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MODEL ADAPTATION FOR NON-LINEAR ELLIPTIC EQUATIONS IN MIXED
FORM: EXISTENCE OF SOLUTIONS AND NUMERICAL STRATEGIES

Alessio Fumagalli1,* and Francesco Saverio Patacchini2

Abstract. Depending on the physical and geometrical properties of a given porous medium, fluid
flow can behave differently, going from a slow Darcian regime to more complicated Brinkman or even
Forchheimer regimes for high velocity. The main problem is to determine where in the medium one
regime is more adequate than others. In order to determine the low-speed and high-speed regions, this
work proposes an adaptive strategy which is based on selecting the appropriate constitutive law linking
velocity and pressure according to a threshold criterion on the magnitude of the fluid velocity itself.
Both theoretical and numerical aspects are considered and investigated, showing the potentiality of
the proposed approach. From the analytical viewpoint, we show existence of weak solutions to such
model under reasonable hypotheses on the constitutive laws. To this end, we use a variational approach
identifying solutions with minimizers of an underlying energy functional. From the numerical viewpoint,
we propose a one-dimensional algorithm which tracks the transition zone between the low- and high-
speed regions. By running numerical experiments using this algorithm, we illustrate some interesting
behaviors of our adaptive model on academic cases and on small networks of intersecting fractures.
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1. Introduction

Porous media are found in many applications related to the exploitation of the underground for energy
management and extraction. The void space between the rock grains is filled by one or more fluids which move
at relatively high of low speed, depending on many factors. Because of subsequent mineralization by chemical
reactions, the void space of a porous medium may be partially or completely filled by additional material,
substantially altering its physical properties and changing the fluid circulation. Additional rock deformation
may change even more the hydraulic properties of the medium by, e.g., compacting the grain and leaving less
free space for the fluid. A noticeable example of this is a fractured porous medium since fractures may have
substantially different properties from the surrounding rock matrix and thus be more or less favourable to fluid
circulation.

Keywords and phrases. Adaptive constitutive law, elliptic equation, fractured porous media, non-linearity, variational
formulation.
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Depending on several aspects, e.g., the micro-structure and hydraulic aperture in the case of a fracture,
the flow can be classified into different regimes corresponding to increasing flow rates and thus increasing
mathematical and numerical difficulties. In many applications for low flow rates, caused by a combination of
filling materials and a relatively low-pressure gradient, Darcy flow can be considered. Most of the research so far
has been focused on this flow model; however, its validity is questionable and, to a large extent, it is insufficient
for real problems. For increased flow rates, for example when a fracture is a variably open and narrow channel
or the packaging of grains is too coarse, viscous effects become important and a Brinkman or Stokes equation is
more coherent as a model to describe the flow; see [25,32]. Finally for high velocities, because of inertial effects,
experiments show deviations from the previous models, which indicates the need for a non-linear correction term.
For a fractured porous medium, the authors in [16,21] proposed a reduced model based on a Darcy–Forchheimer
flow to capture this phenomenon. This effect is even more evident in large objects like faults, spanning several
hundreds of meters.

Depending on its nature, a porous medium may exhibit all flow regimes in different regions separated by
transition zones and coupled by suitable conditions. The transition zones can be located using the Forchheimer
and Reynolds numbers (see [36]), which depend on the water velocity. This is the setting for the present paper,
where the positions of the transition zones are not fixed at the outset of the problem: we obtain a (multi-
physics) non-linear, free-boundary problem on the porous medium. We present a mathematical framework that
is able to adapt the constitutive law in accordance with the flow regime. As a simplification, we assume that
only two laws, i.e., two speed regimes, can be prescribed, leaving the case of multiple laws as a future work. A
theoretical analysis is developed along with a numerical algorithm that tracks the transition zone. Theoretically,
we show existence of solutions to our problem via the minimization of an underlying energy in the case when
no derivatives are involved in the laws (thus excluding Stokes’ and Brinkman’s cases, which would require a
different analysis left here for later work). This underlying energy is derived as it is classical in variational
methods for PDEs; see for instance [26,34]. For related time-dependent problems involving the minimization of
a free energy giving rise to a gradient flow structure, we refer the reader to [11, 27]. Moreover, for a thorough
overview of analytical aspects of porous medium equations, with and without time dependence, see [35], and
for an example of existence and uniqueness theory of non-linear Darcy-like equations, see [5]. We do not show
uniqueness since we only have that minimizers of the energy form a subset of the solution set of the original
problem. We show that the convex nature of the problem is strongly intertwined with the “direction” of the
jump between the high-speed and low-speed laws; indeed, if the permeability increases from low- to high-speed
the problem is non-convex, otherwise it is convex. In the former case we are forced to restrict our existence
result to one space dimension (𝑑 = 1). Numerically, the examples we give, first in an academic setting made of
only one-dimensional domains and then in a simplified fracture network, illustrate the quality and applicability
of the proposed algorithm, especially in the non-convex case. In the convex case, which is the analytically more
favorable one, the algorithm often features oscillations between configurations which prevents it from converging.
For the numerical simulations we used the library PorePy [20], a simulation tool written in Python for fractured
and deformable porous media which is freely available on GitHub along with the numerical tests proposed in
this work.

The paper is organized as follows. In Section 2 we describe our model and introduce the equations as well
as some notation. In Section 3 we give the rigorous mathematical setting, along with the assumptions on the
constitutive laws and the weak formulation of the problem. Section 4 is dedicated to our results on the existence
of solutions and their proofs. Section 5 introduces the discrete formulation of the problem and a suitable
algorithm to solve it. Numerical examples are reported in Section 6 for increasing geometrical and physical
complexity. The work finishes with conclusions in Section 7.

2. Proposed model

We identify the porous medium with an open, bounded, connected set Ω ⊂ R𝑑 with Lipschitz boundary 𝜕Ω.
We suppose Ω is filled with a fluid of constant density 𝜌. A general constitutive relation coupled with the mass
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conservation in Ω reads

Λ(𝑢) = −∇𝑝+ 𝑓 , (2.1)
div𝑢 = 𝑞, (2.2)

where 𝑢 : Ω → R𝑑 is the unknown velocity of the fluid, 𝑝 : Ω → R is the unknown pressure of the fluid, 𝑞 : Ω → R
a given source term allowing, for instance, for fluid mass to be exchanged between fractures or wells and the
surrounding porous medium, or rock matrix, and 𝑓 is a given body force (e.g., gravity). Equation (2.1) is a law
between the velocity field 𝑢 and the pressure field 𝑝 via some operator Λ. Let Σv,Σp ⊂ 𝜕Ω be relatively open
in 𝜕Ω (i.e., Σv and Σp are each the intersection of an open subset of R𝑑 with 𝜕Ω) and such that 𝜕Ω = Σv ∪ Σp

and Σv ∩ Σp = ∅. To (2.2) we add the following boundary conditions:{︃
𝑢 · 𝑛 = 𝑢0 on Σv,

𝑝 = 𝑝0 on Σp,
(2.3)

where 𝑛 is the outward normal unit vector of 𝜕Ω. Here, 𝑢0 : Σv → R and 𝑝0 : Σp → R are given functions
setting the conditions on the boundary on 𝑢 and 𝑝, respectively. We are denoting maps on Ω and their traces
on the boundary 𝜕Ω by the same notation.

2.1. Velocity-pressure constitutive law

Examples of laws Λ relating velocity and pressure via (2.1) are

ΛS(𝑢) = −Δ𝑢, ΛD(𝑢) = 𝐾−1𝑢,

ΛB(𝑢) = −Δ𝑢 + 𝐾−1𝑢, ΛDF(𝑢) = 𝐾−1𝑢 + 𝛼‖𝑢‖𝑟−2
𝑢, (2.4)

where 𝐾 : Ω → R𝑑×𝑑 is the permeability tensor and 𝛼 > 0 and 𝑟 ∈ [2,∞) some parameters. The notation
‖·‖ stands for the Euclidean norm on R𝑑. Choosing ΛS gives Stokes’ equation, ΛD gives Darcy’s equation, ΛB

gives Brinkman’s equation and ΛDF gives the generalized Darcy–Forchheimer equation (which simplifies into
the classical Darcy–Forchheimer when 𝑟 = 3).

