
HAL Id: hal-03608048
https://ifp.hal.science/hal-03608048v1

Submitted on 14 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Bilevel Energy Management Strategy for HEVs Under
Probabilistic Traffic Conditions

Arthur Le Rhun, Joseph Frédéric Bonnans, Giovanni de Nunzio, Thomas
Leroy, Pierre Martinon

To cite this version:
Arthur Le Rhun, Joseph Frédéric Bonnans, Giovanni de Nunzio, Thomas Leroy, Pierre Martinon. A
Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions. IEEE Trans-
actions on Control Systems Technology, 2022, 30 (2), pp.728-739. �10.1109/TCST.2021.3073607�.
�hal-03608048�

https://ifp.hal.science/hal-03608048v1
https://hal.archives-ouvertes.fr


1

A bi-level energy management strategy for HEVs
under probabilistic traffic conditions

Arthur Le Rhun, Frédéric Bonnans, Giovanni De Nunzio, Thomas Leroy, Pierre Martinon

Abstract—This work proposes a new approach for the optimal
energy management of a hybrid electric vehicle taking into
account traffic conditions. The method is based on a bi-level
decomposition. At the microscopic level, the offline part computes
cost maps thanks to a stochastic optimization that considers the
influence of traffic, in terms of speed/acceleration probability
distributions. At the online macroscopic level, a deterministic
optimization computes the ideal state of charge at the end of each
road segment, using the computed cost maps. The optimal torque
split can then be recovered according to the cost maps and this
SoC target sequence. Since the high computational cost due to
the uncertainty of traffic conditions has been managed offline, the
online part should be fast enough for real-time implementation on
board the vehicle. Errors due to discretization and computation
in the proposed algorithm have been studied. Finally, we present
numerical simulations using actual traffic data, and compare
the proposed bi-level method to the best possible consumption,
obtained by a deterministic optimization with full knowledge of
future traffic conditions, as well as to an established solution
for the energy management of a hybrid electric vehicle. The
solutions show a reasonable over-consumption compared with
deterministic optimization, and manageable computational times
for both the offline and online part.

Index Terms—Hybrid electric vehicles, energy management,
bi-level optimization, stochastic dynamic programming, traffic
data clustering.

I. INTRODUCTION

THE future of road transportation is bound to undergo
major transformations in the coming years. While energy-

related air pollution is considered today as one of the primary
premature death causes [1], the global carbon dioxide (CO2)
emissions are on a rising trend destined to grow well above
the levels imposed by the international climate goals [2].

New EU fleet-wide CO2 emission targets are set for the
years 2025 and 2030 for newly registered passenger cars.
These targets are defined as a percentage reduction from the
2021 starting points and impose 15% reduction starting from
2025 and 37.5% reduction starting from 2030 [3].

In an effort to comply with these binding measures, au-
tomakers are planning to significantly reduce the sales of ve-
hicles solely powered by internal combustion engines (ICEs),
and promote vehicle electrification. Market share projections
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seem to agree on the fact that purely electric vehicles (EVs)
will reach at least 8% of all vehicle sales by 2025, while hybrid
electric vehicles (HEVs) will rise to 23% of market share
[4], [5]. The larger market penetration of HEVs, combining
conventional combustion engines and electric motors, is likely
due to a more appealing trade-off between energy efficiency
and driving range.

Increased efficiency of HEVs derives from the on-board
energy management system (EMS) which optimizes at each
time instant the power split ratio between the two propulsion
systems. A detailed review of the existing power management
control algorithms for HEVs is offered by [6]. However, most
of the current EMS strategies are somewhat conservative and
sub-optimal due to their lack of prediction capabilities of
the actual driving conditions of the vehicle. In fact, driving
behavior and traffic conditions have a major impact on the
traction power demand and consequently on the EMS. Several
recent studies attempt to precisely establish such a relationship
between driving conditions and energy consumption for dif-
ferent types of vehicle powertrains [7], [8].

The advent of connectivity and the availability of large
amounts of driving data is favoring the transition towards
predictive EMS strategies, which can further improve energy
efficiency of HEVs by more effectively taking into account
road traffic externalities [9], [10]. Such predictive strategies
need to have an estimate of the required power for traction
along the vehicle trajectory, based on information about traffic
conditions, road signalization and road grade. Data-based
driving behavior and traffic models are typically based on
historical information about traffic conditions on the different
portions of a road network. Speed and acceleration probability
distributions and their statistical properties are generally used
to represent driving behavior [11], [12] and to establish
speed predictors. Those predictors either combine determin-
istic and stochastic approaches [13], [14], or are fully based
on stochastic processes such as Markov chains and artificial
neural networks [15], [16], [17], or are determined through
independent and identically distributed (i.i.d.) sequences [18].
These probability distributions are often obtained from stan-
dard driving cycles [19], [14] or real driving data [20], [16],
[21], [18]. Their ability to reproduce real driving conditions
strongly affects the performance of predictive EMS.

Since stochastic processes are considered as an effective
way of predicting driving behavior, the research on EMS for
HEVs has put much effort in designing predictive and stochas-
tic optimization strategies. Such strategies can be essentially
grouped into offline and online optimization methods. The
offline methods such as the Stochastic Dynamic Program-
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ming (SDP) are mostly used as a benchmark for the online
methods, but seldom used in practical implementations due to
the high computational cost [22]. The online methods, such
as the stochastic Model Predictive Control (MPC), in turn,
offer more practical computation times without significantly
compromising accuracy and performance. Stochastic MPC
methods offer a favorable framework for the online prediction
of the driving behavior on a future receding horizon and are
employed for the design of EMS for HEVs [23]. However,
accuracy and optimality of the MPC methods strongly depend
on the accuracy of the driving behavior model, namely the
probability distribution generating the stochastic process, as
well as the size of the prediction horizon, typically chosen in
a trade-off between performance and computational burden.

In an effort to reduce the impact of the prediction and
optimization horizon on the EMS performance, bi-level opti-
mization strategies seem promising in improving performance
from a global perspective thanks to their hierarchical structure
[24]. The intuition behind this type of optimization strategy
for the EMS of HEVs is that in the system there are slowly
changing variables, such as the battery state of charge (SoC),
and rapidly changing variables, such as torque and regime.
Adaptive hierarchical schemes [25], [26] and hierarchical
MPC [27], [28] have been applied to the EMS problem for
HEVs and proved compatible with real-time implementation.
However, especially hierarchical MPC still solves an online
optimization problem thus requiring modeling simplifications
and limited prediction horizon. In this work, the proposed
EMS strategy aims to combine the advantages of the infinite
horizon optimization of the SDP and the real-time capability
of the MPC.

