of elementary steps 

(typically, a few dozens) to allow the quantification of the free energy profile by first principals 

approaches. Many reports make use of the Eyring transition state theory,[110] applied to a  

number of elementary steps of the pathway investigated by first principles approaches, to link 

the free energy profile to the elementary step rate constant.[1, 95, 111-118] Notably, in some 

cases, the original transition state theory is known to be inaccurate.[119] Accounting for the 

impact of environment effects, according to the Kramers[120] or Grote-Hynes[121] theories 

lead to a lower rate constant than the one predicted by the transition state theory (k = κ×kTST 

with κ ≤ 1). This is particularly important in condensed phase. Determining κ requires extensive 

molecular dynamics simulations.[122, 123] This is frequently performed in biochemistry.[124] 

The lack of robust force-field for surfaces, contrary to proteins, is clearly  hurdle to the 
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systematic transposition of the approach to complex catalytic systems, as accumulating a large 

set of trajectories then exhibits a significant computational cost. Machine learning force 

fields[125] may be a way to circumvent this problem in the future (see section 6). 

As mentioned previously, a detailed microkinetic investigation is not currently feasible for 

large reaction networks. Moreover, considering all elementary steps for the calculation of the 

reaction rates may lead to numerical difficulties, in particular when very fast events co-exist 

with much slower ones. In such a situation, only a few steps/intermediates/transition states 

actually contribute significantly to the rate of a reaction path.[126] This motivated the energetic 

span concept, upon identification of the rate determining intermediates and transition 

structures,[127] and the notion of degree of rate control.[126] Hierarchical multiscale 

approaches have been proposed, that consist in the determination of the most influential kinetic 

parameters at a semi-empirical level, considering the whole reaction network, then selecting 

these to be refined by first principles approaches.[107, 128, 129] With some successful case 

studies, these methods open the route to the construction of predictive kinetic models from first 

principles calculations, even for large reaction networks. 

Accounting for coverage effects in the framework of meanfield microkinetic modelling 

is, however, not trivial. Stochastic approaches, such as on-lattice Kinetic Monte Carlo 

(KMC),[130-132] can bring at the same time a spatial resolution of the diversity of catalytic 

site and coverage effects, and introduce a stochastic treatment of chemical events. The coupling 

of KMC (to compute the rates) with first principles (that provide the rate constants) methods 

was achieved for a set of industrially important reactions, in cases where the catalyst can be 

described according to a (more or less simple) lattice model. In practice, ideal metallic surfaces 

or metal-derived compounds were mainly considered.[1, 130, 133, 134] However, the 

transposition of KMC to the case of more complex catalytic surfaces (non crystalline, exhibiting 
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ductility in the course of the reaction pathway), such as the one discussed in section 2, remains 

a current challenge.[1]   

Moreover, the performance of heterogeneous catalysts in industrial conditions is not 

only determined by the kinetics of chemical reactions, but also by external and internal transport 

steps of reactants and products, possibly intermediates, in particular in the case of multi-

functional catalysts. This is important to be considered when diffusion limitations exist. Mass 

transfer within the catalyst pellet, may influence the final performance. Notably, depending on 

the diameter of the pores, diffusion can be of several origins (molecular, Knudsen, surface 

diffusion) and accompanied by advection phenomena.[135] Also, experimentally measured 

diffusion coefficient may differ drastically from one quantification method to another, so does 

computational estimation of diffusion coefficients.[136] Forcefield molecular dynamics is a 

priori the technique of choice, that was applied often for the quantification of diffusion of 

molecules in the pore micropore network of zeolites.[136] However, it was recently shown that 

in the case of alkene diffusion in H-SAPO-34, a system that is relevant for the understanding 

of industrial Methanol-to-Olefin catalysts, performing ab initio molecular dynamics (instead of 

forcefield molecular dynamics) is required to properly describe the role of the Brønsted acid 

site in the diffusion process.[137, 138] Moreover, the effect of the loading of the pores with the 

various molecules that diffuses, was shown to have a tremendous impact on the prediction of 

the diffusion rates.[139] Lattice KMC models have also been built, that allow a spatial 

resolution of the preferred diffusion paths within the multi-dimensional porous network of 

zeolite catalysts, but in this case the rate of the elementary diffusion steps is an input of the 

model.[140-145] Such approaches are actually needed in the case of high diffusion barriers that 

make it become a rare event in molecular dynamics.[55] In this field, accounting for the 

complexity of the porous catalytic system is a real challenge that is still not overcome, although 

some attempts were made to simulate the effect of mesopores[146] and external surfaces of 
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zeolites[147-151] on the transport properties. Moreover, a full multi-scale kinetic model, that 

would account for reactions (from first principles calculations) and diffusion (from forcefield 

molecular dynamics, for example) with spatial resolution, is currently lacking, to the best of my 

knowledge. 