To the authors’ knowledge, a known issue that has not yet found a documented answer is the case when one
needs to choose a combination of laws such as those given as examples in (2.4), rather than a single one, i.e.,
when one needs to couple different velocity-pressure laws according to some validity criterion which selects the
better-adapted law. As already mentioned in the introduction, this criterion should depend on the speed regime
(or Reynolds number) of the flow. For example, where the Reynolds number is low Darcy’s law ΛD may be
preferred, whereas where it is high the Darcy–Forchheimer law ΛDF might be a better choice. For this reason, in
this paper we consider the case where we need to choose from two laws Λ1 and Λ2 according to some threshold
speed �̄� > 0. We expect that generalizing our results to more than two laws (e.g., having a low-speed regime, a
transitional regime and a high-speed regime) should not be difficult. In this setting, the law operator in (2.1)
takes the form

Λ(𝑢) =

{︃
Λ1(𝑢) wherever ‖𝑢‖ < �̄�,

Λ2(𝑢) wherever ‖𝑢‖ > �̄�.
(2.5)

Being able to impose a law at the transition zone {‖𝑢‖ = �̄�} is out of the scope of this paper – we will therefore
consider our problem solved whenever we find a pressure field and a velocity field such that (2.2), (2.1) and (2.5)
hold (see Rem. 3.6 for a consequence of this choice on the problem of uniqueness of solutions). This summarizes
as in the following problem:

Problem 2.1 (Strong form). Find 𝑢 : Ω → R𝑑 and 𝑝 : Ω → R such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
div𝑢 = 𝑞 on Ω,
Λ(𝑢) = −∇𝑝+ 𝑓 on Ω,
𝑢 · 𝑛 = 𝑢0 on Σv,

𝑝 = 𝑝0 on Σp,
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where Λ is any law such as in (2.5).

Clearly, when Λ1 ̸= Λ2, this choice of adaptable law introduces a discontinuity at ‖𝑢‖ = �̄� which we shall
treat carefully when studying existence of solutions. Note that this discontinuity is not one coming from an a
priori physical subdivision of the domain, where different parts of Ω would be assigned different permeabilities,
but rather one stemming a posteriori from the velocity field itself. This makes our setting contrast with that
of inhomogeneous porous media, such as described by the Muskat problem in [18], by Darcy–Stokes interface
coupling problems in [4, 7] or fracture barrier problems in [24]. In Section 3.1 we will complete the strong
formulation in Problem 2.1, which is somewhat still formal since it lacks a law at the transition zone; indeed,
we will introduce a multi-valued weak setting so as to be able to treat the transition zone without imposing any
given law on it. We refer the reader to [12] for a multi-valued monotone operator approach for pressure-dependent
permeabilities; note that the operator therein is continuous in velocity.

Remark 2.2. Whenever the boundary piece Σp is such that Vol𝑑−1(Σp) = 0, where Vol𝑑−1 stands for the
(𝑑−1)-dimensional Lebesgue measure, in order to ensure uniqueness of the pressure field satisfying Problem 2.1
when Λ is a classical continuous law, as opposed to (2.5), one imposes a constraint on the average of the pressure
field:

1
|Ω|

∫︁
Ω

𝑝 = 𝜛, (2.6)

for some 𝜛 ∈ R, normally assumed null. We shall therefore impose (2.6) whenever Vol𝑑−1(Σp) = 0, so that our
problem in this case becomes: find functions 𝑢 and 𝑝 such that⎧⎪⎨⎪⎩

div𝑢 = 𝑞 on Ω,
Λ(𝑢) = −∇𝑝+ 𝑓 on Ω,
𝑢 · 𝑛 = 𝑢0 on 𝜕Ω,

under the constraint (2.6), where Λ is now given in (2.5). For ease of discussion, however, we will often omit
(2.6) and only refer to Problem 2.1 as being our problem, even when Vol𝑑−1(Σp) = 0; this average condition
will nevertheless be naturally encoded in our weak formulation.

As we will see, we focus in this paper on Darcy-like operator laws, in the sense that they involve no derivatives
of the velocity field, so that we need to exclude Stokes’ and Brinkman’s equations as admissible examples. Under
some additional conditions (depending in particular on the “direction” of the jump between laws Λ1 and Λ2 at
the transition zone), we show existence of solutions via the study of an energetic formulation of Problem 2.1.
Indeed, we are able to define an energy functional on the space of velocity fields whose minimizers satisfy (some
weak version of) Problem 2.1. Although we have uniqueness for this energetic formulation in some conditions (see
Sect. 4), this property does not transfer to Problem 2.1 – this is related to the treatment of the transition zone,
and one approach to circumvent this issue would be to show that the transition zone must have zero Lebesgue
measure so that it would not play a role in defining weak solutions. Remark 2.3 below shows, unfortunately, that
this is not the case in general. We will present in Remark 3.6 another potential approach to tackle uniqueness,
but which we do not explore further in this paper.

Remark 2.3. It is fair at this point to ask whether a transition zone can ever be of non-zero Lebesgue measure
and therefore be relevant in a weak setting. We give here a simple, but non-trivial, one-dimensional example
illustrating that this can happen. Suppose 𝑑 = 1, Ω = (0, 1), Vol0(Σp) = 0, 𝑢0 ≡ 0 and 𝑓 ≡ 0, and set the
threshold speed to �̄� = 1. Note that in this case, the velocity part of a strong solution (𝑢, 𝑝) to Problem 2.1 is
entirely determined independently of the chosen laws; indeed 𝑢 is the function defined by

𝑢(𝑥) =
∫︁ 𝑥

0

𝑞(𝑦) d𝑦 for all 𝑥 ∈ (0, 1).
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We therefore see that it is possible to choose a source term, which we recall in the fracture setting describes the
fluid exchange between fracture and rock matrix, such that 𝑢 is equal to 1 on a subset of (0, 1) with non-zero
Lebesgue measure. Indeed, it is enough to pick

𝑞(𝑥) =

⎧⎪⎨⎪⎩
4 for all 𝑥 ∈ (0, 0.25),
0 for all 𝑥 ∈ [0.25, 0.75),
−4 for all 𝑥 ∈ [0.75, 1),

since this gives that the transition zone is [0.25, 0.75]. We thus see that a simple case can lead to transition
zones of full dimension. (Note that in this strong solution setting with no-flux boundary conditions, we had to
choose 𝑞 such as to satisfy the compatibility condition

∫︀
Ω
𝑞 =

∫︀
𝜕Ω
𝑢0 = 0.)

2.2. Multiple sub-domains

In the case Ω is composed of multiple sub-domains (e.g., intersecting fracture branches), forming thus a
network of equi-dimensional objects, we can extend the previous model by including suitable conditions at their
intersections. Given Ω we introduce 𝜔𝑖 ⊂ Ω to be a sub-domain, with 𝑛𝜔 ∋ 𝑖 their total number. Clearly, given
two distinct 𝜔𝑖 and 𝜔𝑗 , with 𝑖 ̸= 𝑗, we have �̊�𝑖 ∩ �̊�𝑗 = ∅ and also that Ω = ∪𝑛𝜔

𝑖=1𝜔
𝑖.

We consider 2 6 𝑛 6 𝑛𝜔 sub-domains that meet at ℐ whose closure ℐ = ∩𝑛𝑖=1𝜔
𝑖. To complete model in

Problem 2.1 we impose the following classical conditions on ℐ:

𝑛∑︁
𝑖=1

𝑢𝑖 · 𝑛𝑖 = 0 and 𝑝𝑖 = 𝑝𝑗 , ∀ 𝑖, 𝑗 = 1, . . . , 𝑛, (2.7)

where with a superscript 𝑖 we indicate the corresponding object restricted to 𝜔𝑖, and 𝑛𝑖 is a unit vector
tangent to 𝜔𝑖 and pointing to ℐ, in the mono-dimensional case, and in addition normal to 𝜕𝜔𝑖, in the multi-
dimensional case. This condition is frequently used, see for instance [2, 3, 8, 9]. The first condition in (2.7) is a
direct consequence of the conservation of mass at the intersection, while the second can be derived from each
constitutive relation of the form (2.1). These conditions do not put any additional difficulties in the analysis
and are therefore considered only in the numerical examples, while in the analysis we will keep assuming that
Ω is a single domain.