The main contribution of the paper is to formulate the en-
ergy management strategy as a bi-level hierarchical optimiza-
tion problem. The novelty lies in the fact that the stochastic
traffic behavior is entirely embedded in the microscopic level,
which is optimized offline by means of stochastic dynamic
programming (SDP). This leads to a very effective formulation
for the macroscopic level problem that can be solved online
as a global optimization by means of a low-dimension deter-
ministic dynamic programming (DDP). The statistical traffic
model used is based on joint speed-acceleration probability
distributions and was introduced in [18].

The paper is organized as follows. Section II introduces the
models for the hybrid vehicle, traffic conditions, and states the
general problem of optimizing the fuel consumption. Section
III presents an offline/online implementation of the EMS
resulting from a bi-level decomposition of the optimization.
Section IV discusses the numerical errors as well as the
monotonicity of the value functions. Section V contains the
validation of the proposed optimization strategy, the sensitivity
analysis with respect to an incorrect traffic conditions identifi-
cation, and comparisons with state-of-the-art approaches using
real-world driving data.

II. PROBLEM FORMULATION

A. Hybrid vehicle model
Automobile companies have presented different architec-

tures for hybrid electric vehicles. HEVs can be classified in

four main types (Serial, Parallel, Combined, Complex) [29]. In
the following we focus on HEVs with parallel design, where
both the thermal engine and the electric motor can power
the vehicle1 (see Fig. 1). This type of design can use the
engine to recharge the battery, at the cost of an increased fuel
consumption.

Fig. 1: Parallel hybrid configuration where ICE = internal
combustion engine, BT = battery, PB = Power link, EM =
electric motor, TC = torque coupler, V = vehicle. Bold lines
indicate mechanical links, solid lines indicate electrical links.

Neglecting the slope effect and knowing the speed v and
the acceleration a, the torque Tw and the rotation speed ωw of
the wheel at each time t can be computed using the following
formula (1):

Tw(v(t), a(t)) = (ma(t) + α2v
2(t) + α1v(t) + α0)rw (1a)

ωw(v(t), a(t)) =
60v(t)

2πrw
(1b)

with m the vehicle mass, rw the wheel radius, and α0, α1, α2

coefficients of a quadratic approximation of the road-load
force. Then the torque required at the primary shaft Tprim and
the rotation speeds of the engine ωe and motor ωm follow (2):

Tprim(v(t), a(t)) = max

(
Tw(v(t), a(t))

ParatioPaeffGi
RG

i
Eff

, Tmin

)
(2a)

ωe(v(t), a(t)) = ωw(v(t), a(t))ParatioG
i
RG

i
Eff (2b)

ωm(v(t), a(t)) = ωw(v(t), a(t))ParatioG
i
RG

i
EffR (2c)

with Gi
R, G

i
Eff the gear ratio and efficiency, and Paratio,

Paeff the characteristics of the powertrain. Finally, R is the
reduction ratio between the electric motor and the engine.

Neglecting losses due to the mechanical links, the torque of
the engine and motor are linked through equation (3):

Tprim(v(t), a(t)) = Te(t) + Tm(t)R (3)

The consumption of the engine is modeled by a map
Ĉ(ωe, Te) obtained through experimental characterization.
This map uses as inputs the torque request Te and the rotation
speed ωe for the engine. Thanks to (1,2,3), we can express
the consumption as a function of the electric motor torque Tm
rather than Te:

C(v(t), a(t), Tm(t)) = Ĉ(ωe(v(t), a(t)), (4)
Tprim(v(t), a(t))− Tm(t)R).

This reformulation allows us to consider the motor torque
Tm as the control of our system. Similarly to the engine map,

1Note: the proposed strategy could be applied to every HEV architecture.
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Fig. 2: Illustration of a (V,A) traffic distribution. Data source:
traffic simulator SUMO (https://sumo.dlr.de)

we also have a motor map that gives the electrical power P̂m

required by the motor:

Pm(v(t), a(t), Tm(t)) := P̂m(ωm(v(t), a(t)), Tm(t)) (5)

This power can be positive or negative, corresponding to a
discharge (resp. charge) of the battery. We note Cmax the
maximum capacity of the battery and SoC(t) ∈ [0, 1] its state
of charge at time t. The dynamics of the state of charge can
be written as follows:

˙SoC(t) =
1

Cmax
Pm(v(t), a(t), Tm(t)) (6)

The battery model chosen for this study is quite simple (i.e.
perfect efficiency). For a thorough treatise on battery models,
we refer the interested reader to, for instance [30].

B. Probabilistic traffic model

We consider a subdivision of the roads into small segments,
typically delimited by topological characteristics. Let S denote
the numbers of segments and h0 > 0 denote the time step.
For each segment s and a given vehicle we have an entry
time ts and a time grid ts,k := ts + kh0, for k ∈ N. We
assume that the traffic variables (speed and acceleration) are
random variables (V(t),A(t)), constant over each time-frame
(ts,k, ts,k+1), k ∈ N, with discrete i.i.d. distributions µs,
called the traffic distribution, whose (finite) support supp(µs)
is included in R+ × R. Fig. 2 illustrates such a distribution.

The assumption that traffic distributions do not depend on
time is an important simplification, reducing considerably the
burden of computation. In our study, we consider travels of
limited length, which justifies this hypothesis of stationary
traffic distributions, and we choose the time step h0 = 1s,
which is consistent with the typical drivers reaction time.

We make the central assumption that drivers ‘follow the
traffic’, meaning that their speed and acceleration coincide
with the random variables (V(t),A(t)). The distribution
information can be reduced by clustering, as introduced in
[18]. The resulting traffic model can provide a consumption
estimate, based on a memoryless sampling method for the
(speed,acceleration) of the vehicle following the traffic con-
ditions. Numerical simulations in [18] using actual traffic data
(cf V-A) indicate that the model accuracy is robust with respect
to the number of clusters, and that a small number provides a
rather accurate prediction of the consumption, see Fig. 3.
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Fig. 3: Traffic model [18]: effect of the number of clusters.

The traffic model in the following uses 4 clusters, which
seems a good compromise, with the accuracy in terms of
energy consumption illustrated in Fig. 4. This choice also gives
a 99% reduction data occupancy compared to the raw non-
clustered (v,a) distributions.
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Fig. 4: Traffic model: energy consumption (4 clusters).