At the larger industrial reactor scale (Figure 1-a), hydrodynamics is to be considered, as it 

directly impacts temperature and composition profiles, thus the apparent rates. For usual 

geometries and under ideal working conditions, chemical engineers use given reactor models 

(such as continuous stirred-tank, plug flow or batch reactors). This is the usual choice made in 

the ab initio based microkinetic models reported in the literature. However, in more specific 

situations, and in the case where a spatial resolution within the reactor is needed, Computational 

Fluid Dynamics (CFD) is a useful approach. Coupling CFD with the kinetic modeling of surface 

reactions is not trivial,[152] and the examples where a full multi-scale model from ab initio 

calculations to CFD, through kinetic modeling, are still scarce[115, 153-156] and so far 

restricted to ideal planar metallic catalytic systems or simple particle models. The motivation 

is high to go further is this direction in an industrial context, to bridge the gap between atomistic 

modeling and reactor scale considerations.  

 

5. Prediction of new active phases 

Finally, when dealing with prediction of optimal catalysts, a very attractive computational 

approach is to look if the experimental rate constant is correlated to simple descriptors of the 

catalyst and of its interaction with the chemical environment. For several reactions, the 

existence of volcano plots was indeed shown (examples in Figure 5),[19, 20, 157] which can 

be seen as a consequence of the Sabatier principle.[158] If the existence of such simple 

descriptors is proven for the reaction under investigation, thanks to the combination of 

experiments (measurement of catalytic properties) and computations (for the estimation of the 
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descriptor), the door is open for the fast computational prediction of new active phases, more 

active than the previously investigated ones, or as active but cheaper and/or more abundant. 

Cost of the active phase, and speed of the computational approach undertaken, are indeed high 

motivations in industry, that are not at the core of the approaches detailed in sections 2-4. The 

prediction approach by descriptors brings these parameters into the game.[159] 

Notably, a very detailed knowledge of the structure of the active sites, and of the reaction 

profiles for specific catalytic compositions, may be helpful for the proposal of relevant 

descriptors. In that respect, insight brough by experimental spectroscopies are significant to 

propose relevant structure activity relationship. However, the current trend towards the 

implementation of data science in catalysis makes it possible to propose descriptors as 

combinations of surface features very efficiently, with improved prediction accuracy.[160-162] 

Whatever the strategy chosen for the identification of descriptors, a certain level of 

understanding remains, at least retrospectively, an asset for the clever development of new 

catalysts.  

 Descriptors can be for example the d-band level[163] or the interaction (free) energies of 

single atoms, simple functional groups, or reactant molecules with the surface of metals.[11, 

19, 159] Similar scaling relations were explored for cation exchanged zeolites and zeotypes of 

various compositions (in terms of framework or exchange cations) for a given framework 

type.[164-169] Descriptors featuring effects linked to confinement were also found as relevant 

while comparing several zeolite frameworks[170, 171] or different zones of a zeolite 

framework,[172] for similar active sites. Even simpler properties, such as bond energies 

calculated on bulk structures of metal carbides, sulfides, oxides or phosphates, have been 

proposed, as in the Yin-Yang approach.[20, 157, 173, 174] Such descriptors appeared to be 

fruitful for metal, metallic sulfides, and more recently oxides catalysts, for reactions such as 

hydrodesulfurization, hydrogenation, and electrochemical transformation of small molecules 
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(N2, H2, O2, water). Recently, a method was proposed to infer the position of the maximum of 

volcano plots, from the thermodynamic features of the catalytic reaction,[20] making it possible 

to avoid the experimental screening of experimental activity patterns for a large set of catalyst 

compositions.  

 

Figure 5. Volcano plots of methane oxidation rates versus M-O bond strength determined by the Yin-

Yang approach[175]), reproduced from ref. [174] with permission. 