It is possible to consider more complex conditions such as the so-called non-linear transmission conditions,
which assume non-linear relations for the pressure. For more general conditions on ℐ, used for unsaturated and
two-phase flow models, see for example [1, 13,19,22].

3. Mathematical setting

We give in this section the rigorous mathematical setting. In particular we introduce the assumptions on the
underlying law operators as well as the weak formulation of our problem. We shall use the convention to use
boldfaced symbols for vectors and vector-valued functions.

From now on, without loss of generality we take �̄� to be equal to 1. For a given Lebesgue measurable field
𝑢 : Ω → R𝑑, we write

Ω1(𝑢) = {𝑥 ∈ Ω | ‖𝑢(𝑥)‖ < 1}, Ω2(𝑢) = {𝑥 ∈ Ω | ‖𝑢(𝑥)‖ > 1},
Γ(𝑢) = Ω ∖ (Ω1(𝑢) ∪ Ω2(𝑢)) = {𝑥 ∈ Ω | ‖𝑢(𝑥)‖ = 1}, (3.1)

where Ω1(𝑢), Ω2(𝑢) and Γ(𝑢) are what we have already respectively referred to as the low-speed region, high-
speed region and transition zone (associated with 𝑢). Note that thanks to the measurability assumption on 𝑢,
these three subsets are also measurable. Obviously the family 𝒞 := {Ω1(𝑢),Ω2(𝑢),Γ(𝑢)} forms a partition of
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Ω, and we will refer to 𝒞 as the configuration of the problem, especially for the numerics in Sections 5 and 6.
We can rewrite these sets in a more compact form:

Ω1(𝑢) = 𝑢−1(𝐵1(0)), Ω2(𝑢) = 𝑢−1(𝐸1(0)), Γ(𝑢) = 𝑢−1(𝑆1(0)),

where 𝐵1(0) and 𝑆1(0) stand respectively for the unit open ball and unit sphere in R𝑑 centered at the origin 0
and 𝐸1(0) = R𝑑 ∖ (𝐵1(0) ∪ 𝑆1(0)). Note that if 𝑢 is not continuous, then Ω1(𝑢) and Ω2(𝑢) may not be open.

For all 𝑛 ∈ [1,∞), 𝑚 ∈ (0,∞) and 𝐴 ⊂ R𝑑 measurable we will denote by 𝐿𝑛(𝐴) and 𝑊𝑚,𝑛(𝐴) the Lebesgue
space of measurable functions on 𝐴 with integrable 𝑛th power and the 𝑚th-order Sobolev space associated to
𝐿𝑛(𝐴); we will also write 𝐿𝑛(𝐴) in place of (𝐿𝑛(𝐴))𝑑. As usual, in these spaces, equality between two functions
is always intended in the almost-everywhere sense.

3.1. Assumptions on the velocity-pressure laws

In the following, the operator laws Λ1 and Λ2 are assumed to be of the form

Λ1(𝑢) = 𝜑1

(︁
‖𝑢‖2

)︁
𝑢𝜒Ω1(𝑢) and Λ2(𝑢) = 𝜑2

(︁
‖𝑢‖2

)︁
𝑢𝜒Ω2(𝑢), (3.2)

where 𝜒𝐴 is the characteristic function of any set 𝐴 ⊂ R𝑑. The functions 𝜑1, 𝜑2 : [0,∞) → [0,∞) are continuous
and increasing on [0, 1] and [1,∞), respectively. Furthermore, 𝜑2 satisfies the following assumption: there exist
𝑟 > 2 and 𝑐, 𝐶 > 0 such that

𝑐𝑎
𝑟−2
2 6 𝜑2(𝑎) 6 𝐶

(︁
1 + 𝑎

𝑟−2
2

)︁
for all 𝑎 > 1. (3.3)

A recurrent notation we will use is

𝜆1 := 𝜑1(1) and 𝜆2 := 𝜑2(1), (3.4)

and will call the difference 𝜆2 − 𝜆1 the transition zone inverse permeability jump. Symmetrically, whenever
𝑘1 := 1/𝜆1 and 𝑘2 := 1/𝜆2 are considered (cf. in particular Sects. 5 and 6), the difference 𝑘2 − 𝑘1 will be called
the transition zone permeability jump. We will see that the sign of this jump is an important feature which
determines the convexity of the energy functional underlying the problem. Note that because 𝜑2 is increasing
on [1,∞), one must have 𝑐 6 𝜆2 and 𝐶 > 𝜆2/2 in (3.3).

Interesting examples that fall into the above requests, in particular satisfying (3.2) with (3.3), are combina-
tions of scalar versions of the Darcy and Darcy–Forchheimer laws ΛD and ΛDF (cf. (2.4)), as desired in the first
place. Indeed, one is allowed to consider

Λ1(𝑢) = 𝜆1𝑢𝜒Ω1(𝑢) and Λ2(𝑢) = 𝜆2𝑢𝜒Ω2(𝑢),

that is, 𝜑1 ≡ 𝜆1 and 𝜑2 ≡ 𝜆2, or

Λ1(𝑢) = 𝜆1𝑢𝜒Ω1(𝑢) and Λ2(𝑢) = (𝜆21 + 𝜆22‖𝑢‖)𝑢𝜒Ω2(𝑢).

that is, 𝜑1 ≡ 𝜆1 and 𝜑2(𝑎) = 𝜆21 + 𝜆22
√
𝑎, where 𝜆1, 𝜆2, 𝜆21 and 𝜆22 are positive scalars. In the former case we

would require 𝑟 = 2, whereas in the latter 𝑟 = 3.

Remark 3.1. This setting where Λ1 and Λ2 are as in (3.2) physically restricts us to scalar permeabilities.
More general laws including tensor permeabilities, as motivated in [34], are for instance given by the following:

Λ1(𝑢) = 𝜑1(𝜆1𝑢 · 𝑢)𝜆1𝑢𝜒Ω1(𝑢)
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and analogously for Λ2, where 𝜆1 ∈ R𝑑×𝑑 is a symmetric positive definite matrix encoding a tensor permeability.
Even more general forms are envisageable:

Λ1(𝑢) =
𝑛∑︁
𝑗=1

𝜑1,𝑗(𝜆1,𝑗𝑢 · 𝑢)𝜆1,𝑗𝑢𝜒Ω1(𝑢),

where the 𝜑1,𝑗 and 𝜆1,𝑗 are 𝑛 different law functions and permeability tensors and the dot · stands for the
Euclidean inner product in R𝑑. We leave these general laws to a future work. We claim that the techniques we
use in the present paper for scalar laws should extend to tensor laws without too much difficulty.

We denote by 𝑠 = 𝑟
𝑟−1 the conjugate exponent of 𝑟. Thanks to the continuity of 𝜑1 and the right-hand

inequality in (3.3), we see that the operators Λ1 and Λ2 map 𝐿𝑟(Ω) into 𝐿𝑠(Ω). Because we allow for any law
on the transition zone, this invites us to consider the multi-valued setting where our combined law Λ maps
𝐿𝑟(Ω) into the power set 2𝐿𝑠(Ω) and is given by

Λ(𝑢) =
{︀
Λ1(𝑢) + Λ2(𝑢) + ℎ𝜒Γ(𝑢)

}︀
ℎ∈𝐿𝑠(Ω)

, (3.5)

that is, Λ(𝑢) is the set of all the functions of the form Λ1(𝑢) +Λ2(𝑢) +ℎ𝜒Γ(𝑢), where ℎ ∈ 𝐿𝑠(Ω). We highlight
the fact that the transition zone law ℎ in the definition above really is a function in 𝐿𝑠(Ω) and not a trace on
Γ(𝑢). In this way, ℎ𝜒Γ(𝑢) is simply the restriction of an 𝐿𝑠(Ω) function to Γ(𝑢). This is also coherent with our
energetic approach below, where we will link to Λ the subdifferential of a functional defined on 𝐿𝑟(Ω), whose
topological dual is indeed 𝐿𝑠(Ω).