Furthermore, clusters obtained from the (V,A) distributions
can be interpreted in terms of traffic conditions during the day,
as shown in Fig. 5. The traffic pattern observed is consistent
with a typical commuting behavior, exhibiting two peak hours
in the morning (cluster 3) and evening (4), with normal traffic
(1) during the day and fluid conditions (2) at night.

12AM  3AM  6AM  9AM 12PM  3PM  6PM  9PM 12AM

Fig. 5: Traffic clusters w.r.t. time of day (1: blue, 2: red, 3:
yellow, 4: purple, grey: insufficient data).

C. Global minimal expected consumption problem

Consider the problem of minimizing the total fuel consump-
tion over a given route, defined by the sequence of segments
1 to S, in this order. Denote by LF the total trip length, and
by tF the corresponding final time, which is a random time in
view of the previous model of the traffic on each segment. The
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consumption is a random variable as well. So, the problem of
global minimum expected consumption reads as (GP):

min
Tm

E
[∫ tF

t=0

C(V(t),A(t), Tm(t))dt+ PF (SoC(tF ))

]
(7)

s.t. ∀t, ˙SoC(t) =
1

Cmax
Pm(V(t),A(t), Tm(t)) (8)

Ḋ(t) = V(t) (9)
tF = min{t,D(t) > LF } (10)
SoC(0) = SoC0, D(0) = 0 (11)

s.t. ∀t, Tm(t) ∈ [Tmin, Tmax] (12)
SoC(t) ∈ [0, 1] (13)

The state variables are the state of charge SoC and dis-
tance D, and the control is the motor torque Tm, assumed
constant over each time-frame (tk, tk+1). In this formulation
the random entry times ts over each segment s are implicitly
defined. Assuming t1 = 0, ts+1 is the minimum time greater
than ts such that D(ts+1) = D(ts) + Ls, where Ls is the
length of segment s. In this Hazard-Decision framework, the
control variable depends on the present value of the random
variables for speed and acceleration (V(t),A(t)). Finally, the
final cost PF : R → R expresses the preference for given
final SoC values, typically in order to avoid solutions that
would systematically discharge the battery. PF should be non
increasing and we assume it to be continuous.

In the sequel we assume that no matter what the initial state
of charge SoC0 ∈ [0, 1] is, there exists a sequence of control
variables such that the state of charge remains in [0, 1]. In
particular the set below of ‘one step’ feasible controls

T (SoC,D,V,A) := {Tm ∈ [Tmin, Tmax]; (14)

SoC +
h(D,V)

Cmax
Pm(V,A, Tm) ∈ [0, 1]}

is nonempty, for all SoC ∈ [0, 1] and (V,A) in the support of
the traffic distribution µs.

III. BI-LEVEL DECOMPOSITION (‘MICRO’/‘MACRO’)

The above global problem (GP) can be solved by dynamic
programming techniques, assuming the traffic distributions µs

to be known. If these distributions are modified by any kind of
event, solving again the global problem will update the policy.
Since a full resolution would be ineffective in a real-time
setting, we propose a bi-level decomposition of the problem,
that reduces the amount of computation to be done online.
The core idea is to consider at the macroscopic level a travel
as a sequence of road segments. The corresponding dynamic
structure allows us to compute the value function by dynamic
programming.

At this so-called ‘macro’ level, the upper-level decision is
a deterministic approximation of the state of charge of the
battery at the exit point of segment s, called the reference
state of charge and denoted by SoCr

s . The macro problem
consists in solving a dynamic programming problem where
each decision consists in choosing the best reference value,
and where each step s ∈ {1, . . . , S} corresponds to a

segment. On the other hand, the ‘micro’ problem consists in
minimizing the expected consumption for given segment s
and SoC variation.

Energy management architecture Following this math-
ematical model, we design an energy management system
that could operate on-board of a hybrid electrical vehicle, see
Fig. 6. Firstly, the micro level is offline and computes value
functions and associated cost maps for all road segments,
traffic conditions and SoC conditions, using stochastic opti-
mization (SDP), see III-A. This allows us to obtain a collection
of pre-calculated optimal solutions (i.e. optimal torque split
ratio) satisfying several combinations of problem constraints
for all the road segments. This part represents the bulk of
the computational cost, but can be parallelized across all road
segments and traffic clusters. The results can then be stored
and/or transmitted onboard the vehicle. These computations
only need to be redone when the stochastic traffic model is
updated, e.g. with new traffic data, or a different clustering.
Secondly, the macro level is online and acts as a supervisory
SoC trajectory planning, providing the intermediate SoC levels
at the end of each road segment. This reference state of charge
SoCr is solved by means of a fast deterministic optimization
(DDP), see III-B. This step requires a traffic prediction in the
form of the sequence of traffic clusters along the travel, which
could be for instance determined by matching the clusters
with a mean speed prediction along the road, as provided by
available map and traffic webservices. Another possibility is to
use traffic data history for the clusters identification w.r.t time,
as illustrated on Fig. 5. Macro optimization is performed at the
beginning of travel, and should be recomputed during the trip
if traffic prediction is updated. Finally, a third part, also online,
is the torque selection unit, which recovers the optimal torque
split at each time, from the pre-calculated solutions. Its inputs
are the current and target SoC, the speed and acceleration
distribution, and the value functions from the micro level, see
III-C. This last part boils down to a basic minimization over
a finite set of stored values, and is therefore very fast.