 

Throughout sections 2, 3 and 4, the complexity of industrial catalysts and reactions was 

emphasized, that seems to be hardly conciliable with the search for simple descriptors that 

would hold this complexity. Indeed, looking at correlation curves linking experiments and 

theory, the error on the predicted trends are not negligible in many cases. One may see this as 

a consequence of the structure sensitivity of some catalytic reactions. Going further, one may 

also conclude that the reaction is not structure sensitive if the quality of the regression is 

excellent, whatever the structural features of the tested catalysts (surface area, proportion of 

sites of given coordination number, etc.). Accounting for the local structure around a considered 

metallic site led to the proposal of the generalized coordination number as a relevant 

descriptor,[176, 177] that was successfully applied to the determination of optimal 

environments for platinum catalysts in oxygen reduction reaction.[178] Difficulties emerge for 

metallic alloys, when a reconstruction of the alloy takes place upon adsorption of the reactants. 

[49, 179] In such cases, the reconstructions need to be taken into account separately, as the 
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surface structure affects the quality of the computed trends significantly. However, for very 

small metallic particles, it was shown that the morphology of the cluster changes as a function 

of the progress along the pathway,[83, 106] which breaks linear scaling rules and makes the 

definition of the descriptor a priori very tricky for the catalytic site. Rather than looking for a 

unified descriptor that would consider a huge number of sources of complexity, it is certainly 

more fruitful to alternate descriptor approaches to select a few promising active phases, and 

detailed approaches for the definition of the structure of the most active sites on a limited 

number of catalyst compositions.  

 

6. Current challenges: towards more relevance, accuracy, efficiency 

As can be perceived through the examples selected in the previous sections, computational 

chemistry has gradually taken a growing importance in heterogeneous catalysis, first in an 

academic context, but also in strong connection with innovation up to the industrial scale. 

Enhancing its practical impact requires to overcome a large set of challenges. A non-exhaustive 

list is proposed in the next paragraphs, based on the need for ever improved exhaustivity and 

accuracy in the description of the active sites and of the relevant reaction pathways, but also 

based on efficiency requirements. Indeed, the time scale for the development of an industrial 

catalyst may vary strongly, but it is usually shorter than the typical time of fundamental 

research. Moreover, we are currently experiencing an energy transition context, that makes the 

target reactions change quickly. There is thus a strong motivation for speeding up discoveries, 

in particular those done thanks to computational chemistry.   

Despite the significant efforts done so far to build realistic models of complex industrial 

catalysts, there is still a long way to go before reaching an accurate description of the system. 

For example, to obtain most relevant structural models for supported metal catalysts, instead of 

considering the interaction of models of clusters on models of supports, best would be to 
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simulate all steps of the synthesis of the catalysts. Indeed, directly simulating the catalyst 

without questioning its synthesis protocol requires to have a deep experimental knowledge 

about its structure, as computed thermodynamic features are only scarcely relevant in that 

respect. In the case of supported sub-nanometric metallic particles, one needs to know: i) how 

many atoms are present in the particles, ii) what is their arrangement (flat or 3D structures), iii) 

on which site of the support they are anchored, etc. High-resolution STEM provides a lot of 

useful information (see Figures 1-d and 3-b for examples) but cannot provide a non-ambiguous 

definition of all structural features. For example, in line with feature ii), STEM gives projected 

pictures of the 3D systems, that may be interpreted by several structural models. Tomography 

provides 3D insight, but not at the atomic resolution today. Point iii) is even more challenging, 

as atomic resolution is scarcely obtained for the supports. The synthesis usually starts from the 

impregnation solution (consisting in metallic salts in solution), then drying and activation 

atmospheres are performed (calcination, reduction, or other kinds of activation steps).[180] The 

latter may be composed of O2, H2, H2S, etc., depending on the target final state for the metal. 

After several months of operation in an industrial unit, regeneration procedures are undertaken 

to restore the initial performance of the catalysts. The simulation of these processes at the 

atomic scale are rather limited, due to the multi-step nature of the synthesis procedure and the 

very complex media that need to be considered.[180] For the impregnation step for example, 

accounting for solvent effects (often water, with proton transfers) requires its explicit simulation 

in the presence of the surface, which is still a challenge.[181, 182] Activation steps require high 

temperatures, inducing significant mobility of the metal at the support, depending on the 

activation atmosphere.[14, 75] The simulation of all these steps would provide kinetic 

information about the preferred locations of the metallic species at the support, about their 

nucleation state and coordination sphere. This would give insight in the possible final structures, 

after activation, not only from a thermodynamic but also from a kinetic point of view. 
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Regarding zeolite catalysts, as mentioned in section 2, works have already been devoted 

to the simulation of defects and external surfaces, but still, our view remains schematic in that 

respect.[22] Much more remains to discover about the formation mechanisms of these defects, 

simulating the post-treatments more realistically that currently done. This is highly challenging, 

in particular for treatments done in aqueous media. Moreover, much more effort must be 

invested in simulating the system beyond the atomic scale, as the mesopore dimensions are of 

the order of dozens of nanometers. The role of amorphous zones formed after post-treatments, 

for which only a few models are available,[183, 184] needs to be better defined, as well as the 

role of the binder-zeolite interaction that takes place during shaping of industrial catalysts.[185] 