Remark 3.2. The existence results that we present in this paper still apply if we consider some “background”
law with tensor permeability. Indeed, our proofs remain essentially untouched if the combined law Λ in (3.5) is
replaced by

Λ(𝑢) =
{︀
𝛽(𝜆𝑢 · 𝑢)𝜆𝑢 + Λ1(𝑢) + Λ2(𝑢) + ℎ𝜒Γ(𝑢)

}︀
ℎ∈𝐿𝑠(Ω)

,

where 𝜆 ∈ R𝑑×𝑑 is symmetric positive definite and 𝛽 : [0,∞) → [0,∞) is a continuous, increasing function such
that 𝛽 + 𝜑2 satisfies (3.3) in place of 𝜑2.

3.2. Weak formulation

We fix 𝑞 ∈ 𝐿𝑟(Ω), 𝑢0 ∈ 𝐿𝑟(Σv), 𝑝0 ∈𝑊
1
𝑟 ,𝑠(Σp) and 𝑓 ∈ 𝐿𝑠(Ω). Consider the space

̃︁𝑊 1,𝑠(Ω) =

⎧⎪⎨⎪⎩
{︂
𝜉 ∈𝑊 1,𝑠(Ω) | 1

|Ω|

∫︁
Ω

𝜉 = 𝜛

}︂
if Vol𝑑−1(Σp) = 0,{︀

𝜉 ∈𝑊 1,𝑠(Ω) | 𝜉 = 𝑝0 on Σp

}︀
if Vol𝑑−1(Σp) > 0,

where we recall that Vol𝑑−1 is the (𝑑 − 1)-dimensional Lebesgue measure. We give a first weak formulation of
Problem 2.1:

Problem 3.3 (Weak form I). Find (𝑢, 𝑝) ∈ 𝐿𝑟(Ω)× ̃︁𝑊 1,𝑠(Ω) so that there exists Λ𝑢 ∈ Λ(𝑢) such that∫︁
Ω

Λ𝑢 ·𝜙 = −
∫︁

Ω

∇𝑝 ·𝜙 +
∫︁

Ω

𝑓 ·𝜙 ∀𝜙 ∈ 𝐿𝑟(Ω),∫︁
Ω

∇𝜓 · 𝑢 = −
∫︁

Ω

𝑞𝜓 +
∫︁

Σv

𝑢0𝜓 ∀𝜓 ∈ ̃︁𝑊 1,𝑠(Ω),

where we recall that Λ is given in (3.5).
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We set 𝑓0 = 𝑓 in the case Vol𝑑−1(Σp) = 0 and 𝑓0 = 𝑓 + ∇(𝐸𝑝0) in the case Vol𝑑−1(Σp) > 0, with
𝐸 : 𝑊

1
𝑟 ,𝑠(Σp) → 𝑊 1,𝑠(Ω) any extension operator being right-inverse of the 𝑊 1,𝑠(Ω)-trace operator, and by

defining the Sobolev space

𝑊 1,𝑠
0 (Ω) =

⎧⎨⎩
{︂
𝜉 ∈𝑊 1,𝑠(Ω) |

∫︁
Ω

𝜉 = 0
}︂

if Vol𝑑−1(Σp) = 0,{︀
𝜉 ∈𝑊 1,𝑠(Ω) | 𝜉 = 0 on Σp

}︀
if Vol𝑑−1(Σp) > 0,

We endow 𝑊 1,𝑠
0 (Ω) with the norm ‖𝜓‖𝑊 1,𝑠

0 (Ω) = ‖∇𝜓‖𝐿𝑠(Ω) for all 𝜓 ∈ 𝑊 1,𝑠
0 (Ω). From the linearity in Prob-

lem 3.3 with respect to the pressure field, the formulation in Problem 3.3 is equivalent to the following one:

Problem 3.4 (Weak form II). Find (𝑢, 𝑝) ∈ 𝐿𝑟(Ω)×𝑊 1,𝑠
0 (Ω) so that there exists Λ𝑢 ∈ Λ(𝑢) such that∫︁

Ω

Λ𝑢 ·𝜙 = −
∫︁

Ω

∇𝑝 ·𝜙 +
∫︁

Ω

𝑓0 ·𝜙 ∀𝜙 ∈ 𝐿𝑟(Ω),∫︁
Ω

∇𝜓 · 𝑢 = −
∫︁

Ω

𝑞𝜓 +
∫︁

Σv

𝑢0𝜓 ∀𝜓 ∈𝑊 1,𝑠
0 (Ω).

We emphasize here that the well-posedness of Problem 3.4 is not affected by the choice of the extension 𝐸
in the definition of 𝑓0.

Thanks to Riesz’s representation theorem, we shall equivalently manipulate functions in 𝐿𝑠(Ω) as elements
of (𝐿𝑟(Ω))*, the topological dual of 𝐿𝑟(Ω). In particular, this means that, given 𝑢 ∈ 𝐿𝑟(Ω), operators Λ𝑢

in Λ(𝑢) will also be seen as maps from 𝐿𝑟(Ω) to (𝐿𝑟(Ω))* ∼ 𝐿𝑠(Ω). Denoting by ⟨·, ·⟩ the dual mapping on
𝐿𝑠(Ω)×𝐿𝑟(Ω), the weak formulation in Problem 3.4 can be equivalently rewritten as follows:

Problem 3.5 (Weak form III). Find (𝑢, 𝑝) ∈ 𝐿𝑟(Ω)×𝑊 1,𝑠
0 (Ω) so that there exists Λ𝑢 ∈ Λ(𝑢) such that

⟨Λ𝑢,𝜙⟩ = −⟨∇𝑝,𝜙⟩+ ⟨𝑓0,𝜙⟩ ∀𝜙 ∈ 𝐿𝑟(Ω),

⟨∇𝜓,𝑢⟩ = −
∫︁

Ω

𝑞𝜓 +
∫︁

Σv

𝑢0𝜓 ∀𝜓 ∈𝑊 1,𝑠
0 (Ω).

Our goal is now to show existence for this weak formulation.

Remark 3.6. We repeat that uniqueness is a tougher question which we shall not answer in the present paper,
but which will be part of a future work. Nonetheless, we give here a potential approach to handle it. The core
point lies in the way our model is posed, in the fact that we are admitting any 𝐿𝑠(Ω) function as transition
zone law (cf. ℎ in (3.5)). This facilitates our task of finding solutions via the minimization of the underlying
energy, since the subdifferential of the dissipation associated with the energy necessarily gives subsets of the
law in (3.5) (as it is shown in the proof of Lem. 4.8), i.e., subsets of the admissible laws. However, at this point
one could still have solutions with admissible transition zone laws which are not part of the minimizers of the
underlying energy – this is why we cannot deduce uniqueness in our setting, even if the minimizers are unique
and the energy is convex. An idea, then, would be to characterize the subderivatives at the transition zone and
then update the transition zone law in (3.5) in a way as to match exactly the subdifferential of the dissipation.

4. Existence

We state and prove here our results on existence for Problem 3.5. As already mentioned, we will see that
our results depend on the sign of the transition zone inverse permeability jump, 𝜆2 − 𝜆1. The strategy is the
following:

(1) we reduce Problem 3.4 on the velocity and pressure fields into an equivalent problem on the velocity field
only (cf. Problem 4.3 and [6, 33]);
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(2) we derive an energetic formulation whose minimizers are solutions to this reduced problem on the velocity
field (cf. Problem 4.9 and [34]);

(3) we study the existence of minimizers for this energetic formulation distinguishing the convex case 𝜆1 6 𝜆2

from the non-convex case 𝜆1 > 𝜆2 (cf. Thms. 4.10 and 4.11). We are only able to treat the one-dimensional
setting 𝑑 = 1 when 𝜆1 > 𝜆2.