Torque-Split
Optimization

(SDP)
Cost Maps
Database

Cost Map
Selection

SoC Profile
Optimization

(DDP)

Optimal Torque-
Split Selection

Offline

Online
Macro

Torque selection

Traffic Conditions
Identification

Current Trip
(speed, acceleration)

For all:

road segments
traffic conditions
battery SoC
levels 

Motor
Torque
Engine
Torque

Micro

Fig. 6: Overview of the bi-level optimization framework

A. Stochastic micro problem

The framework is similar to the one of the global con-
sumption problem, but restricted to a single segment s. By
a translation argument we can assume that the entry time on
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segment s is 0. We denote by SoCs(t) and Ds(t) the state
of charge and distance, which will be the state variables, and
by Tm(t) the motor torque, which will be the control variable,
constant over each time step. A Hazard-Decision framework is
used:the control variable depends on the present value of the
random variables (V(t),A(t)) (speed and acceleration). The
final cost penalizes any final SoC different from the reference
value. The resulting problem (Pmicro) reads as

min
Tm

E
[∫ tf

t=0

C(V(t),A(t), Tm(t))dt (15)

+Ps(SoCs(tf ), SoCr
s )]

s.t. ∀t, ˙SoCs(t) =
1

Cmax
Pm(V(t),A(t), Tm(t)) (16)

Ḋs(t) = V(t) (17)
Tm(t) ∈ [Tmin, Tmax] (18)
SoCs(t) ∈ [0, 1] (19)
SoCs(0) = SoC0, Ds(0) = 0 (20)
tf = min{t,Ds(t) > Ls} (21)

Alternatively we can reformulate the problem in a discrete
time setting, dropping indexes s for the state variables:

min
Tm

E

 kf∑
k=0

hkC(Vk,Ak, T k
m, ) + Ps(SoC

kf , SoCr)


(22)

s.t. ∀k, SoCk+1 = SoCk +
hk

Cmax
Pm(Vk,Ak, T k

m) (23)

Dk+1 = Dk + hkVk (24)

T k
m ∈ [Tmin, Tmax] (25)

SoCk ∈ [0, 1] (26)

hk := min(h0, (Ls −Dk)/Vk) (27)

kf := 1 + max{k,Dk + h0Vk < Ls} (28)

SoC0 = SoC0; D0 = 0. (29)

For the last segment we have a similar formulation, with final
cost PF (SoC(tf )) introduced in section II-C. The dynamic
programming principle used to solve these micro problems is
detailed in section IV-A.

B. Deterministic macro problem

We denote by νs(SoC0, SoC
r) the value of the micro

problem with initial state of charge SoC0 and reference
state of charge SoCr, and by νF (SoC0) the value for the
micro problem associated with the last segment. The (de-
terministic) macro problem is, when starting from segment
s0 ∈ {1, . . . , S − 1}:

min
Socr

S−1∑
s=s0

νs(SoC
r
s , SoC

r
s+1) + νF (SoCr

S) (30)

SoCr ∈ [0, 1]S (31)
SoCr

s0 = SoC0 (32)

Denote by Vs0 the value function of the above problem. The
corresponding dynamic programming principle is, for 1 ≤ s ≤
S − 1:

Vs(SoCr
s ) = min

SoCr
s+1

νs(SoC
r
s , SoC

r
s+1) + Vs+1(SoCr

s+1),

(33)
and final condition

VS(SoCr
S) = νF (SoCr

S). (34)

This is a standard discrete time setting. If the functions of
the model are Lipschitz, so is the value function Vs. It is then
possible to give estimates of the discretization error, following
the analysis in [31]. We do not detail this part but rather put
emphasis on the more complex case of the micro problem.

C. Torque selection
Once the reference values SoCr have been computed by

solving the macro optimization, the travel starts and the vehicle
follows the traffic. The optimal torque can then be estimated,
using the approximation Ũ c of the value functions of the micro
problem (we detail in IV-A the computation of Ũ c). Indeed,
knowing the actual speed v and reconstructed acceleration a
(typically thanks to the vehicle on-board sensors), the optimal
torque T ∗m is chosen such that

T ∗m ∈ argmin
Tm∈T (SoC,D,v,a)

h(D, v)C(v, a, Tm) + Ũ c(x+) (35)

This minimization, performed over a moderate-size discrete
set, should be fast enough for online use.

IV. MATHEMATICAL AND NUMERICAL ANALYSIS

Here, we present the dynamic programming principle for
the micro problems. Then, we give an analysis of the errors
between the original problem and the problem actually solved,
due to discretization and numerical methods. We also establish
some monotonicity properties of the value functions.

A. Dynamic programming for ‘micro’ problem
A dynamic programming principle in discrete time is as

follows. Clearly the value of the problem does not depend
on time, so we look for U(D,SoC) : [0, Ls] × [0, 1] → R,
value of same problem as the ‘micro’ one but starting with
state (D,SoC). We have an exit time problem since the
process stops when D = Ls. For lighter notations, write
x := (D,SoC), and

x+ := (D+h(D,V)V, SoC+
h(D,V)

Cmax
Pm(V,A, Tm)), (36)

where h(D, v) := min(h0, (Ls −D)/v)s. Then

U(x) = E min
Tm∈T (SoC,D,V,A)

[h(D,V)C(V,A, Tm) + U(x+)]

(37)
The expectation is over (V,A) with law ρs, and exit cost

U(Ls, SoC) = Ps(SoC, SoC
r). (38)

Practical computations need to discretize the state space. An
SDP algorithm computes an estimate of the value function over
the whole state grid. This allows to compute an approximation
of the cost map νs(SoC0, SoC

r) for given SoC0 and SoCr

on a grid. The discretization analysis is given below.



6

B. State variables discretization error

We discretize the state variables x := (D,SoC) with steps
hD := Ls/ND and hSoC := 1/NSoC , where ND and NSoC

are positive integers. The value function Uh = Uh(x) is
defined at gridpoints x = (kDhD, kSoChSoC) with 0 ≤ kD ≤
ND, 0 ≤ kSoC ≤ NSoC and extended to [0, Ls]× [0, 1] by the
usual multidimensional linear interpolation formula, see e.g.
[31, Ch.3], denoted by Ũh. By G (resp. G−) we denote the set
of gridpoints (resp. of gridpoints with D < Ls). We consider
the ‘approximate’ dynamic programming principle

Uh(D,SoC) = E min
Tm∈T (SoC,D,V,A)

(39)[
h(D,V)C(V,A, Tm) + Ũh(x+)

]
for all x = (D,SoC) ∈ G−, with exit cost as in (38). Since the
velocities are non negative and have a positive expectation, the
above formula implicitly expresses Uh(D,SoC) as function
of Uh(D′, ·) for D′ ∈ [D + hD, Ls]. So, (39) can be solved
by backward induction over distances. For Dk := khD and
(Dk, SoC) in G−, set

Uk(SoC) := U(Dk, SoC); Uh
k (SoC) := Uh(Dk, SoC);

(40)
The corresponding value error is Wk(SoC) := Uh

k (SoC) −
Uk(SoC). Set

Ûk(SoC,V,A, Tm) := Ũ(Dk + h(Dk,V)V, (41)

SoC +
h(Dk,V)

Cmax
Pm(V(t),A(t), Tm(t))

with a similar definition for Ûh
k , and set Ŵk := Ûh

k −Ûk. From
the above dynamic programming principles (37) and (39) we
deduce that

‖Ŵk‖∞≤ E sup
SoC,Tm

{|Ŵk(SoC,V,A, Tm)|}. (42)

In the above supremum we take as always the expectation over
(V,A) in the support of ρs, and the supremum over those
SoC ∈ [0, 1] such that (Dk, SoC) ∈ G−, and over Tm ∈
T (SoC,D,V,A).

