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Abstract: 
 
The objective of this work is to provide a suitable upscaling framework for modeling gas-

solid heat transfer in dense packings. In a macroscopic two-temperature model, the pore-scale 
heat transfer is modeled by determining a Nusselt number. We introduce a new surface 
statistical filter to extract the Nusselt number from pore-scale simulations. A thermal offset 
boundary condition is developed to deal with dense packings that exhibit high heat transfer. 
The new method is applied to sphere packings. Several pore-scale simulations over a range of 
Reynolds number (10-100) and solid volume fraction (0.1-0.6) are performed. The extracted 
Nusselt numbers show very good agreement with results available in the literature for lower 
solid volume fractions (0.1-0.5). We show that the Nusselt number to be used with the two-
temperature model is the Nusselt number extracted using macroscopic (filtered) temperature. 
We propose a valid Nusselt number correlation for a dense packing of spheres. Nevertheless, 
the proposed scaling framework is not restricted to sphere packings. 

 
Graphical Abstract: 

Keywords: Dense packed-bed, Nusselt correlations, upscaling, fixed-bed, heat transfer 
 
Highlights:  

 Homogenization framework for heat transfer calculations in porous media 
 Robust temperature offset boundary condition for upscaling 
 Pore-scale simulation to calculate heat transfer for a dense fixed bed 
 Heat transfer link between microscale and macroscale for sphere packings 

Dependency of the Nusselt number based on mixing-cup temperature on the 
Reynolds number. The symbols are the pore-scale simulations results and the 
error bars indicate 95% confidence intervals. The lines are obtained from the 
Gunn correlation. 
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Nomenclature 
 
 
𝑅𝑒  particle Reynolds number   
𝑃𝑟 Prandtl number 

𝐵𝑖 Biot number 
𝑁𝑢 filtered temperature Nusselt number 
𝑁𝑢  mixing-cup temperature Nusselt number 
𝑃𝑒 Peclet number 
𝑁𝑢(𝑥, 𝜔) local filtered temperature Nusselt number 
𝑁𝑢 (𝑥, 𝜔) local mixing-cup temperature Nusselt number 
ℎ convective coefficient 
𝑥 streamwise location 
𝐿 computational domain length 
𝐷 particle diameter 
𝑎  thermal fluid diffusivity 
𝑎  thermal solid diffusivity 
𝜌  fluid density 
𝜌  solid density 
𝐶  fluid specific heat 

𝐶  solid specific heat 

𝑘  fluid conductivity 
𝑘  solid conductivity 
𝜀  fluid volume fraction 
𝜀  solid volume fraction 
𝜈  kinematic fluid viscosity 
𝑉 entire volume 
𝑉  fluid volume 
𝐴 entire spanwise surface 
𝐴  fluid spanwise surface  
𝑇  mixing-cup temperature 
𝑇 ,  inlet mixing-cup temperature 
𝑇 ,  outlet mixing-cup temperature 
𝑢  streamwise superficial fluid velocity 
〈𝜓 〉 𝜓  superficial volume average 
〈𝜓 〉  𝜓  intrinsic volume average 

𝜓  𝜓  subgrid fluctuations 

𝜓  𝜓  superficial statistical surface average 

𝜓  𝜓  intrinsic statistical surface average 

𝐴  solid-fluid surface interface 
Γ  solid-fluid spanwise linear interface 
𝑟  heat ratio 
j  heat offset 
𝒖 fluid velocity vector 
𝑑𝑨 normal surface element vector 
𝑑𝒍 normal linear element vector 
𝑁 total number of realizations 
𝜔 a particle configuration realization 
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1. Introduction 
 
Several industrial processes involve gas-solid heat transfer in a packed bed. In addition to 

the classical applications in the chemical or energy industries, some emerging technological 
processes rely on packed beds. These developing applications are, for example, CO2 capture 
[1], biofuel production [2] [3], thermal energy storage (TES) [4] [5], concentrated solar power 
plant [6] [7] or advanced adiabatic compressed air energy storage (AA-CAES) [8] [9]. Accurate 
heat transfer prediction plays a major role in the design and control of these systems. However, 
their design requires expensive experiments that are not suitable for optimization. This explains 
the rise of CFD simulations, which are an excellent alternative. Nevertheless, the challenge 
remains to scale-up the heat transfer properties from the pore-scale, called the microscale, to 
the scale of the packed-bed, called the macroscale. Fig. 1 illustrates the hierarchy of scales in a 
porous material. The representative elementary volume (REV) with the support scale is 
introduce as a spatial cut-off filter. Thus, volume averaging over the REV describes the pore-
scale as a subgrid scale. Beyond the spatial filter, individual solids are no longer resolved. An 
upscaling method is needed to model the effect of unresolved scales on resolved scales. 

 

 
 

Fig. 1 Illustration of the hierarchy of scales in a porous material. (a) A packed-bed with macroscale length  𝐿 . (b) A 
representative elementary volume (REV) with support scale ∆. (c) A vertical slice through the medium with microscale 𝐷.  

 
 
Several upscaling methods have been developed over the years [10]. At the pore scale, the 

heat transfer can be described by two energy conservation equations, one for the solid and one 
for the gas. The coupled equations involve a common boundary which is the solid-gas interface. 
On the one hand, a large-scale modeling effort has left out the detailed description of the 
interface. Instead, in this heuristic model, the interface is only described as an amount of 
surface. By analogy with classical solid-gas heat transfer, the heat flow is modeled by a 
temperature difference and a convective coefficient ℎ. The dimensionless form of ℎ is the 
Nusselt number 𝑁𝑢, which defines the ratio of convective to conductive heat transfer at a 
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boundary in a fluid. Therefore, upscaling method based on the heuristic model leads to the 
development of Nusselt number correlations [11] [12] [13] [14]. In contrast, the volume 
averaging method focuses on the effect of detailed interface geometry on heat transfer. The 
method is based on the volume averaging theory [15] [16] which introduces a spatial filter [17] 
for the momentum and energy equations. This method leads to a closure problem for a specific 
geometry of the porous medium. It has been derived for steady case by Quintard and Whitaker 
[18] and Koch and Brady [19]. Recently, it has been extended to unsteady case by Lasseux et 
al. [20]. A third approach consists in implicitly introducing the effect of the detailed geometry 
of the interface in the Nusselt number correlation. The mixed method applies the volume 
averaging method to the conservation equations and the closure terms are postulated using the 
classical heuristic method. These methods based on two energy conservation equations lead to 
two-temperature macroscopic models, namely the Schumann model or the continuous solid 
model [15]. Actually, almost every pore-scale simulations [21] [22] [23] [24] [25] [26] [27] 
[28] that attempt to extract Nusselt number from a piece of packed bed rely on the mixed 
method. However, since the upscaling framework is not properly defined, this leads to some 
indeterminacies in defining the appropriate boundary conditions, how to calculate the Nusselt 
number, or how the Nusselt number is consistent with the macroscopic two-temperature model 
[22]. As pointed out by Chen et al. [27], the adopted boundary conditions can have an impact 
on the numerically derived correlations. Moreover, as stated by Sun et al. [22], the Nusselt 
number is usually calculated for the mixing-cup temperature 𝑇 =  𝑢 𝑇 /𝑢  but is used in the 
macroscopic two-temperature model with the average temperature 𝑇 . As a matter of fact, the 
widely used Gunn correlation [29] for calculating solid-gas heat transfer in a packed bed is 
based on the mixing-cup temperature. 