4.1. Reduction to a problem on the velocity field

Define the maps 𝐵 : 𝐿𝑟(Ω) → (𝑊 1,𝑠
0 (Ω))* and 𝐵* : 𝑊 1,𝑠

0 (Ω) → (𝐿𝑟(Ω))* by

𝐵(𝜙)(𝜓) = 𝐵*(𝜓)(𝜙) = ⟨∇𝜓,𝜙⟩ for all 𝜙 ∈ 𝐿𝑟(Ω) and 𝜓 ∈𝑊 1,𝑠
0 (Ω), (4.1)

Let us introduce the set
𝑉 =

{︁
𝜙 ∈ 𝐿𝑟(Ω) | ∀𝜓 ∈𝑊 1,𝑠

0 (Ω), ⟨∇𝜓,𝜙⟩ = 0
}︁
,

which satisfies 𝑉 = Ker(𝐵). We write 𝑉 ⊥ ⊂ 𝐿𝑠(Ω) the polar subspace of 𝑉 , that is, 𝑉 ⊥ =
{𝑔 ∈ 𝐿𝑠(Ω) | ∀𝜙 ∈ 𝑉, ⟨𝑔,𝜙⟩ = 0}, and 𝐿𝑟(Ω)/𝑉 ⊂ 𝐿𝑟(Ω) the quotient space of 𝐿𝑟(Ω) by 𝑉 .

The following three lemmas are inspired from their equivalents in [6].

Lemma 4.1. The maps 𝐵 and 𝐵* in (4.1) are isomorphisms from 𝐿𝑟(Ω)/𝑉 to (𝑊 1,𝑠
0 (Ω))* and from 𝑊 1,𝑠

0 (Ω)
to 𝑉 ⊥, respectively.

Proof. By Lemma 2.1 of [6], it suffices to show that there exists 𝛾 > 0 such that

inf
𝜓∈𝑊 1,𝑠

0 (Ω)
𝜓 ̸=0

sup
𝜙∈𝐿𝑟(Ω)

𝜙 ̸=0

⟨∇𝜓,𝜙⟩
‖𝜓‖𝑊 1,𝑠

0 (Ω)‖𝜙‖𝐿𝑟(Ω)

> 𝛾.

To this end, let 𝜓 ∈𝑊 1,𝑠
0 (Ω) with 𝜓 ̸= 0. Then, by identifying 𝐿𝑠(Ω) with (𝐿𝑟(Ω))* we get

‖𝜓‖𝑊 1,𝑠
0 (Ω) = ‖∇𝜓‖𝐿𝑠(Ω) = sup

𝜙∈𝐿𝑟(Ω)
𝜙 ̸=0

⟨∇𝜓,𝜙⟩
‖𝜙‖𝐿𝑟(Ω)

,

so that

1 =
‖𝜓‖𝑊 1,𝑠

0 (Ω)

‖𝜓‖𝑊 1,𝑠
0 (Ω)

= sup
𝜙∈𝐿𝑟(Ω)

𝜙 ̸=0

⟨∇𝜓,𝜙⟩
‖𝜓‖𝑊 1,𝑠

0 (Ω)‖𝜙‖𝐿𝑟(Ω)

·

Taking above the infimum over all 𝜓 ∈𝑊 1,𝑠
0 (Ω) with 𝜓 ̸= 0 ends the proof. �

Now, via the following two lemmas, we simplify our weak formulation in Problem 3.5 into a problem restricted
to 𝑉 (cf. Problem 4.3 below).

Lemma 4.2. There exists a unique �̂� ∈ 𝐿𝑟(Ω)/𝑉 such that

⟨∇𝜓, �̂�⟩ = −
∫︁

Ω

𝑞𝜓 +
∫︁

Σv

𝑢0𝜓 for all 𝜓 ∈𝑊 1,𝑠
0 (Ω).

Proof. For all 𝜓 ∈𝑊 1,𝑠
0 (Ω), let

𝐹 (𝜓) = −
∫︁

Ω

𝑞𝜓 +
∫︁

Σv

𝑢0𝜓,

and bound 𝐹 (𝜓) as follows:

|𝐹 (𝜓)| 6 ‖𝑞‖𝐿𝑟(Ω)‖𝜓‖𝐿𝑠(Ω) + ‖𝑢0‖𝐿𝑟(Σv)‖𝜓‖𝐿𝑠(𝜕Ω) 6
(︁
𝐶‖𝑞‖𝐿𝑟(Ω) + ‖𝑢0‖𝐿𝑟(Σv)

)︁
‖𝜓‖𝑊 1,𝑠

0 (𝜕Ω),

where we used boundedness of the trace operator on 𝜓 and where 𝐶 > 0 is a constant stemming from Poincar’s
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inequality. Recalling that indeed 𝑞 and 𝑢0 are assumed to belong to 𝐿𝑟(Ω) and 𝐿𝑟(Σv), respectively, the map 𝐹
is then a bounded linear map from 𝑊 1,𝑠

0 (Ω) into R, i.e., 𝐹 ∈ (𝑊 1,𝑠
0 (Ω))*. By Lemma 4.1, we thus know there

exists a unique �̂� ∈ 𝐿𝑟(Ω)/𝑉 such that

⟨∇𝜓, �̂�⟩ = 𝐵(�̂�)(𝜓) = 𝐹 (𝜓) = −
∫︁

Ω

𝑞𝜓 +
∫︁

Σv

𝑢0𝜓 for all 𝜓 ∈𝑊 1,𝑠
0 (Ω),

which is the desired result. �

Problem 4.3 (Weak form restricted to 𝑉 ). Find 𝑣 ∈ 𝑉 such that there exists Λ𝑣 ∈ Λ(𝑣 + �̂�) satisfying

⟨Λ𝑣,𝜙⟩ = ⟨𝑓0,𝜙⟩ for all 𝜙 ∈ 𝑉 ,

where �̂� is given by Lemma 4.2.

Lemma 4.4. Problem 3.5 is equivalent to Problem 4.3.

Proof. We first suppose that (𝑢, 𝑝) is solution to Problem 3.5. Then we decompose 𝑢 as 𝑢 = (𝑢−�̂�)+�̂� =: 𝑣+�̂�.
By Problem 3.5, there exists Λ𝑣 ∈ Λ(𝑢) = Λ(𝑣 + �̂�) such that

⟨Λ𝑣,𝜙⟩ = ⟨𝑓0,𝜙⟩ for all 𝜙 ∈ 𝑉 .

Furthermore, for all 𝜓 ∈ 𝑊 1,𝑠
0 (Ω) we find ⟨∇𝜓,𝑣⟩ = ⟨∇𝜓,𝑢⟩ − ⟨∇𝜓, �̂�⟩ = 0, so that 𝑣 ∈ 𝑉 and 𝑣 satisfies

Problem 4.3.
Suppose now that 𝑣 ∈ 𝑉 satisfies Problem 4.3. Then, Λ𝑣 − 𝑓0 ∈ 𝑉 ⊥. By Lemma 4.1 we know 𝐵* is an

isomorphism from 𝑊 1,𝑠
0 (Ω) to 𝑉 ⊥, so that there exists a unique 𝑝 ∈𝑊 1,𝑠

0 (Ω) with

⟨Λ𝑣 − 𝑓0,𝜙⟩ = 𝐵*(−𝑝)(𝜙) = −⟨∇𝑝,𝜙⟩ for all 𝜙 ∈ 𝐿𝑟(Ω).

Furthermore, writing 𝑢 = 𝑣 + �̂� we get

⟨∇𝜓,𝑢⟩ = ⟨∇𝜓,𝑣⟩+ ⟨∇𝜓, �̂�⟩ = ⟨∇𝜓, �̂�⟩ = −
∫︁

Ω

𝑞𝜓 +
∫︁

Σv

𝑢0𝜓,

since 𝑣 ∈ 𝑉 . We thus have that (𝑢, 𝑝) satisfies Problem 3.5, with 𝑝 unique. �

4.2. Energetic formulation

We first give the definition of Fréchet subdifferential and strong local minimizer in our setting:

Definition 4.5 (Fréchet subdifferential and strong local minimizer). Let ℱ : 𝑉 → R. For all 𝑣 ∈ 𝑉 we define
the (Fréchet) subdifferential 𝜕ℱ(𝑣) of ℱ at 𝑣 by:

𝑔𝑣 ∈ 𝜕ℱ(𝑣) ⇐⇒ 𝑔𝑣 ∈ 𝑉 * and ∀𝜙 ∈ 𝑉, lim inf
𝛿→0+

ℱ(𝑣 + 𝛿𝜙)−ℱ(𝑣)
𝛿

> ⟨𝑔𝑣,𝜙⟩.