Let the supremum be attained at (SoC, T̄m), which are
functions of (V,A). Denote by (ᾱi, x̄i) the coefficients and
gridpoints of the corresponding linear interpolation (also func-
tion of (V,A) but we skip these arguments). Then

‖Ŵk‖∞≤ E (|∆1(V,A)|+|∆2(V,A)|) , (43)

with
∆1(V,A) :=

∑
i

ᾱi(U
h(x̄i)− U(x̄i)); (44)

∆2(V,A) :=
∑
i

ᾱi(U(x̄i)− U(x̄+)). (45)

We can interpret ∆1 as a combination of previous errors at
grid points, and ∆2 as an interpolation error for U at x+.
Let eI(hD, hSoC) denote a majorant of the interpolation error
|∆2|, so that we have

|∆2|≤ eI(hD, hSoC). (46)

In the case when no interpolation in D is necessary, we denote
the corresponding interpolation error by e′I(hSoC). We now
estimate |∆1|. Setting I (resp. J) for elements of gridpoints
with distance index equal to (resp. greater than) k we get

∆1 :=
∑
i∈I

ᾱi(U
h(xi)− U(xi)) +

∑
i∈J

ᾱi(U
h(xi)− U(xi))

(47)
so that setting β := E

∑
i∈I ᾱi:

|∆1|≤ β‖Wk‖∞+(1− β) max
k′>k
‖Wk′‖∞. (48)

Observe that β represents the probability of having zero speed,
and therefore is a given constant in [0, 1).

Theorem 1. The following error estimate holds: for all
(D,SoC) ∈ G, we have that

‖Uh
k − Uk‖∞≤

LseI(hD, hSoC)

(1− β)hD
. (49)

If in addition, whenever v belongs to the marginal (in speed)
of ρs:

hv is a multiple of hD, (50)

then

‖Uh
k − Uk‖∞≤

Lse
′
I(hSoC)

(1− β)hD
. (51)

Proof. It follows from the previous discussion that

‖Wk‖∞≤ eI(hD, hSoC) + β‖Wk‖∞+(1− β) max
k′>k
‖Wk′‖∞.

(52)
Equivalently

‖Wk‖∞≤ max
k′>k
‖Wk′‖∞+

eI(hD, hSoC)

1− β
. (53)

Since there are Ls/hD steps, (49) follows. Finally, if (50)
holds, we deduce from (49) that (51) holds.

Remark 2. If U is Lipschitz w.r.t. SoC with constant LSoC ,
then e′I(hSoC) ≤ LSoChSoC . The resulting error estimate
is then of order hSoC/hD, which is similar to the standard
error estimates in the case of a fixed horizon (where the ‘exit
variable’ is replaced by time), see e.g. the appendix by Falcone
in [32].

C. Additional error due to computation

Instead of the approximate dynamic programming (39), at
each step of the backward induction over distance, what we
actually solve approximately is the problem

U t
k(SoC) = E min

Tm∈T (SoC,D,V,A)
(54)[

h(Dk,V)C(V,A, Tm) + Ũ c(x+)
]

for all x = (Dk, SoC) ∈ G−, with exit cost as in (38); here we
have replaced the discrete value Uh in the l.h.s. by the ‘target
value’ denoted by U t, and the ‘future values’ Ũh(x+) with
the ‘computed values’ (at gridpoints) denoted by Ũ c(x+); but
note that while the computed values are given (at grid points)
for distances greater than Dk = hDk, their values at distance
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Dk is U t
k. For k ∈ {0, . . . , ND}, denote the corresponding

error term estimate by ek, so that

ek ≥ max
k′≥k
‖U c

k′ − Uk′‖∞. (55)

We may assume ek to be non-increasing, with zero value for
k = ND. By arguments similar to those of the previous section
we obtain that for (Dk, SoC) ∈ G−:

‖U t
k − Uk‖∞≤ eI + ek+1. (56)

Therefore, by the triangle inequality

‖U c
k − Uk‖∞≤ ‖U c

k − U t
k‖∞+eI + ek+1. (57)

Next, we choose to solve (54) by value iterations, i.e., as the
limit of the sequence U i

k(SoC), for i ∈ N, defined by

U i
k(SoC) := E min

Tm∈T (SoC,D,V,A)
(58)[

h(Dk,V)C(V,A, Tm) + Ũ i
k(x+)

]
.

The infimum is of course for each grid value of SoC, and
again the tilde corresponds to the interpolation operator. The
contraction factor of the corresponding fixed-point operator is
easily seen to be at most β. We initialize U0

k with U c
k+1. It

follows that

‖U i
k − U t

k‖∞≤ βi‖U c
k+1 − U t

k‖∞. (59)

So, if we perform ik iterations at step k we get with (57) that

‖U c
k − Uk‖∞≤ eI + ek+1 + βik‖U c

k+1 − U t
k‖∞. (60)

While β may be computed, U t
k is unknown so that explicit es-

timates can be derived only in specific examples. Nevertheless
the above inequality suggests that, in the absence of additional
information, it may be wise to take ik independent on k.

D. Monotonicity of the value functions

Intuitively, we expect that the value functions appearing in
the micro problems (both continuous and discretized) satisfy
the following ‘monotonicity property’: they are nonincreasing
w.r.t. SoC0 and nondecreasing w.r.t. SoCr. We need the
following hypotheses:

1) The consumption function C is a continuous and non-
increasing function of the torque Tm,

2) The power function Pm is a continuous and nonincreas-
ing function of the torque Tm,

3) The final cost Ps is nonincreasing w.r.t. SoC0 and
nondecreasing w.r.t. SoCr, and the final cost PF is
nonincreasing.

Theorem 3. The value functions of the continuous and
discretized micro problems satisfy the above monotonicity
property.