In the literature, many Nusselt number correlations for sphere packings have been 
numerically derived for a range of solid volume fractions between 0.1 and 0.5 and a range of 
Reynolds numbers between 1 and 100, with Prandtl number of 0.7 or 1 [21] [22] [23] [24] [27]. 
However, very few studies manage to numerically derive correlations for dense packings [25]. 
Furthermore, aside from the work of Tenneti et al. [23] and Sun et al. [22], the boundary 
conditions used for the simulations are not consistent with the upscaling framework. As 
reported by Feng and Musong [30], the constant temperature imposed on the inlet leads to an 
entrance effect that produces a high transfer rate on the entrance particles. Although the 
thermally fully developed temperature condition proposed by Tenneti et al. [23] seems to be a 
good alternative, this condition suffers from numerical instability when the packing is dense 
and the particulate Reynolds number is low 𝑅𝑒 = 𝑢 𝐷/𝜈 .  

In the development of an AA-CAES system [31], accurate prediction of fixed bed heat 
transfer is necessary as it plays a key role in the design of the TES. This motivated us to provide 
a clarified framework to perform the heat transfer upscaling from the pore-scale to the packed-
bed scale. This paper is organized as follows. In Section 2, we describe the problem statement 
with the assumptions that have been made. In Section 3, we present the equations to be solved 
with the boundary conditions, in particular the thermal offset boundary condition introduced to 
deal with the dense packing simulations. In Section 4, we express the developed upscaling 
framework. We explain the filtering equation process, conditions, and methods for extracting 
the Nusselt number from the simulation. In Section 5, we present the results of the current 
methodology for  0.4 ≤ 𝜀 ≤ 0.8 and 10 ≤ 𝑅𝑒 ≤ 100 with 𝑃𝑟 = 0.7. We compare our results 
and those of Gunn and Sun. Then, in section 6, we discuss the correct definition of the Nusselt 
number for the two-temperature model as well as the applicability limits of the current upscaling 
method. Finally, in section 7, we summarize our main results.   
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2. Problem statement 
 
We define the problem statement and the simplification assumptions corresponding to the 

fixed beds encountered in practice. We summarize the simulation parameters and the method 
to obtain the particle assembly. 
 
2.1. Pore-scale gas-solid heat transfer 
 

We investigate the heat transfer between gas and solid for a monodisperse fixed 
assembly of spherical particles, as shown in Fig. 2. 𝑥 is the streamwise direction and 𝑦, 𝑧 are 
the spanwise directions. In the flow direction, a hot gas is introduced at the inlet 𝑥 = 0. The gas 
is cooled by the cold particles. According to Wood et al. [32] for a Reynolds number below 
100, we remain in the inertial regime. The Biot number 𝐵𝑖 = ℎ𝐷/𝑘  is the ratio between the 
convective heat flux of the fluid and the conductive heat flux of the solid. It indicates whether 
the thermal behavior of the solid is dominated by external convection or internal conduction. 
For a Biot number less than 0.1, the temperature gradient inside the solid is negligible. The 
temperature of the solid can be assumed to be constant throughout the volume of the material. 
In a practical packed bed, the size of the solid particles and the thermal conductivity generate a 
small Biot number 𝐵𝑖 < 0.1. This allows us to assume a uniform temperature 𝑇  of the particles. 
In addition, the time scale of the thermal response of the solid is about three orders of magnitude 
higher than the time scale of the fluid convection [23]. This allows us to assume that the 
temperature of the particles is constant. Furthermore, we neglect viscous dissipation, radiation 
and free convection as their contribution to heat transfer is very small outside the Stokes flow 
regime [23] for moderate temperature 𝑇 < 600𝐾. In addition, the fluid properties are assumed 
to be constant to allow simplification of the upscaling method. Given these assumptions, only 
the fluid phase needs to be simulated. The solid phase has a constant and uniform temperature 
𝑇 which is the boundary condition for the fluid phase. 
 
 
 

 
Fig. 2 Fixed sphere particles assembly view 

 
2.2. Pore-scale geometry 
 

To avoid the introduction of geometric anisotropy in the large-scale model, the 
geometry of the REV must be periodic. The REV is a periodic cube with a length 𝐿 of five 
particles diameter (𝐷). The discrete element method is used to generate the packing with the 
YADE software [33]. A tri-axial periodic compression for a given fluid volume fraction is 
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simulated. In addition, a stress-free stage is performed to produce non-overlapping packings. 
There are several possible particle packings for the same fluid volume fraction 𝜀 . Therefore, 8 
packing realizations were generated for each fluid volume fraction. The simulated fluid volume 
fraction and Reynolds number are summarized in Table 1. The Prandtl number is 0.7.  
  

 
𝜀  𝑅𝑒  
0.8 10, 20, 30, 40, 50, 80,100 
0.6 20, 50, 100 
0.4 20, 50, 100 

 

Table 1 Simulated fluid volume fraction and Reynolds number 

 
 

3. Numerical method 
 

3.1. Equations 
 

The inertial regime allows us to restrict the heat transfer problem to the steady state. 
Therefore, we solve the steady state Navier-Stokes equations for the fluid phase with constant 
fluid properties. The steady state energy conservation equation is added to the set of equations. 
Assuming no viscous dissipation, no radiation, and no free convection, the steady state fluid 
energy conservation equation is as follows: 
 
 

   ∇ ⋅ 𝒖𝑇 = 𝑎 ∇ ⋅ ∇𝑇             in  𝑉  

(1)
                    𝑇 = 𝑇                             at   𝐴

 
                   𝑢 = 0                             at   𝐴

  

 

 
where 𝑎 =  𝑘 /(𝜌 𝐶 ) is the thermal diffusivity. As mentioned in Section 2.1, only the energy 

equation for the fluid phase is solved with  𝑇  as the boundary condition at the particle surface 
𝐴 . At the REV boundaries, periodic boundary conditions are imposed for the fluid velocity. 
For temperature and pressure, periodic boundary conditions are imposed only in the spanwise 
directions. These conditions are summarized in equations (2). 

 
 

   𝒖(0, 𝑦, 𝑧) = 𝒖(𝐿, 𝑦, 𝑧) 

    𝒖(𝑥, 0, 𝑧) = 𝒖(𝑥, 𝐿, 𝑧)  
             𝒖(𝑥, 𝑦, 0) = 𝒖(𝑥, 𝑦, 𝐿)            

(2)

    𝑇 (𝑥, 0, 𝑧) =   𝑇 (𝑥, 𝐿, 𝑧)

           𝑇 (𝑥, 𝑦, 0) =   𝑇 (𝑥, 𝑦, 𝐿)      
 

𝑃(𝑥, 0, 𝑧) = 𝑃(𝑥, 𝐿, 𝑧)

𝑃(𝑥, 𝑦, 0) = 𝑃(𝑥, 𝑦, 𝐿)
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It is shown in [34] that Navier-Stokes equation for incompressible flow with periodic 
boundary condition on the velocity leads to a constant jump condition on the pressure.  
                          