We say that 𝑣 ∈ 𝑉 is a (strong) local minimizer of ℱ if there exists 𝜂 > 0 such that for all 𝜙 ∈ 𝑉 we have
ℱ(𝑣 + 𝛿𝜙) > ℱ(𝑣) for all 𝛿 ∈ [0, 𝜂).

Remark 4.6. The important property of the subdifferential to keep in mind here is that if 𝑣 ∈ 𝑉 is a local
minimizer of a functional ℱ : 𝑉 → R, then 0𝐿𝑠(Ω) ∈ 𝜕ℱ(𝑣). When ℱ is convex, the reverse of this statement is
also true: if 0𝐿𝑠(Ω) ∈ 𝜕ℱ(𝑣), then 𝑉 is a local minimizer of ℱ .
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We write Ψ: [0,∞) → R the function given by

Ψ(𝑎) =

{︃
Φ1(𝑎) for all 𝑎 6 1,
Φ2(𝑎) for all 𝑎 > 1,

(4.2)

where Φ1,Φ2 : [0,∞) → R are primitives of 𝜑1
2 and 𝜑2

2 (cf. (3.2)) such that Φ1(1) = Φ2(1) = 0. We define the
dissipation 𝒟 : 𝑉 → R by

𝒟(𝑣) =
∫︁

Ω

Ψ
(︁
‖𝑣 + �̂�‖2

)︁
for all 𝑣 ∈ 𝑉 . (4.3)

Thanks to our assumptions on 𝜑1 and 𝜑2 we easily get that the domain of 𝒟 is indeed all of 𝑉 , and it is thus a
well-defined functional from 𝑉 into R. Consider the following problem:

Problem 4.7 (Dissipation form). Find 𝑣 ∈ 𝑉 such that there exists 𝑔𝑣 ∈ 𝜕𝒟(𝑣) satisfying

⟨𝑔𝑣,𝜙⟩ = ⟨𝑓0,𝜙⟩ ∀𝜙 ∈ 𝑉.

The following result holds:

Lemma 4.8. Any solution to Problem 4.7 is also solution to Problem 4.3.

Proof. Suppose that 𝑣 ∈ 𝑉 is solution to Problem 4.7. Then we can pick 𝑔𝑣 ∈ 𝜕𝒟(𝑣) ⊂ 𝐿𝑠(Ω) so that
Problem 4.7 holds. By definition, for all 𝜙 ∈ 𝑉 we must have

lim inf
𝛿→0+

𝒟(𝑣 + 𝛿𝜙)−𝒟(𝑣)
𝛿

> ⟨𝑔𝑣,𝜙⟩.

Write 𝑉1 the subset of 𝑉 consisting of the functions which are supported in Ω1(𝑣 + �̂�). Then, for all 𝜙 ∈ 𝑉1,
since −𝜙 ∈ 𝑉1 as well, we get

lim inf
𝛿→0+

1
𝛿

∫︁
Ω1(𝑣+�̂�)

(︁
Ψ

(︁
‖𝑣 + 𝛿𝜙 + �̂�‖2

)︁
− Φ1

(︁
‖𝑣 + �̂�‖2

)︁)︁
> ⟨𝑔𝑣,𝜙⟩

and
lim inf
𝛿→0+

1
𝛿

∫︁
Ω1(𝑣+�̂�)

(︁
Ψ

(︁
‖𝑣 − 𝛿𝜙 + �̂�‖2

)︁
− Φ1

(︁
‖𝑣 + �̂�‖2

)︁)︁
> −⟨𝑔𝑣,𝜙⟩,

which, by Lebesgue’s dominated convergence theorem and the differentiability of Φ1, yield∫︁
Ω

Λ1(𝑣 + �̂�) ·𝜙 =
∫︁

Ω1(𝑣+�̂�)

𝜑1

(︁
‖𝑣 + �̂�‖2

)︁
(𝑣 + �̂�) ·𝜙 > ⟨𝑔𝑣,𝜙⟩

and
−

∫︁
Ω

Λ1(𝑣 + �̂�) ·𝜙 = −
∫︁

Ω1(𝑣+�̂�)

𝜑1

(︁
‖𝑣 + �̂�‖2

)︁
(𝑣 + �̂�) ·𝜙 > −⟨𝑔𝑣,𝜙⟩.

All in all we get
⟨𝑔𝑣,𝜙⟩ = ⟨Λ1(𝑣 + �̂�),𝜙⟩ for all 𝜙 ∈ 𝑉1.

Similarly, denoting by 𝑉2 the subset of 𝑉 consisting of the functions which are supported in Ω2(𝑣 + �̂�), we get

⟨𝑔𝑣,𝜙⟩ = ⟨Λ2(𝑣 + �̂�),𝜙⟩ for all 𝜙 ∈ 𝑉2.

Thus the function defined by
Λ𝑣 = Λ1(𝑣 + �̂�) + Λ2(𝑣 + �̂�) + 𝑔𝑣 𝜒Γ(𝑣+�̂�)

is such that ⟨Λ𝑣,𝜙⟩ = ⟨𝑔𝑣,𝜙⟩ for all 𝜙 ∈ 𝑉 . Therefore, from Problem 4.7 we obtain

⟨Λ𝑣,𝜙⟩ = ⟨𝑓0,𝜙⟩ for all 𝜙 ∈ 𝑉 .

Moreover Λ𝑣 ∈ Λ(𝑣 + �̂�), where we recall Λ is in (3.5). Hence 𝑣 is solution to Problem 4.3. �
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We now define the energy ℰ : 𝑉 → R associated to 𝒟 by

ℰ(𝑣) = 𝒟(𝑣)− ⟨𝑓0,𝑣 + �̂�⟩ for all 𝑣 ∈ 𝑉 . (4.4)

Let us write 𝑀ℰ ⊂ 𝑉 the, possibly empty, set of local minimizers of ℰ . Consider the following minimization
problem.

Problem 4.9 (Energy minimization). Find 𝑣 ∈ 𝑉 such that 𝑣 ∈𝑀ℰ .

By Remark 4.6, any solution to Problem 4.9 is also solution to Problem 4.7; if ℰ is convex these problems
are actually equivalent. By Lemma 4.8 it therefore suffices to find a solution to Problem 4.9 in order to get the
desired existence result on our original Problem 3.5. The rest of this section will thus be solely dedicated to
solving Problem 4.9.

4.3. Case 𝜆1 6 𝜆2

The result we wish to show here is the following:

Theorem 4.10 (Existence and uniqueness when 𝜆1 6 𝜆2). Suppose that 𝜆1 6 𝜆2. Then, Problem 4.9 has a
unique solution.

Proof. Let us prove that the integrand Ψ ∘ ‖·‖2 (cf. (4.2)) of 𝒟 is strictly convex. Define the functions
Φ̄1, Φ̄2 : [0,∞) → R by

Φ̄1(𝑎) =

{︃
Φ1(𝑎) for all 𝑎 6 1,
𝜆1
2 (𝑎− 1) for all 𝑎 > 1,

and Φ̄2(𝑎) =

{︃
𝜆2
2 (𝑎− 1) for all 𝑎 6 1,

Φ2(𝑎) for all 𝑎 > 1.

Then Φ̄1 and Φ̄2 are differentiable with

Φ̄′1(𝑎) =
1
2

{︃
𝜑1(𝑎) for all 𝑎 6 1,
𝜆1 for all 𝑎 > 1,

and Φ̄′2(𝑎) =
1
2

{︃
𝜆2 for all 𝑎 6 1,
𝜑2(𝑎) for all 𝑎 > 1.