Proof. It is enough to obtain the result for the micro problem
with discretization of the distance. The monotonicity w.r.t.
SoCr is an obvious consequence of hypothesis 3). We next
establish the monotonicity w.r.t. SoC0. Consider a feasible
policy T k

m with associated state SoCk (with k indicating
the distance step). These are random variables, depending

on the realization of speed and acceleration. Consider now
the perturbed problem with perturbed initial state of charge
SoC ′0 = SoC0 + ε, with ε ≥ 0 and SoC ′0 ≤ 1. We consider
a perturbed trajectory (T̂ k

m, ŜoC
k) such that for all k, ŜoCk

is the smallest possible majorant of SoCk. This obtained by
forward induction: we choose the control T k−1

m as the largest
feasible one such that ŜoCk ≥ SoCk. By hypothesis 2)
and (23), the variations of state of charge of the perturbed
trajectory are not greater than the original ones. Therefore
thanks to hypothesis 1), we have a non greater consumption at
each step k. By hypothesis 3), the final cost for the perturbed
trajectory is not greater as the original one. The conclusion
follows, using similar arguments in the case of the final
segment.

Remark 4. Possible expressions of functions Ps and PF , that
satisfy assumption 3), are

Ps(SoCtf , SoC
r
s ) = λmax(SoCr

s − SoCtf , 0) (61)

PF (SoCtf ) = λmax(SoCf − SoCtf , 0) (62)

for some parameters λ > 0 and SoCf ∈ [0, 1].

Remark 5. For the macro problem, from the previous assump-
tions it follows that the cost function νs(·, ·) is nonincreasing
w.r.t. its first variable and nondecreasing w.r.t. its second
variable. Assuming νF to be nonincreasing, it follows easily
that the value of the macro problem is itself nonincreasing
w.r.t. SoC0.

V. NUMERICAL SIMULATIONS

Numerical simulations have been conducted on a passenger
vehicle, for which the values of the parameters are presented
in Table I [33]. For the functions Ps and PF we take the
expressions given in Remark 4, with λ = 0.1.

TABLE I: Parameters used in simulations

m rw α0 α1 α2

1190kg 0.31725m 113.5 0.774 0.4212

i 1 2 3 4 5
GRi 3.416 1.809 1.281 0.975 0.767
Gi

Eff 1 1 1 1 1

Paratio Paeff R
59/13 0.95 3.3077

A. Traffic data

As already mentioned, the probabilistic traffic model is
defined by (speed,acceleration) probability distributions, and
the random variables (V(t),A(t)) define the vehicle driving
behavior. In this work the probability distributions representing
the traffic conditions were obtained from real driving data
collected via the smartphone application “Geco air” [34].
This application has recorded so far more than 60 million
kilometers of driving data in real world conditions, and the
data are mostly concentrated in French metropolitan areas.

The simulations were conducted on a 4 km stretch of
highway in the south of Lyon, France see Fig. 7, which gets
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heavily congested at peak hours due to a merge with the city
beltway. A total of about 1000 trips were recorded over a
period of about 16 months (from January 2017 to May 2018).
The considered road portion was split into 27 smaller segments
(whose length ranges from 50 meters to 450 meters) according
to the procedure detailed in [18]. In each segment, the traffic
conditions were processed into 4 clusters.

Fig. 7: Macro problem: simulated travel

B. Micro problem

We start the numerical simulations with the so-called micro
problem defined in III-A. We recall that this problem consists
in optimizing the consumption of the vehicle over a single
road segment, for a prescribed initial and final SoC.

Traffic conditions and Value function In Fig. 8 we
illustrate the micro problems on one segment with four clusters
illustrating various traffic conditions. We consider here the iso-
SoC problem with SoC0 = SoCf = 0.25. For each cluster,
we plot the recorded speed profiles on the left-hand side graph.
Middle graph shows the cluster barycenter and a scatter plot
in the (speed,acceleration) plane. On the right-hand side graph
we show the value function V on the (SoC,distance) state grid.
Results can be interpreted in terms of traffic conditions:
- cluster 1: fluid traffic with rather high and constant speed.
- cluster 2: jammed traffic, slower with frequent stops.
- cluster 3 and 4: intermediate traffic.

The value function is null if, when staying in fully electric
mode, the inequality SoC(tf ) ≥ SoCr

s holds almost surely.
As expected from remark 5, for lower initial SoCs, the value
function increases. As expected again, the value function is
an increasing function of the distance. For cluster 1, the slope
of the value function is smaller, which is due to the general
high speed behavior: the required power cannot be provided
only by the ICE, and the electric motor has to contribute to
traction. Therefore recharging the battery is unlikely, and the
penalization term for the final SoC constraint has a higher
impact on the value function compared to the consumption
from the ICE (increasing in distance).

Analysis of vehicle modes Let us interpret the information
from the primary, motor and engine torques with respect to
(v, a), in terms of modes of the hybrid vehicle:
- regenerative breaking occurs for negative primary torques.
- recharging is when the thermal engine is used to increase
the state of charge on top of powering the vehicle.

0 100

Time (s)

0

50

100

150

S
p
ee
d
(k
m
/h

)

0 50 100 150

Speed (km/h)

-2

0

2

A
cc
el
er
at
io
n
(m

/s
2
)

Cluster 1

0 50 100

Segment distance (%)

22

24

26

28

S
O
C

(%
) Target SOC

0 100 200

Time (s)

0

50

100

150

S
p
ee
d
(k
m
/h

)

0 50 100 150

Speed (km/h)

-2

0

2

A
cc
el
er
at
io
n
(m

/s
2
)

Cluster 2

0 50 100

Segment distance (%)

22

24

26

28

S
O
C

(%
) Target SOC

0 100 200

Time (s)

0

50

100

150

S
p
ee
d
(k
m
/h

)

0 50 100 150

Speed (km/h)

-2

0

2

A
cc
el
er
at
io
n
(m

/s
2
)

Cluster 3

0 50 100

Segment distance (%)

22

24

26

28

S
O
C

(%
) Target SOC

0 100 200

Time (s)

0

50

100

150

S
p
ee
d
(k
m
/h

)

0 50 100 150

Speed (km/h)

-2

0

2

A
cc
el
er
at
io
n
(m

/s
2
)

Cluster 4

0 50 100

Segment distance (%)

22

24

26

28

S
O
C

(%
) Target SOC

Fig. 8: Illustration of the micro problem on one segment (#9)
with four traffic conditions clusters. On each graph, left to
right: recorded speed profiles of the vehicles, (v,a) distribution
and barycenter, value function on the (SoC,distance) state grid.