𝑃(𝐿, 𝑦, 𝑧) = 𝑃(0, 𝑦, 𝑧) − 𝜆 (3)
    

 

However, the jump cannot be imposed because it is unknown. Instead, a fixed value 𝑃  is 
imposed at the inlet 𝑥 = 0 and a zero gradient is imposed at the outlet 𝑥 = 𝐿. These conditions 
are consistent with the condition in equation (3).  
                          

𝜕𝑃(𝐿, 𝑦, 𝑧)

𝜕𝑥
=

𝜕𝑃0

𝜕𝑥
−

𝜕𝜆

𝜕𝑥
= 0 (4)

    

 

 
In the streamwise direction, the gas is cooled by heat transfer with the particles. We present, in 
the section 3.2, a thermal offset boundary condition to account for the temperature decrease 
along the 𝑥 axis. 

 
3.2. Thermal offset boundary condition 

 
We need to introduce a periodic thermal boundary condition with a temperature loss. 

Assuming a linear form for a modified periodic boundary condition, we can write: 
 

𝑇 (0, 𝑦, 𝑧) − 𝑇 = 𝛼 𝑇 (𝐿, 𝑦, 𝑧) − 𝑇 + 𝛽 (5) 
 
where 𝛼 and 𝛽 are constants. Multiplying equation (5) by the axial fluid velocity, taking the 
spanwise surface integral, 
 

𝑢 𝑇 (0, 𝑦, 𝑧)
 

,

𝑑𝑦𝑑𝑧 − 𝑢 𝑇
 

,

𝑑𝑦𝑑𝑧 = 𝛼 𝑢 𝑇 (𝐿, 𝑦, 𝑧) − 𝑢 𝑇 + 𝑢 𝛽
 

,

𝑑𝑦𝑑𝑧 (6) 

 
We define a surface filter as: 
 

𝜓 =
1

𝑑𝑦𝑑𝑧
𝜓

 

,

𝑑𝑦𝑑𝑧 =  
1

𝐴
𝜓

 

𝑑𝐴 (7) 

 
We divide the equation (6) by the flow rate velocity and use the surface filter notation: 
 

𝑢 𝑇 (0, 𝑦, 𝑧)

𝑢
− 𝑇 = 𝛼

𝑢 𝑇 (𝐿, 𝑦, 𝑧)

𝑢
− 𝑇 + 𝛽 (8) 

 
We define the inlet mixing-cup temperature 𝑇 ,  and the outlet mixing-cup temperature 𝑇 ,  
as: 
 

𝑇𝑚,𝑖 =
𝑢 𝑇 (0, 𝑦, 𝑧)

𝑢
  

 

𝑇𝑚,𝑜 =  
𝑢 𝑇 (𝐿, 𝑦, 𝑧)

𝑢
 (9)

 

 
The equation (8) writes: 

 
𝑇 , − 𝑇 = 𝛼 𝑇 , − 𝑇 + 𝛽 (10) 
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At the inlet, the heat flux must be constant. The inlet mixing cup temperature should not depend 
on the outlet mixing cup temperature. There are two obvious solutions for the choice of 
constants 𝛼 and 𝛽: 
 
 

         (1) 
𝛼 = 1

 𝛽 =  𝑇 , − 𝑇 , = 𝑗  (11) 

 

     (2) 
𝛼 =

𝑇 , − 𝑇

𝑇 , − 𝑇
= 𝑟

 𝛽 = 0

 (12) 

 
The solution (2) is the thermal condition expressed in [23], where 𝛼 ≡  𝑟  is the heat ratio. 

This heat ratio is obviously an unknown quantity and is obtained by an iterative process. 
Similarly, solution (1) has an unknown heat offset 𝛽 ≡  𝑗  that must be obtained by an iterative 
process. 

For high heat transfer in long boxes, the fluid temperature can be very close to 
equilibrium with the solid temperature at the end of the box. This leads to a high heat ratio, 
which in turn leads to a high value of the inlet temperature. This behavior increases the 
numerical instability for low Reynolds number and high-density packing cases. This may 
explain the discrepancy in the PR-DNS data in [35] on the exponential decay behavior of the 
mixing-cup temperature for low Reynolds number. Therefore, the solution (1) with the heat 
offset is preferred. The developed thermal boundary condition is numerically robust and based 
on a rigorous framework. This provides another explanation for the thermal boundary condition 
developed in [23], originally based on the similarity with pipe flow. 

 
 
 

3.3. Workflow and finite volume solver 
 

The geometry of the spheres was introduced into OpenFOAM's snappyHexMesh 
mesher through searchable sphere objects. We used the buoyantSimpleFOAM solver [36] of 
OpenFOAMv1712 to solve for momentum, mass and energy conservation of the fluid. We 
implemented the thermal boundary offset condition defined in Section 3.2 and the convergence 
controllers of the SIMPLE algorithm have been modify to account for the convergence of the 
heat offset 𝑗 . We used a second order discretization scheme for convective terms with the 
linearUpwind [37] scheme. For the diffusive terms, we used the second order scheme Gauss 
linear [38]. According to [39], the momentum boundary-layer thickness is about 𝛿 ~ 𝐷/ 𝑅𝑒 . 
A resolution of 5 cells in the boundary layer is expected to be sufficient [40] to resolve it 
accurately. Since the Prandtl number is 0.7, the momentum boundary layer and the thermal 
boundary layer have a similar thickness. This leads to a minimum cell size of ∆ ≤ 𝐷/50  for 
𝑅𝑒 = 100. This mesh requirement is confirmed by the mesh convergence study in Section 5.2. 
The final step in the workflow is to post-process the simulation results using a python script for 
Paraview [41]. 

To verify the solver, we performed numerical simulations of an isolated isothermal 
sphere in a uniform flow. We compared the calculated Nusselt number with the correlations of 
Whitaker [42] and Richter et al. [43]. We considered three Reynolds numbers (𝑅𝑒 = 60, 120,
240) for a Prandtl number of 0.7. A uniform velocity and a constant fluid temperature of 530 𝐾 
are specified at the inlet. The temperature of the sphere is fixed at 300 𝐾. At the outlet and at 
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the side boundaries, the normal derivatives of temperature and velocity are set to zero. The 
domain size is 20𝐷 × 10𝐷 × 10𝐷, where 𝐷 is the diameter of the sphere. The mesh size is ∆=
𝐷/20. The center of the sphere is located at (5𝐷, 5𝐷, 5𝐷) , , .Whitaker [42] proposed the 
following Nusselt number correlation for a single sphere: 

 

𝑁𝑢 = 2 + 0.4𝑅𝑒 . + 0.06𝑅𝑒 𝑃𝑟 . (13)   

 
Richter et al. [43] proposed a Nusselt number correlation extracted from simulation results with 
ANSYS FLUENT: 

 
𝑁𝑢 = 1.76 + 0.55𝑃𝑟 / 𝑅𝑒 . + 0.014𝑃𝑟 / 𝑅𝑒 / (14)   

 
Fig. 3 compares the results of the current simulations with the correlation of Whitaker [42] and 
Richter et al. [43]. Good agreement is found between our results and the Whitaker correlation. 
The Nusselt numbers predicted by Richer et al. [43] are slightly higher than ours. The same 
finding was reported by Chen et al. [27] for a Prandtl number of 0.744.  
 