Since 𝜑1 and 𝜑2 are increasing on [0, 1] and [1,∞), respectively, and 𝜑1(1) = 𝜆1 and 𝜑2(1) = 𝜆2, the derivatives
Φ̄′1 and Φ̄′2 are also increasing so that Φ̄1 and Φ̄2 are convex. Furthermore, because 𝜆1 6 𝜆2 and 𝜑2 is increasing,
we have Φ̄′2(𝑎) > Φ̄′1(𝑎) for all 𝑎 > 1; thus, the fact that Φ1(1) = Φ2(1) (and so Φ̄1(1) = Φ̄2(1)) yields
Φ̄1(𝑎) 6 Φ̄2(𝑎) for all 𝑎 > 1. Similarly, we get that Φ̄1(𝑎) > Φ̄2(𝑎) for all 𝑎 < 1. Let 𝑎, 𝑏 ∈ [0,∞) and 𝑡 ∈ [0, 1].
If 𝑎, 𝑏 6 1, then (1− 𝑡)𝑎+ 𝑡𝑏 6 1 and

Ψ((1− 𝑡)𝑎+ 𝑡𝑏) = Φ1((1− 𝑡)𝑎+ 𝑡𝑏) = Φ̄1((1− 𝑡)𝑎+ 𝑡𝑏)
6 (1− 𝑡)Φ̄1(𝑎) + 𝑡Φ̄1(𝑏) = (1− 𝑡)Ψ(𝑎) + 𝑡Ψ(𝑏),

and similarly if 𝑎, 𝑏 > 1. If now 𝑎 6 1, 𝑏 > 1 and (1− 𝑡)𝑎+ 𝑡𝑏 6 1, then we have

Ψ((1− 𝑡)𝑎+ 𝑡𝑏) = Φ1((1− 𝑡)𝑎+ 𝑡𝑏) = Φ̄1((1− 𝑡)𝑎+ 𝑡𝑏)
6 (1− 𝑡)Φ̄1(𝑎) + 𝑡Φ̄1(𝑏) 6 (1− 𝑡)Φ̄1(𝑎) + 𝑡Φ̄2(𝑏) = (1− 𝑡)Ψ(𝑎) + 𝑡Ψ(𝑏),

and similarly if (1− 𝑡)𝑎+ 𝑡𝑏 > 1 or 𝑎 > 1 and 𝑏 6 1. In all cases, we see that

Ψ((1− 𝑡)𝑎+ 𝑡𝑏) 6 (1− 𝑡)Ψ(𝑎) + 𝑡Ψ(𝑏),

so that Ψ is convex. Note that one could reach the same conclusion using that

Ψ(𝑎) = max(Φ̄1(𝑎), Φ̄2(𝑎)) for all 𝑎 > 0.
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Since 𝜑1 and 𝜑2 are positive on (0, 1) and [1,∞), respectively, we get that Ψ is increasing. Therefore, the function
Ψ ∘ ‖·‖2 is strictly convex.

We now want to use the direct method of the calculus of variations to show that ℰ has in fact a unique global
(and thus local) minimizer. Let (𝑣𝑛)𝑛∈N ⊂ 𝑉 be a minimizing sequence for ℰ . Then we know there exists 𝑁 ∈ N
large enough and 𝐾 > 0 such that ℰ(𝑣𝑛) < 𝐾 for all 𝑛 > 𝑁 . Without loss of generality we can therefore assume
that the sequence (ℰ(𝑣𝑛))𝑛∈N is bounded by some constant 𝐾 > 0. Hence, thanks to the left-hand inequality
in (3.3), for all 𝑛 ∈ N we have

𝐾 > ℰ(𝑣𝑛) =
∫︁

Ω1(𝑣𝑛+�̂�)

Φ1

(︁
‖𝑣𝑛 + �̂�‖2

)︁
+

∫︁
Ω2(𝑣𝑛+�̂�)

Φ2

(︁
‖𝑣𝑛 + �̂�‖2

)︁
−

∫︁
Ω

𝑓0 · (𝑣𝑛 + �̂�)

> Φ1(0)|Ω|+ 𝑐

𝑟

∫︁
Ω2(𝑣𝑛+�̂�)

‖𝑣𝑛 + �̂�‖𝑟 − ‖𝑓0‖
𝑠
𝐿𝑠(Ω)‖𝑣𝑛 + �̂�‖𝑟𝐿𝑟(Ω)

>
(︁

Φ1(0)− 𝑐

𝑟

)︁
|Ω|+ 𝑐

𝑟
‖𝑣𝑛 + �̂�‖𝑟𝐿𝑟(Ω) − ‖𝑓0‖𝐿𝑠(Ω)‖𝑣𝑛 + �̂�‖𝐿𝑟(Ω),

which shows that the sequence (‖𝑣𝑛‖𝐿𝑟(Ω))𝑛∈N is bounded. Thus we can extract a subsequence from (𝑣𝑛)𝑛∈N,
still denoted (𝑣𝑛)𝑛∈N which converges weakly to some 𝑣 ∈ 𝐿𝑟(Ω). Since further 𝑉 is weakly closed we in fact
have 𝑣 ∈ 𝑉 . Because Ψ ∘ ‖·‖2 is convex, the dissipation 𝒟 is weakly lower semi-continuous and so is the energy
ℰ . We therefore yield

inf
𝑤∈𝑉

ℰ(𝑤) = lim inf
𝑛→∞

ℰ(𝑣𝑛) > ℰ(𝑣) > inf
𝑤∈𝑉

ℰ(𝑤),

so that ℰ(𝑣) = inf𝑤∈𝑉 ℰ(𝑤) and 𝑣 is a global minimizer of ℰ and so 𝑣 ∈𝑀ℰ .
To show that 𝑀ℰ is a singleton it is enough to prove that ℰ is strictly convex. Let 𝑣,𝑤 ∈ 𝑉 and 𝑡 ∈ (0, 1).

Suppose furthermore that 𝑣 ̸= 𝑤 and write 𝐴 ⊂ Ω the set where 𝑣 and 𝑤 are different; the Lebesgue measure
of 𝐴 is therefore positive. Note that we must have Ψ(𝑎) ̸= 0 for all 𝑎 ̸= 1. Using the strict convexity of Ψ ∘ ‖·‖2

we therefore get

𝒟((1− 𝑡)𝑣 + 𝑡𝑤) =
∫︁

Ω

Ψ
(︁
‖(1− 𝑡)𝑣 + 𝑡𝑤 + �̂�‖2

)︁
=

∫︁
Ω

Ψ
(︁
‖(1− 𝑡)(𝑣 + �̂�) + 𝑡(𝑤 + �̂�)‖2

)︁
= (1− 𝑡)

∫︁
Ω∖𝐴

Ψ
(︁
‖𝑣 + �̂�‖2

)︁
+ 𝑡

∫︁
Ω∖𝐴

Ψ
(︁
‖𝑤 + �̂�‖2

)︁
+

∫︁
𝐴

Ψ
(︁
‖(1− 𝑡)(𝑣 + �̂�) + 𝑡(𝑤 + �̂�)‖2

)︁
< (1− 𝑡)

∫︁
Ω∖𝐴

Ψ
(︁
‖𝑣 + �̂�‖2

)︁
+ 𝑡

∫︁
Ω∖𝐴

Ψ
(︁
‖𝑤 + �̂�‖2

)︁
+ (1− 𝑡)

∫︁
𝐴

Ψ
(︁
‖𝑣 + �̂�‖2

)︁
+ 𝑡

∫︁
𝐴

Ψ
(︁
‖𝑤 + �̂�‖2

)︁
= (1− 𝑡)

∫︁
Ω

Ψ
(︁
‖𝑣 + �̂�‖2

)︁
+ 𝑡

∫︁
Ω

Ψ
(︁
‖𝑤 + �̂�‖2

)︁
= (1− 𝑡)𝒟(𝑣) + 𝑡𝒟(𝑤),

so that the dissipation 𝒟 is strictly convex. Consequently, the energy ℰ is also strictly convex and the proof is
over. �

4.4. Case 𝜆1 > 𝜆2

This case is more difficult to tackle than the case 𝜆1 6 𝜆2. Indeed, we lose the convexity of the integrand
Ψ ∘ ‖·‖2 (cf. proof of Thm. 4.10), which by Tonelli’s theorem of functional analysis means that ℰ is not weakly
lower semi-continuous. As a consequence we cannot use the direct method of the calculus of variations in the
weak topology to deduce the existence of a minimizer of ℰ .
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To simplify our task at this point, we shall restrict to the one-dimensional case (i.e., 𝑑 = 1) and leave the
higher-dimensional case for future investigation. The results we present here therefore apply to the numerical
experiments we present below. The one-dimensional case is simpler since we can easily characterize the space
𝑉 depending on the boundary conditions, as will be clear from the proof of the following theorem:

Theorem 4.11 (Existence and uniqueness when 𝜆1 > 𝜆2). Let 𝑑 = 1 and suppose that 𝜆1 > 𝜆2. If Vol0(Σv) = 0,
then Problem 4.9 has a solution. If instead Vol0(Σv) > 0, then Problem 4.9 has a unique solution.