Regarding the quantification of the reaction profiles, the determination of the entropic 

terms remains most of the time the trickiest part of the problem. As shown in section 3, ab initio 

molecular dynamics is a highly relevant option, but its computational cost remains prohibitive 

for a systematic application.[55, 56] Moreover, the elucidation of reaction pathways and the 

quantification of the free energy profiles often requires the choice of appropriate reaction 

coordinates (collective variables CVs), which is not trivial.[186] The choice of irrelevant CVs 

for preliminary MD runs represents a waste of human and computational time. On top of that, 

the level of theory we use to propose accurate data may have a strong impact on the enthalpic 

terms, that is most of the time unknown a priori. Most data are currently obtained at the DFT 

level, that might not be sufficient to reach chemical accuracy in many cases.[187-190] This is 

a crucial question when the integration of first principles rate constants into higher scale models 

is aimed at: the propagation of errors may have tremendous impact on the predicted 

performances.[18] However, combining ab initio molecular dynamics and high level of theory, 

for complex catalytic site models, is currently not realistic with the usual implementations of 

AIMD. 
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Thus, all these challenges raise the question of how to simulate larger and larger models, 

doing ab initio molecular dynamics, at the optimal level of theory. The growth of computational 

resources is key, but the impact of it will be maximal if we have codes available, that scale well 

with increasing resources. This is usually not the case of most DFT codes. Linear scaling 

approaches, such as the one developed in ONETEP,[191] CONQUEST[192] or BigDFT,[193] 

inter alia, are highly interesting in that respect.  

As a corollary, big data and artificial intelligence have already impacted computational 

heterogeneous catalysis, as attested by the already huge number of reviews published in that 

field over the past three years (see for example refs. [7, 194-199]). The reader will find in these 

reviews a large set of domains linked to atomic scale simulations, that already benefit from the 

developments in this domain. Notably, developments at all scales depicted in Figure 1 are 

concerned by improvements proposed by Machine Learning approaches (including 

microkinetics, reactor design, computational fluid dynamics). Regarding atomic scale 

simulations, a strong benefit may first be found for catalyst design, in the spirit of section 5, 

thanks to data hosted on computational materials databases that have flourished over the 

years.[200] Machine learning scheme have already provided new descriptors for the prediction 

of the performances of monometallic, [201] multimetallic[160, 162, 202, 203] and oxide[161] 

catalysts, inter alia, combining structural, electronic and energetic parameters. Supervised 

machine learning methods were successful in the extraction of morphological information from 

XANES spectra, thanks to ab initio calculations for platinum particles.[204]   

Machine Learning interatomic potentials (in some cases, reactive forcefields[205]) are 

also highly promising for speeding-up tremendously evolution algorithm search,[206] 

transition state search [207, 208] and ab initio molecular dynamic calculations.[125, 209-211] 

They are built upon training on DFT calculations, sometimes thanks to active learning scheme 

(for example, along a molecular dynamic run). They show high accuracy even for systems (e.g. 
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metallic) for which accurate traditional forcefields are not available, but their transferability is 

still an open question. So far, they have open the door to much quicker and longer molecular 

dynamic run than in traditional AIMD (by several orders of magnitude), or to large scale Monte-

Carlo simulations, or to the simulation of very large systems (e.g. thousands of metallic atoms) 

with close to DFT accuracy, for example for N2 dissociation on Ru(0001),[212] phase transition 

in perovskites,[210] bulk properties of alloys,[213] alloy segregation and reactivity in water, 

with particles containing up to 3915 atoms,[214] to name a few.  Machine Learning schemes 

are also relevant options to improve the level of theory along a MD trajectory for a moderate 

computational cost,[215-217] and for the finding of relevant collective variables before running 

constrained ab initio molecular dynamics runs.[218, 219]  

All this suggests that we currently arrive at a turning point in terms of methodologies, 

with an expected deep transformation of the practices of computational heterogeneous catalysis 

(among other branches of atomic scale simulations), likely to enhance drastically the impact it 

will have on industry and, consequently, on society. 
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