 

 
4. Upscaling gas-solid heat transfer 
 

The upscaling framework relies on the volume averaging process. Gas-solid heat transfer is 
modeled by convective flow between the filtered gas and solid temperatures. These 
temperatures are the resolved temperatures in a two-temperature model. The convective 
coefficient is evaluated by a Nusselt number correlation. Correct extraction of the correlation 
from the pore-scale simulation requires defining a statistical surface filter.      

 
 

4.1. Volume average of the steady-state fluid energy equation  
 

The REV is used as a spatial cut-off filter. Volume averaging over this volume allows 
the flow to be described with the average temperatures of the phases. These average 
temperatures are the filtered temperatures in the volume averaging method [16]. The detail of 
the subgrid geometry is no longer available. Therefore, each phase is considered as a continuous 

Fig. 3 Nusselt numbers for a single sphere in a uniform 
 flow as a function of the Reynolds number 
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phase. Using the standard form of the spatial averaging operator, the volume average of any 
fluid function 𝜓 is written: 

〈𝜓 〉  =
1

𝑉
𝜓 𝑑𝑉

 

 (15)   

where 𝑉  represents the volume of the fluid phase and 𝑉 the global volume. In addition, the 
intrinsic average can be defined as: 

〈𝜓 〉  =
1

𝑉
𝜓 𝑑𝑉

 

 (16)   

The superficial and intrinsic averages are related by the fluid volume fraction 𝜀 = 𝑉 / 𝑉: 
 

〈𝜓 〉  =  𝜀 〈𝜓 〉   (17)   
 
We also introduce the decomposition given by Gray [44]: 

 
𝜓  =  〈𝜓 〉 + 𝜓   (18)   

 
We apply the spatial averaging operator to the solved steady state fluid energy equation (1). 
Using the averaging theorem [45] which is a spatial form of the Leibniz integral rule, the filtered 
equation is written as follows: 
 

∇ ⋅ 〈𝒖𝑇 〉 +
1

𝑉
(𝒖𝑇 ) ∙ 𝑑𝑨

 

 = 𝑎 ∇ ⋅  〈∇𝑇 〉  +
𝑎

𝑉
 ∇𝑇 ∙  𝑑𝑨

 

(19)   

 
𝑎 =  𝑘 /(𝜌 𝐶 ) is the thermal diffusivity and 𝐴  is the solid-fluid surface interface. 

 
In the case of a fixed assembly, the velocity at solid-fluid interface is zero which leads to: 
 

∇ ⋅ 〈𝒖𝑇 〉  = 𝑎 ∇ ⋅  〈∇𝑇 〉  +
𝑎

𝑉
 ∇𝑇 ∙  𝑑𝑨

 

(20) 

 
Using Gray's decomposition, equation (20) writes: 
 

∇ ⋅ 〈𝒖𝑇 〉 = 𝑎 ∇ ⋅  〈∇𝑇 〉  +
𝑎

𝑉
 〈∇𝑇 〉  ∙ 𝑑𝑨 

 

+
𝑎

𝑉
 𝛻𝑇  ∙ 𝑑𝑨 

 

(21) 

 
 
According to [16], equation (21) can be simplified as follows: 
 

∇ ⋅ 〈𝒖𝑇 〉 = 𝑎 ∇ ⋅  〈∇𝑇 〉 − 𝑎 ∇𝜀 〈∇𝑇 〉 +
𝑎

𝑉
 𝛻𝑇  ∙ 𝑑𝑨 

 

(22) 

 
Assuming no porosity gradient, i.e. ∇𝜀 = 0, equation (22) writes: 
 

∇ ⋅ 〈𝒖𝑇 〉 = 𝑎 ∇ ⋅  〈∇𝑇 〉 +
𝑎

𝑉
 𝛻𝑇  ∙ 𝑑𝑨 

 

(23) 

 
However, the evaluate of the divergence of the volume averaged value requires the use of 
several contiguous representative elementary volumes. To overcome this problem, we define a 
statistical surface filter in the Section 4.2. Thus, the differential operator of the filtered variable 
can be defined on a single REV. 
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4.2. Statistical surface filter 
 

Fig. 4 shows a cross-section of the REV through YZ plane. The global area of the cross-
section is 𝐴 = 𝐿 × 𝐿. The global area 𝐴 is the sum of the solid area and the fluid area noted 𝐴 .  

 

 
 

Fig. 4 Cross-section of the REV through YZ plane at x 

Unlike the global area, the fluid area depends on the 𝑥 location. Moreover, for several packing 
realizations at the same 𝑥 position, the fluid area is not necessarily the same. Then, the fluid 
area is a function of the 𝜔 realization and the 𝑥 position 𝐴 (𝜔, 𝑥). Nevertheless, as pointed out 
by [23], the average over several realizations of the ratio of the global area to the fluid area 
converges to the fluid porosity. Indeed, the fluid porosity corresponds to the probability of fluid 
presence. This is expressed by equation (24) where 𝑁 is the number of realizations. 
 

                               1 =  
1

𝑁

1

𝐴
1𝑑𝐴

 

=  𝜀𝑓                        ∀𝑥 (24) 

 
where the statistical surface filter is defined as: 
 

𝜓  (𝑥) =  
1

𝑁

1

𝐴
𝜓 (𝜔)𝑑𝐴

 

(25) 

 
Recalling that the probability of fluid presence can be expressed by the volume filter as follows: 
 

〈1〉 =
1

𝑉
1𝑑𝑉

 

 =  𝜀𝑓 (26) 

 
The statistical surface filter and the volume filter follow a form of ergodicity. The ensemble 
average of the surface filter is equivalent to the ensemble average of a REV. The filtered values 
can be considered equal.  
We define the following decomposition: 
 

𝜓 (𝑥, 𝑦, 𝑧) = 𝜓   (𝑥) + 𝜓 (𝑥, 𝑦, 𝑧) (27) 
 
4.3. Statistical surface filtering of the steady-state fluid energy equation 
 

The demonstration of the spatial averaging theorem is based on the Leibniz’s rule. The 
proof in [16] can be extend to our surface average case. We use the same approach. Let us 
define 𝑠 as the distance along any line included in a porous media cross-section illustrated in 
Fig. 5 and 𝜓  as a fluid function. 
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We consider the following derivative: 
 
 

𝑑

𝑑𝑠
𝜓

 

𝑑𝐴 = lim
→

∫ 𝜓
 

( ∆ )
𝑑𝐴 − ∫ 𝜓

 