- pure electric is when the vehicle is powered by the electric
motor only, with the thermal engine shut off.
- hybrid mode uses both engine and motor together.

Fig. 9 shows the vehicle modes for the segment 9 (out of 27)
and cluster 1, with an iso-SoC constraint, both at the beginning
and end of the segment (90% distance covered). The main
difference is the recharging mode, which occurs much more
frequently at the beginning of the segment, and almost never at
the end. This is consistent with the intuition that in a stochastic
context, it is optimal to try to satisfy the final SoC constraint
right from the beginning, rather than trying to reach it only
near the end, which is likely to fail. Therefore the optimal
torque selection policy is such that recharging is favored at
the beginning of the segment, not at the end. Overall, the full
electric mode appears to be predominantly used for null or low
acceleration phases. Accelerating phases, on the other hand,
typically involve the thermal engine.

C. Macro problem

We next present the numerical simulations with the
proposed bi-level method. We recall that this problem
consists in optimizing the fuel consumption of the vehicle
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Fig. 9: HEV optimal policy (beginning and end of a segment).

over a whole trip, with a prescribed initial and final SoC.

Cost map from the micro problems As explained in III-B,
the macro problem relies on a cost map vs that gives an
estimate of the consumption over one segment, with given traf-
fic conditions, for fixed boundary conditions (SoC0, SoCf ).
In our case this map is built by solving the corresponding
family of micro problems. With our choice of the functions
Ps and PF , the value of the micro problem is invariant
w.r.t a translation on (SoC0, SoCf ), whenever the bound
constraints of the SoC are almost surely non active. We use
this property and define the cost maps as 1D functions of
∆SoC := SoCf − SoC0

Fig. 10 displays the cost maps for the four traffic clusters
of segment 9. The shape is similar for all clusters, with a
cost increasing with the required ∆SoC , as expected. The cost
curves are divided into three parts:
- first, for low (negative) ∆SoC , we observe a flat cost
corresponding to the thermal engine completely shut off with
no consumption. The small cost comes from the numerical
diffusion of the penalty for the SoCf constraint.
- then the cost typically increases with ∆SoC , since the thermal
engine is used more in order to satisfy the SoC requirement.
- for larger ∆SoC we observe a sharp increase in the cost func-
tion as the final SoC constraint becomes infeasible, resulting
in a large penalization in the cost.

-15 -10 -5 0 5 10

0

0.05

0.1

0.15

Fig. 10: Macro cost map vs from the family of micro problems.

D. Validation of the bi-level method
An illustration of the bi-level approach on a travel using real

traffic data is presented in V-E. We will compare the bi-level
strategy with the best possible consumption, i.e. the global
optima obtained by a deterministic dynamic programming with
full traffic knowledge, denoted as DDPfull

2. We expect the

2Not to be confused with the macro problem, also solved by a DDP method.

over-consumption of the bi-level approach to reflect the price
of information.

We generate a set of 1000 fictitious (v,a) profiles by i.i.d.
sampling using the probabilities from the statistical traffic
model built from the actual traffic data. These profiles have
an average duration of about 20 minutes, with a sampling
frequency of 1Hz. We show in Fig 11 the results of the bi-
level and DDPfull method on this set of travels, for the
SoC0 = SoCf = 25 case. We observe that the final SoC
constraint is always respected by DDPfull, as expected from a
global method. The bi-level approach shows more variation in
the final SoC, however the constraint is well satisfied overall,
with an average value of 24.99. The consumption distributions
have a similar (Gaussian) shape, with the bi-level method
showing a slight over-consumption compared to DDPfull.
Table II summarizes the comparison in terms of average final
SoC ¯SoCf and consumption over the 1000 travels, for the
three cases SoCf = 20, 25, 30. Results are similar for the three
SoCf , which indicates consistency of the bi-level approach.
The average over-consumption w.r.t. to DDPfull is about
4.5%, and the final SoC constraint is well respected.

Fig. 11: Bi-level (blue) vs DDPfull (orange), on 1000 i.i.d
generated trips with conditions SoC0 = SoCf = 25

(SoC0, SoCf ) (25,20) (25,25) (25,30)
¯SoCf 19.99 24.99 29.99

∆CDDPfull
bilevel +4.40% +4.45% +4.56%

TABLE II: Bi-level vs DDPfull, on 1000 i.i.d travels. The
increased consumption of the bi-level method represents the
price of information.

Numerical settings and CPU times We recall in Table III
the state and control variables discretization for the DDPfull

and bi-level methods. The CPU times on a standard laptop (i7-
6700U @2.8GHz) are summarized in Table IV. The bulk of
the computations is done offline for the micro value functions.
Since they are independent for all (segment,cluster) pairs, they
can be massively parallelized. As an indication, the value
functions for our 27 segments, each with 4 clusters, take up
to 1.7GB when stored as uncompressed text files. These data
could be compressed and transmitted and/or stored on-board
the vehicle.

Concerning the two online parts, first, the macro optimiza-
tion for the whole travel takes about 3.5s on average, and
would typically be updated at regular intervals during the
travel, to take into account more recent traffic predictions.
Second, the torque selection performed at each time step takes
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only a few milliseconds, and should be fast enough for real-
time use considering the 1s time step (1Hz frequency).

Variable DDPfull micro (SDP) macro (DDP)
State SoC [10, 40] (30) [10, 40] (300) [10, 40] (300)
State d - [0, L] (10) -
Control Tmot [−28, 28] (56) [−28, 28] (56) -
Control ∆SoC - - [−5, 5] (100)

TABLE III: Discretization bounds for DDPfull and bi-level
methods. Time resolution is 1 second for DDPfull and micro.
Space resolution is 1 segment for macro. The number of
discretization steps for each variable is indicated between
parentheses.

DDPfull 4.3s (average on 1000 travels)
micro value function 1 day (27 segments x 4 clusters)
macro optimization 3.2s (average on 1000 travels)
torque selection 3ms per decision (1Hz frequency)

TABLE IV: CPU times for DDPfull and bi-level approach.