( )
𝑑𝐴

∆𝑠
(28) 

 

 
 

 
 
 
Defining 𝝉 as a unit vector tangent to the line included in the cross-section, then, 
 

𝑑

𝑑𝑠
= 𝝉 ∙ ∇ (29)

 
 

 
 
We can define the variation of the surface as: 
 

𝑑𝐴

𝑑𝑠
= 𝝉 ∙

∇A

‖∇A‖
‖∇A‖ = 𝝉 ∙ 𝒏  𝑑𝑙 (30) 

 
∆𝐴 = 𝝉 ∙ 𝒏  𝑑𝑙 ∆𝑠 (31) 

Fig. 5 Averaging surface in a porous media cross-section 

Fig. 6 Differential displacement of the averaging surface 
in a porous media cross-section 
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𝒏   is the unit normal of the surface boundary as shown in Fig. 5. Fig. 6 shows the two 
averaging surfaces 𝐴(𝑠) and 𝐴(𝑠 + ∆𝑠). The intersection of 𝐴 (𝑠 + ∆𝑠) and 𝐴 (𝑠) in equation (28) 
can be remove. Then, the no-overlapping area is provided by equation (31). Therefore, we 
replace the surface integral by a linear integral: 
 
 

𝑑

𝑑𝑠
𝜓

 

𝑑𝐴 = 𝝉 ∙ 𝒏  𝜓 𝑑𝑙 
 

(32) 

 
 
Γ  is the surface boundary illustrated in Fig. 5. Using the equation (29), equation (32) writes: 
 

∇ 𝜓
 

𝑑𝐴 = 𝒏  𝜓 𝑑𝑙 
 

(33) 

 
The closed fluid surface boundary is composed of a fluid to fluid boundary and a fluid to solid 
boundary. Integrate a fluid variable 𝜓  on the surface boundary Γ  corresponds to integrate the 
variable on the fluid to fluid boundary as 𝜓  is zero inside the solid. The fluid to solid boundary 
is Γ  with a normal vector 𝒏  as depicted in Fig. 5. According to the defined closed fluid 
surface, we use the 2D divergence theorem to express the right-hand side of the equation (33) 
as: 
 

𝒏  𝜓 𝑑𝑙 
 

= ∇𝜓
 

𝑑𝐴 −  𝒏  𝜓 𝑑𝑙 
 

(34) 

  
Then, equation 33 can be write: 
 

∇ 𝜓
 

𝑑𝐴 = ∇𝜓 𝑑𝑙 
 

− 𝒏  𝜓 𝑑𝑙 
 

(35) 

 
 
Using the filter notation, we find the classical form of the spatial averaging theorem, derived 
here for our statistical surface filter, with 𝒅𝒍 = 𝒏  𝑑𝑙: 
 

∇𝜓 = ∇𝜓 + 𝜓 𝒅𝒍 
 

(36) 

 
Therefore, applying the statistical surface filter to the fluid energy equation leads to: 
 

∇ ⋅ 𝒖𝑇 = 𝑎 ∇ ⋅  ∇𝑇 +
𝑎

𝐴
∇𝑇 ∙

 

𝑑𝒍 (37) 

 
The statistical surface filtered variables are a function of the single variable 𝑥, then, the equation 
(37) writes: 
 
 

𝑑𝑢 𝑇

𝑑𝑥
= 𝑎

𝑑∇ 𝑇

𝑑𝑥
+

𝑎

𝐴
∇𝑇 ∙

 

𝑑𝒍 (38) 
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Using the mixing-cup temperature definition: 
 

𝑇 =
𝑢 𝑇

𝑢
(39) 

 
 

𝑑𝑇

𝑑𝑥
=

𝑎

𝑢

𝑑∇ 𝑇

𝑑𝑥
( )   

+
𝑎

𝐴𝑢
∇𝑇 ∙

 

𝑑𝒍

( )   

(40) 

 
The equation (40) contains two unclosed terms: (1) the mean axial conduction and (2) the gas-
solid heat transfer. We need to neglect the mean axial condition to compute gas-solid heat 
transfer term from the streamwise evolution of the mixing-cup temperature. The condition 
requires to neglect mean axial condition term is expressed in the section 4.4. 
 
4.4. Condition to neglect mean axial conduction 
 

 
We proceed to an adimensional scaling of the equation (40), defining: 

 

𝑇 ∗ =
𝑇

𝑇 ,

          𝛻𝑇
∗

=
∫  𝛻𝑇  ∙ 𝑑𝒍 

 

𝑇 (0) − 𝑇 (𝐿)
𝐿

𝑃

        ∇ 𝑇
∗

=
∇ 𝑇

𝑇 (0) − 𝑇 (𝐿)
𝐿

(41) 

 
𝑃 is the perimeter of the gas-solid interface in the cross-section. Then, the equation (40) 
becomes: 
 
 

𝑑𝑇 ∗

𝑑𝑥
=

𝑎

𝑢

𝑇 (0) − 𝑇 (𝐿)

𝐿

𝑑  ∇ 𝑇
∗

𝑑𝑥
+

𝑎

𝑢

𝑇 (0) − 𝑇 (𝐿)

𝐿

𝑃

𝐴
𝛻𝑇

∗
(42) 

 
 
The mean axial conduction can be negleted if  𝑃/𝐴 >> 1, and according to [22]: 
 

𝑃
𝐴

=
6𝜋𝜀

4𝐷
≫ 1 (43) 

 
 
The condition (43) states that the gas-solid heat transfer is dominant in equation (40), as long 
as the REV describes a porous medium, i.e. a fluid volume containing several solid inclusions. 
Then, the interface perimeter is larger than the total surface area. 
 
 
4.5. Evaluating Nusselt numbers to model pore-scale gas-solid heat transfer 
 

Neglecting the mean axial conduction, the filtered fluid energy equation (40) writes: 
 

𝑑𝑇

𝑑𝑥
=

𝑎

𝐴𝑢
∇𝑇 ∙

 

𝑑𝒍 (44) 
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Following the heuristic approach, we modeled the integral term as a convective flux, with a 
convective coefficient ℎ : 
 

𝑘 ∇𝑇 ∙
 

𝑑𝒍 =  −ℎ𝑚𝑃(𝑇 − 𝑇 ) (45) 

 
Then, the equation (44) writes: 
 

𝑑𝑇

𝑑𝑥
= −

𝑁𝑢

𝑃𝑒

𝑃

𝐴
(𝑇 − 𝑇 ) (46) 

 
 
𝑃𝑒 = 𝑢 𝐷/𝑎  is the Peclet number and 𝑁𝑢 = ℎ 𝐷/𝑘  is the Nusselt number where the convective 
coefficient is based on the mixing cup temperature. However, as pointed out by [22], in a two-
temperature model, the Nusselt number must be defined with the filtered temperature. Indeed, 
these are the solved temperatures. Equation (46) can be written in terms of filtered temperature, 
using the filtering rules: 

 

𝑑𝑇

𝑑𝑥
= −

𝑁𝑢

𝑃𝑒

𝑃

𝐴
𝑇 − 𝑇 −

𝑑
𝑢 𝑇
𝑢

𝑑𝑥
 

(47) 

 
𝑁𝑢 = ℎ𝐷/𝑘  is the Nusselt number defined in terms of the filtered temperature. The evolution of 
the filtered temperature in the flow direction depends on the thermal dispersion. Thus, heat 
transfer is not the only force driving the evolution of the filtered temperature. Thermal 
dispersion must therefore be expressed in terms of modeled convective flow to allow the 
derivation of the Nusselt number. This is done in [22] for the thermal ratio boundary condition. 
Instead, the proposed thermal offset boundary condition, section 3.2, imposes an equality of 
fluctuations along the streamwise direction, thus: 
 

𝑑
𝑢 𝑇
𝑢

𝑑𝑥
= 0 (48)

 

Then, 
 

𝑑𝑇

𝑑𝑥
= −

𝑁𝑢

𝑃𝑒

𝑃

𝐴
𝑇 − 𝑇 (49)

 
 

 
So, the Nusselt numbers can be evaluated as: 
 

𝑁𝑢 =
1

𝑁

1

𝑁

𝐷 ∫ 𝛻𝑇  ∙ 𝑑𝒍 

𝑃(𝑇 − 𝑇 )
(50) 

 

𝑁𝑢 =
1

𝑁

1

𝑁

𝐷 ∫ 𝛻𝑇  ∙ 𝑑𝒍 

𝑃(𝑇 − 𝑇 )
(51) 

 
 
𝑁  is the number of cross-section which is 250 for each realization 𝜔. 



16 
 

5. Results 
 

The proposed upscaling method is based on the extraction of Nusselt numbers using a 
statistical surface filter applied to pore-scale simulations. First, we verify that the thermal offset 
boundary condition expressed in Section 3.2 leads to a statistically quasi-homogeneous Nusselt 
number in the streamwise direction. Second, we establish the mesh convergence of the Nusselt 
number value extracted from a packing realization simulation. We also establish the statistical 
convergence of the Nusselt number extracted from several packing realizations. Finally, we 
discuss the global flow characteristics and correlations of the Nusselt number. 

 
 

5.1. Streamwise Nusselt number behavior 
 

As pointed out by [23], the Nusselt number should be statistically homogeneous. Then, in 
the equations (46) and (49), the Nusselt number is a constant. Fig. 7 shows the variation of the 
average Nusselt number (equation (51)) with the streamwise direction for 5 realizations of 
packing with 𝜀 = 0.8 for Rep = 10  (Fig. 7 (a)) and Rep = 100 (Fig. 7 (b)). On the first six 
sections, the average value of the Nusselt number is higher than on the other sections. The 
average Nusselt number from 5 realizations shows some variation along the streamwise 
direction. As pointed out by [23], this is due to the small number of realizations.  

 
 
 

 

 
 
 
By increasing the number of realizations to 18, the average Nusselt number is almost 

constant along the streamwise direction as shown on Fig. 8. However, the higher average 
Nusselt number over the first 6 cross-sections remains. Still, the relative error introduces by the 
6 cross-sections, estimated from present results, is about 2%. The Nusselt number can be 
considered as constant and the equation (50) and (51) can be used. 

 
 

(a) (b) 

Fig. 7 Variation of the average Nusselt number in the streamwise direction. Symbols indicate average Nusselt 
number and error bars indicate 95% confidence intervals [46]. Only 125 cross-sections are shown for better 
visualization. (a) 𝑅𝑒 = 10  𝜀 = 0.8 for 5 realizations  (b) 𝑅𝑒 = 100  𝜀 = 0.8 for 5 realizations   
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5.2. Mesh convergence 
 

We used uniform grid resolution ∆𝑥 = ∆𝑦 = ∆𝑧. We performed several simulations with 
different grid resolutions on the same packing for the same Reynolds number ( ε =

0.8 and  Re = 100). Fig. 9 (a) shows the convergence of the Nusselt number based on mixing-
cup temperature. Fig. 9 (b) shows the convergence of the Nusselt number based on filtered 
temperature. Both Nusselt numbers converge to an asymptotic value starting at 𝐷/∆𝑥 =  50. The 
relative error between the coarsest grid and the finest one is about 8% and 5% for 𝑁𝑢  and 𝑁𝑢 
respectively. Therefore, all simulations in Table 1 are performed with grid resolution 𝐷/∆𝑥 =
 50. 
 
 

5.3. Average convergence 
 

We performed several packing configurations (𝜔) for Re = 10 and  ε = 0.8 with the 
grid resolution 𝐷/∆𝑥 =  50.  Fig. 10 shows the statistical convergence of the average Nusselt 

(a) (b) 

Fig. 9 (a) Nusselt number based on mixing-cup temperature convergence with grid resolution for  𝜀 = 0.8  𝑅𝑒 =

100. 𝐷/∆𝑥 is the sphere diameter over the grid size. (b) Nusselt number based on filtered temperature convergence 
with grid resolution for  𝜀 = 0.8  𝑅𝑒 = 100. 

Fig. 8 Variation of the average Nusselt number in the 
streamwise direction. Symbols indicate average Nusselt 
number and error bars indicate 95% confidence intervals 
[46].  𝑅𝑒 = 10  𝜀 = 0.8 for 18 realizations   
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number for mixing-cup temperature and filtered temperature. The convergence is achieved with 
35 configurations. The confidence interval is calculated using the Student’s t-distribution [46]. 
The confidence interval decreases sharply between 5 and 15 configurations. Therefore, we 
choose a compromise between accuracy and number of simulations, namely 8 configurations. 

 
5.4. Global temperature and velocity field 

 
Fig. 11 shows the evolution of the scaled temperature defined as: 
 

𝑇𝑠𝑐𝑎𝑙𝑒 =
𝑇𝑓 − 𝑇𝑠

𝑇𝑚,𝑖 − 𝑇𝑠
(52) 

 
The temperature field shows similar behavior for the different Reynolds numbers considered. 
However, for  𝑅𝑒 = 20, the temperature decreases quickly with the axial coordinate. The fluid-
solid system approaches equilibrium. As shown in [23], for  𝜀 < 0.6  and  𝑅𝑒 < 10 the average 
fluid temperature decays over a particle diameter. For these systems, other closure method for 
the gas-solid heat transfer should be used.  

 

Fig. 10 (a) Nusselt number based on the mixing-cup temperature statistical convergence, i.e. with the number of 
configurations, for the case 𝑅𝑒 = 10  𝜀 = 0.8. (b) Nusselt number based on the filtered temperature statistical 
convergence for the case 𝑅𝑒 = 10  𝜀 = 0.8  Square symbols indicate average Nusselt number and error bars 
indicate 95% confidence intervals. 