Sensitivity to cluster information. We try now to check
the sensitivity of the bi-level method with respect to the
traffic clusters. Instead of using the correct cluster information
for the road segments, we set a unique cluster index for
the whole travel. Table V shows the results for the case
SoC0 = SoCf = 25, and we see that the over-consumption
vs DDPfull worsens by 25 to 40% when using the incorrect
cluster information. The loss in terms of absolute consumption
is rather small, however, which may indicate that there is some
redundancy in the considered clusters. A possible way to verify
this hypothesis would be to recompute the traffic model with
fewer clusters and compare the results.

clusters correct all 1 all 2 all 3 all 4
∆CDDPfull

bilevel 4.40% 5.53% 5.57% 5.97% 6.17%

relative loss 0 25.7% 26.6% 35.7% 40.2%

TABLE V: Sensitivity to traffic clusters information

E. Comparison with ECMS on real speed profiles

The proposed strategy is now validated using travels, based
on recorded speed profiles real data, generated in the following
way. In order to consider sufficiently long trips, the 1000
recorded trips coming from the 4-km stretch of highway are
concatenated to form continuous speed profiles of at least 15
minutes. Using this methodology, 1000 speed profiles contain-
ing the 27 segments and 27x4 traffic clusters are generated.
For all the trajectories, bot the initial SoC and the final SoC
target are set to 25%.

Fig. 12 presents a result of the bi-level strategy on a partic-
ular speed profile, with both SoC trajectories corresponding
to the macro optimization and the torque selection along
the travel. The torque selection is computed in practice by
resimulating the corresponding sequence of micro problems,
using the stored value functions.

The top figure represents the vehicle speed profile associated
with the powertrain states chosen by the energy management
(torque selection). The bottom-left graph shows the target and

the realized SoC trajectories. The bottom-right figure presents
the location of the engine operating points on the efficiency
map. We see that the macro stage specifies a target SoC
trajectory satisfying the final condition SoCf = 25%. The
circles represent the end of each road segment, showing the
level of discretization of the macro dynamic programming.
This SoC trajectory is used in the low-level controller to
decide the torque split between the motor and the engine at
each time step. We observe that the controller succeeds in
following the SoC trajectory and satisfying the final constraint.
A difference between target and realized SoC can be seen at
the beginning of the trip. It can be explained by the sharp
deceleration, implying a negative electric torque charging
the battery. While satisfying the SoC constraint, the energy
management optimizes the engine use as shown on the bottom-
right figure: most of the engine operating points are located
in the high efficiency area.

Fig. 12: Illustration of a bi-level solution (iso-SoC travel 25%).

We now compare the proposed bi-level method with both a
deterministic global optimization and an established industrial
method. First, we compute the best possible consumption
when knowing the exact vehicle speed and acceleration pro-
files all along the trip (i.e. DDPfull). Then, an Energy
Management System Strategy (ECMS) [6] is implemented for
further comparison.

The three strategies are compared over the 1000 speed
profiles, with the results shown in Fig. 13 and Table VI.
The two online strategies (bi-level and ECMS) show an
increase of consumption of about 10% compared to the
optimal consumption of DDPfull, with distributions similar
in shape (Gaussian-like). Moreover, the final SoC constraint is
well satisfied on average by both strategies, with the bi-level
method appearing to bracket the target SoCf more accurately
than the ECMS. The over-consumption of the bi-level method,
although tolerable, is significantly larger than the one observed
in section V-D for a set of i.i.d generated travels. This could be
explained by the reliability of the stochastic traffic model, and
improving the model could reduce the overall consumption.

Link between bi-level method and ECMS It is worth
noting that although presented quite differently, ECMS and
bi-level strategies present interesting similarities. On the one
hand, ECMS determines the optimal decision by minimizing
a Hamiltonian function, which requires some information on
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Fig. 13: Comparison of fuel consumption and final SoC on
1000 real speed profiles for DDPfull, ECMS and bi-level
strategies.

Average consumption Average SoCf

DDPfull 5.12 l/100 km 25.04%
ECMS 5.57 l/100 km (+9.1%) 24.96%
Bi-Level 5.63 l/100 km (+10.1%) 25.02%

TABLE VI: Average fuel consumption and final SoC on 1000
real speed profiles for DDPfull, ECMS and bi-level strategies.

the so-called adjoint state associated to the SoC. On the other
hand, the torque selection part of the bi-level strategy also
performs a minimization to find the optimal decision, using
cost maps derived from the value functions of the micro
stochastic problems. In this sense the bi-level may be seen as
a new variant of the ECMS method, using global optimization
at both the micro and macro levels. This is supported by well-
known link in control theory between the adjoint state of the
Pontryagin minimum principle and the gradient of the value
function (see for instance [35]).

In the present simulations the traffic data were taken from
a highway portion mostly, and turned out to be rather regular
overall. This was confirmed by the almost constant adjoint
state observed in the ECMS method, and may explain the
relatively low sensitivity to the cluster information of the bi-
level method (see section V-D).

It would be interesting to perform another comparison using
traffic data with more variations, to see if the global aspect
of the bi-level approach performs better in this case than a
standard (local) ECMS method.

VI. CONCLUSION

We have presented a bi-level method for the energy man-
agement of a hybrid vehicle. More precisely, the aim is to
minimize the fuel consumption of the thermal engine over a
fixed travel, assuming that the vehicle follows the (stochastic)
traffic conditions of the road. We consider a subdivision
of the road network into small segments, for which typical
traffic conditions are modeled as probability distributions in
the (speed,acceleration) plane. At the ‘macro’ level, a fast,
online optimization is performed to compute a deterministic
approximation of the optimal SoC trajectory. This optimization
relies on a cost map over all road segments, for all possible
initial and final SoC conditions. The cost maps are computed at
the ‘micro’ level from the value functions obtained by solving
offline a family of stochastic optimization problems under
traffic constraints. Additionally, these offline solutions are used
to recover the optimal control (electric torque) during the
online optimization. Numerical simulations carried out using

actual traffic data from a highway portion near Lyon (France)
indicate that the bi-level approach performs in a satisfying
manner. A limited over-consumption is observed compared to
a deterministic solution using fully known traffic information,
and performance is comparable to well-established industrial
solutions such as the ECMS. The key point to obtain a
method fast enough for online use is that the stochastic traffic
conditions are completely handled at the micro level, leaving
only a simple deterministic optimization at the macro level.
Future works may include a comparison with other bi-level
approaches using e.g. MPC techniques, as well as a deeper
investigation of the link between the presented bi-level method
and the existing ECMS. On the traffic model aspect, there is
still room for improvement, as shown by the gap between the
tests with the i.i.d. generated travels and the real ones. For
the clustering part in particular, isolating data for a specific
vehicle/driver could allow for some meta-clustering in order
to further reduce the data size and/or to increase the relevance
of the probability distributions.
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