(a) (b) 

(a) (b) (c) 
Fig. 11 Scaled temperature evolution in a cross-section plane for  𝜀 = 0.6 at several Reynolds number (a) 𝑅𝑒 = 20 (b) 𝑅𝑒 = 50

(c)  𝑅𝑒 = 100 (in color) 
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As shown by the scaled velocity norm (‖𝑈 ‖ = ‖𝒖‖/𝑅𝑒 ) field in Fig. 12, the flow structure 
remains essentially the same for these Reynolds numbers. For higher Reynolds numbers, 
smaller length scales can be noticed on the velocity norm. This can be clearly seen by observing 
the change between Reynolds numbers in the lower right corner of the figures. 

 

 
5.5. Nusselt number based on the mixing-cup temperature 

 
A widely used Nusselt number correlation for modeling heat transfer in packed beds is 

the Gunn correlation. This correlation was derived from four asymptotic relationships and 
experimental evidence for the dependence of the Nusselt number on porosity. The analysis is 
based on statistical properties of the flow. The fixed bed is considered as an assembly of flow 
channels. Each flow channel has a central point, and a radial vector of length 𝜂 can be defined 
from this point. The fluid surface distribution is a function of 𝜂. Then, the statistical presence 
of the flow surface is introduced by a probability density distribution. This probability density 
function is independent of the streamwise coordinate. The heat transport equation is then written 
in the streamwise and the radial coordinates. Considering that the pore scale convection term 
can be decomposed as follows: 
 
 

1

𝑢

𝜕𝑢 𝑇

𝜕𝑥
=

𝑑𝑇

𝑑𝑥
+

𝑑
𝑢 𝑇
𝑢

𝑑𝑥
 

(53) 

 
Since the probability density function of fluid area does not depend on the coordinate in the 
streamwise direction, thermal mixing does not occur in this direction. For the thermal offset 
boundary condition, the thermal mixing term is also zero. Therefore, our pore-scale simulation 
leads to the same prediction of the temperature evolution of the mixing cup. Therefore, we 
expect similar results between the Gunn correlation prediction and our extracted Nusselt 
number. The correlation of the Gunn's Nusselt number is written as follows: 

 
 

𝑁𝑢 = 7 − 10𝜀 + 5𝜀 1 + 0.7𝑅𝑒 . 𝑃𝑟 + (1.33 − 2.4𝜀 + 1.2𝜀 )𝑅𝑒 . 𝑃𝑟 (54) 

 
 

(a) (b) (c) 

Fig. 12 Scaled velocity norm field in a transversal plane for  𝜀 = 0.6 at several Reynolds number (a) 𝑅𝑒 = 20 (b) 𝑅𝑒 = 50

(c) 𝑅𝑒 = 100 (in color) 
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Fig. 13 shows the comparison between the Nusselt number derived from the pore-scale 
simulations and the Gunn correlation. As expected, a very good agreement is found between 
both. This demonstrates, as a validation, the ability of the new upscaling framework to 
reproduce well-known results for sphere packings. 

 
 
 

 
The results obtained in [22] use the thermal ratio boundary condition expressed in section 3.2, 
instead of the proposed thermal offset boundary condition. For thermal ratio boundary 
condition, the thermal mixing (equation 53) evolution is not zero. Therefore, the mixing-cup 
temperature evolution has a smaller value than for the thermal offset boundary condition and 
for the Gunn’s analysis. Thus, the Nusselt number (𝑁𝑢 ) calculated with the thermal ratio 
boundary condition is expected to be smaller than with the thermal offset boundary condition. 
The correlation of Sun writes: 
 
 

𝑁𝑢 = −0.46 + 1.77𝜀 + 0.69𝜀 /𝜀 + (1.37 − 2.4𝜀 + 1.2𝜀 )𝑅𝑒 . 𝑃𝑟 (55) 

 
 
Fig. 14 shows the comparison between the Nusselt number extracted from the current pore-
scale simulation with the Gunn correlation, Sun correlation, and PR-DNS results. As expected, 
the Nusselt number based on mixing-cup temperature predicted in [22] is lower than that of the 
Gunn correlation or our results. Both thermal boundary conditions respect the introduction of a 
constant energy flux in the pore-scale simulation. However, the thermal ratio condition 
introduces a thermal mixing effect on the mixing-cup temperature.  
 

Fig. 13 Dependency of the Nusselt number based on mixing-cup 
temperature on the Reynolds number. The symbols are the pore-scale 
simulations results and the error bars indicate 95% confidence 
intervals. The lines are obtained from Gunn’s correlation. 
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5.6. Nusselt number based on the filtered temperature 
 

Sun’s correlation for the Nusselt number based on the mixing-cup temperature can be 
derived for the Nusselt number based on the filtered temperature. This is done by using the 
correlation of the average scaled fluid temperature from [22]: 
 
 

𝑁𝑢 =
−0.46 + 1.77𝜀 + 0.69𝜀 /𝜀 + (1.37 − 2.4𝜀 + 1.2𝜀 )𝑅𝑒 . 𝑃𝑟

1 − 1.6𝜀 𝜀 − 3𝜀 𝜀 exp (−𝑅𝑒 . 𝜀 )
(56) 

 
 
Considering the filtering rules and equation (47): 
 

𝑑𝑇

𝑑𝑥
=

𝑑𝑇

𝑑𝑥
+

𝑑
𝑢 𝑇
𝑢

𝑑𝑥
 

= −
𝑁𝑢

𝑃𝑒

𝑃

𝐴
𝑇 − 𝑇 (57) 

 
 
For both thermal (offset or ratio) boundary condition, the Nusselt number does not depend on 
the streamwise location. Therefore, the inhomogeneity in the mixing-cup temperature arises 
solely from the inhomogeneity of the filtered temperature.  
According to [22], the thermal ratio boundary condition leads to a statistically homogeneous 
scaled fluid temperature: 
 

𝑑�̅�

𝑑𝑥
=

𝑑

𝑑𝑥

𝑇 − 𝑇

𝑇 − 𝑇
= 0 (58) 

 
 

Fig. 14 Dependency of the Nusselt number based on 
mixing-cup temperature on the Reynolds number. The 
triangle symbols are the pore-scale results and the error 
bars indicate 95% confidence intervals. The circle symbols 
are the data from Sun et al. [22]. The lines are obtained
from the Sun and the Gunn correlations 
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Then,  
𝑑𝑇

𝑑𝑥
=

1

�̅�

𝑑𝑇

𝑑𝑥
(59) 

 
Introducing equation (59) in equation (57) leads to: 
 

𝑑
𝑢 𝑇
𝑢

𝑑𝑥
=

(1 − �̅�)

�̅�

𝑑𝑇

𝑑𝑥
(60)

 

 

 
The thermal ratio boundary condition enforces a relationship between the thermal dispersion 
and the evolution of the filtering temperature. Then, equation (57) can be write in terms of the 
evolution of the filtered temperature: 
 

𝑑𝑇

𝑑𝑥
= −�̅�

𝑁𝑢

𝑃𝑒

𝑃

𝐴
𝑇 − 𝑇 (61) 

 
For the present offset boundary condition, the thermal dispersion is zero. Then, the evolution 
of the filtering temperature writes: 
 

𝑑𝑇

𝑑𝑥
= −

𝑁𝑢

𝑃𝑒

𝑃

𝐴
𝑇 − 𝑇 (62)

 
 

 
The solutions to equation (61) and (62) write respectively, with 𝛼 = 𝑃/(𝑃𝑒𝐴): 
 

𝜑 =
𝑇 − 𝑇

𝑇 (0) − 𝑇
= 𝑒 (63) 

 

𝜑 =
𝑇 − 𝑇

𝑇 (0) − 𝑇
= 𝑒 (64) 

 

 
Fig. 15 Evolution of the non-dimensional filtered 
temperature in the streamwise direction for 𝜀 =

0.6 𝑅𝑒 = 100. Lines are the exponential models. 
Triangle symbols are the Sun et al. [35] results and circle 
are present results. 
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Fig. 15 shows the evolution of the non-dimensional filtered temperature for thermal ratio (Sun 
et al. results) and thermal offset boundary condition (present results), as well as the 
corresponding exponential model. The thermal ratio boundary condition leads to a lower 
exponential decay of the non-dimensional filtered value. This is due to the thermal dispersion 
term which is non-zero in this case. The thermal dispersion reduces the temperature gradient, 
which reduces the heat transfer. Therefore, the decay of the non-dimensional filtered value is 
lower. However, since the inhomogeneity in the mixing-cup temperature arises solely from the 
inhomogeneity of the filtered temperature, and the thermal dispersion is related to the filtered 
temperature both thermal conditions lead to the same prediction of the Nusselt number. Fig. 16 
shows Sun’s correlation extended to higher solid volume fractions 𝜀 > 0.5 and compared to 
our pore-scale results. Very good agreement is found between the Sun correlation and our 
results, even for the extended part. 
 
 

6. Discussions 
 
Several authors [47] [48] [28] [22] who derived Nusselt number from pore-scale simulations 

have claimed that the Gunn model overestimates the Nusselt number. However, our work shows 
that we must distinguish the Nusselt number calculated based on the mixing-cup temperature, 
𝑁𝑢  , from that calculated based on the filtered temperature, 𝑁𝑢. The Nusselt number 
calculated based on the filtered temperature is the only valid number to use with the filtered 
temperature in the two-temperature model. As highlighted in this work, 𝑁𝑢  values extracted 

from the pore-scale simulations depend on the velocity and temperature boundary conditions. 
This is the reason for the observed differences between Gunn's correlation and the correlations 
extracted from other work. Using Gunn’s Nusselt number correlation for two-temperature 
model leads to the evaluation of 𝑁𝑢  which, according to our results and those of Sun et al. 
[22], is lower than the valid 𝑁𝑢 to be used with the filtered temperature. Fig. 17 shows the 
comparison of the dependence of 𝑁𝑢  and 𝑁𝑢 on the Reynolds number. 𝑁𝑢  is weaker than 
𝑁𝑢. Furthermore, this behavior is more pronounced as the solid volume fraction 𝜀  increases. 

Fig. 16 Dependency of the Nusselt number based on filtered 
temperature on the Reynolds number. The symbols are the pore-
scale results and the error bars indicate 95% confidence intervals. 
The lines are obtained from Sun’s correlation which is extended 
here to cases where 𝜀 > 0.5. 
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Thus, using the Nusselt number from the Gunn correlation in a two-temperature model leads to 
an underestimation of the heat transfer between phases. 

 
 

 
 

In case of fluidized beds, the movement of the particles carrying their temperature 
should modifies the evolution of the filtered temperature. One way to take this phenomenon 
into account would probably be to introduce a statistical treatment of the particles motion. 
Nevertheless, as reported in [22], there is no mean velocity gradient in the hydrodynamic 
problem. This suggests that in a statistical sense, the particle motion would have no impact on 
the evolution of the filtered temperature.  

 
This work proposes an evaluation method for the Schuman two-temperature model [15]: 

  
𝜕〈𝑇 〉

𝜕𝑡
+ ∇ ∙ 〈𝒖〉 〈𝑇 〉 =  −

𝑁𝑢 𝑎 𝐴

𝐷 𝑉𝑓
(〈𝑇 〉 − 𝑇 ) (65) 

 
 

𝜕〈𝑇 〉

𝜕𝑡
=  

𝑁𝑢 𝑎 𝐴

𝐷 𝑉𝑠
(〈𝑇 〉 − 𝑇 ) (66) 

 
 
For sphere packing, the Nusselt number can be evaluated with the Sun correlation (equation 
56). The present work has shown that this correlation can be extented to dense sphere packings. 
However, the proposed upscaling framework is not limited to sphere packing. The method can 
be used to evaluate Nusselt number for other types of assembly.  
 
 
 

Fig. 17 Comparison between the Nusselt number based 
on filtered temperature 𝑁𝑢 from the Sun et al. [22]
correlation extended to case 𝜀 > 0.5 and the Nusselt 
number based on the mixing-cup temperature  𝑁𝑢  from 
the Gunn’s correlation. 



25 
 

It should be noted that the mean conduction is neglected as suggested by the 
adimensional scaling in Section 4.4. We recall that the fluid mean conduction writes as follows: 
 
 

𝑎 ∇ ⋅  〈∇𝑇 〉 =  𝑎   ∇ 〈𝑇 〉

( )

+
𝑎

𝑉
 𝛻 ∙ 𝑇 ∙

 

𝑑𝑨

( )

(67)
 

 
Then, neglecting fluid mean conduction leads to neglect diffusion and tortuosity terms as 
defined by D’Hueppe [10]. We assume that the same hypotheses can be done for solid mean 
conductivity. The current upscaling framework is restricted to cases where solid thermal 
response is much larger than fluid thermal response. This is usually the case for gas-solid flow. 
However, for high pressure, the fluid thermal response can increase significantly. In this case, 
a correct description would involve a coupled solution. However, these unsteady simulations 
are expected to be quite computationally expensive.  

 
7. Conclusions 
 

A new upscaling framework was derived to evaluate the Nusselt number from pore-scale 
simulations of gas-solid heat transfer in a packed bed. A robust thermal boundary condition of 
heat offset was developed to achieve Nusselt number evaluation even for high solid volume 
fractions 𝜀 > 0.5 . The distinction between Nusselt number based on mixing-cup temperature 
and filtered temperature was explained. Hence, we have shown that the valid Nusselt number 
to be used with the two-temperature model is the Nusselt number based on the filtered 
temperature. The result of the pore-scale simulations for the mixing-cup Nusselt number shows 
good agreement with the Gunn correlation. In addition, the results for filtered temperature 
Nusselt number show good agreement with the Sun correlation. For comparison purpose the 
Sun correlation was extended to higher solid volume fractions than in the original work. The 
correlation behavior is the same as the present results. This demonstrates the validity of the 
Sun’s correlation for higher solid porosity. Thus, the upscaling method has been successfully 
applied to sphere packings and can be applied to other types of assemblies. This result has 
practical application to improve the evaluation of heat transfer with the two-temperature model 
with classical fixed bed solid volume fraction 𝜀 ≅ 0.6.  
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