Proof. Without loss of generality, take Ω = (0, 1).

Case Vol0(Σv) = 0. First note that here Σp = {0, 1}. Let us characterize 𝑉 in this case. To this end, note
that any 𝜂 ∈ 𝑉 with

∫︀ 1

0
𝜂 = 0 has a primitive in 𝑊 1,𝑠

0 ((0, 1)); indeed, the function 𝜓 : (0, 1) → R defined by

𝜓(𝑥) =
∫︁ 𝑥

0

𝜂 for all 𝑥 ∈ (0, 1)

satisfies 𝜓′ = 𝜂 and 𝜓(0) = 𝜓(1) = 0. Let now 𝑣 ∈ 𝑉 and define 𝜂 ∈ 𝑉 as

𝜂(𝑥) = 𝑣(𝑥)−
∫︁ 1

0

𝑣 for all 𝑥 ∈ (0, 1),

so that obviously
∫︀ 1

0
𝜂 = 0. Write 𝜓 ∈𝑊 1,𝑠

0 ((0, 1)) a primitive of 𝜂 and compute, for all 𝜙 ∈ 𝑉 ,∫︁ 1

0

(︂
𝑣 −

∫︁ 1

0

𝑣

)︂
𝜙 =

∫︁ 1

0

𝜂𝜙 =
∫︁ 1

0

𝜓′𝜙 = 0.

Thus 𝑣 =
∫︀ 1

0
𝑣 and 𝑣 is constant (almost everywhere). Since constant functions clearly belong to 𝑉 , this shows

that 𝑉 is in fact the set of all constant functions on (0, 1) and we can identify 𝑉 with R.
This in particular means that the energy ℰ defined in (4.4) can be identified with the following function

𝐸 : R → R:

𝐸(𝛼) =
∫︁ 1

0

Ψ
(︀
(𝛼+ �̂�)2

)︀
− 𝛼

∫︁ 1

0

𝑓0 for all 𝛼 ∈ R,

where we recall that Ψ is given in (4.2) and �̂� := �̂� is as in Lemma 4.2. We can use the direct method of the
calculus of variations on 𝐸 in the Euclidean topology in R. Let (𝛼𝑛)𝑛∈N ⊂ R be a minimizing sequence for
𝐸. Using a similar calculation as in the proof of Theorem 4.10, thanks to (3.3) we can show that (𝛼𝑛)𝑛∈N is
bounded in R. Therefore, there exists a subsequence of (𝛼𝑛)𝑛∈N, still denoted by (𝛼𝑛)𝑛∈N, converging to some
𝛼 ∈ R. By continuity of Ψ and Fatou’s lemma we get that 𝐸 is lower semi-continuous on R, so that

inf
𝛽∈R

𝐸(𝛽) = lim inf
𝑛→∞

𝐸(𝛼𝑛) > 𝐸(𝛼) > inf
𝛽∈R

𝐸(𝛽),

showing that 𝛼 is a global minimizer of 𝐸 and the constant function 𝛼 belongs to 𝑀ℰ .

Case Vol0(Σv) > 0. Note that here Σp ∈ {∅}∪{{0}}∪{{1}}. Similarly to the previous case, let us characterize
𝑉 . Note that any 𝑣 ∈ 𝑉 has a primitive in 𝑊 1,𝑠

0 ((0, 1)); indeed, the function 𝜓 : (0, 1) → R defined for all
𝑥 ∈ (0, 1) by ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜓(𝑥) =
∫︁ 𝑥

0

𝑣 −
∫︁ 1

0

(︂∫︁ 𝑦

0

𝑣

)︂
d𝑦 if Σp = ∅,

𝜓(𝑥) =
∫︁ 𝑥

0

𝑣 −
∫︁ 1

0

𝑣 if Σp = {1},

𝜓(𝑥) =
∫︁ 𝑥

0

𝑣 if Σp = {0},
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satisfies 𝜓′ = 𝜂, and
∫︀ 1

0
𝜓 = 0 if Σp = ∅ and 𝜓(𝑥) = 0 for 𝑥 ∈ Σp otherwise. Let 𝑣 ∈ 𝑉 , write 𝜓 a primitive of 𝑣

and compute, for all 𝜙 ∈ 𝑉 , ∫︁ 1

0

𝑣𝜙 =
∫︁ 1

0

𝜓′𝜙 = 0,

so that 𝑣 = 0. This shows that 𝑉 = {0}, i.e., 𝑉 contains only the zero function on (0, 1). Trivially then, the
zero function is the unique global minimizer of the energy ℰ in (4.4) and 𝑀ℰ is a singleton. Note that in this
case the energy is only trivially convex. �

5. Numerical approximation

In this part we present the numerical approximation for the considered problem when 𝑑 = 1; we will still keep
boldfaced notation for vectors and vector-valued functions for coherence with most of the previous sections. In
particular, in Section 5.1 the algorithm to track the transition zone is described. Later in Section 5.2 we describe
the discretization adopted for a known transition zone. As mentioned in the introduction, for the implementation
we have used the flexible framework of the PorePy library; see [20].

We introduce a mesh Ωℎ composed of non-overlapping segments 𝐸 ∈ Ωℎ that approximate Ω; we clearly
have Ωℎ = ∪𝐸∈Ωℎ

𝐸. At the discrete level we can define the approximate configuration 𝒞ℎ which is given by
the set 𝒞ℎ = {Ω1,ℎ,Ω2,ℎ,Γℎ}, where respectively Ω1,ℎ ⊂ Ωℎ and Ω2,ℎ ⊂ Ωℎ are the approximations of the
domains Ω1 and Ω2. Γℎ is the approximation of the transition zone Γ. Note that for simplicity we are dropping
the dependence of these regions on the velocity field. For each element 𝐸 we name 𝑒1 and 𝑒2 its two extremal
vertices and ℎ𝐸 its length. We let ℎ = max𝐸∈Ωℎ

ℎ𝐸 be the mesh size. In the case of a fracture network where the
fracture are represented by segments, we suppose that each intersection is respected by the grid. We indicate
by (𝑢ℎ, 𝑝ℎ) the approximation of (𝑢, 𝑝) for a given mesh.

5.1. Transition zone tracking algorithm

We suppose that the equations are discretized with a numerical scheme that gives an accurate enough velocity
field. We consider an iterative scheme such that for each step 𝑖 a tentative configuration 𝒞(𝑖)

ℎ approximates 𝒞ℎ.
For a given configuration 𝒞(𝑖−1)

ℎ , the proposed algorithm solves the differential problem obtaining a new velocity
field 𝑢(𝑖). To speed up the computation, we evaluate condition (2.5) only at the extremities of each grid element
𝐸. If we obtain opposite values, we can thus determine the position of a transition zone in the considered
element up to a given tolerance 𝜖Γ. This part can be coded with an embarrassingly parallel workload, speeding
up the algorithm. Having checked all the elements and computed the new configuration 𝒞(𝑖)

ℎ , the algorithm resets
with the new configuration as starting point. The exit strategy considers the position of Γℎ for two successive
iterations: if their distance is smaller than a given threshold 𝜖Ω, then a stable configuration is reached and the
algorithm ends. We summarize in Algorithm 1 the implemented scheme.

We see that with this algorithm we cannot locate multiple transition zones in a single element 𝐸; this is a
direct implication of the fact that Ω(𝑖)

1,ℎ or Ω(𝑖)
2,ℎ would be smaller than the mesh size in this case. The algorithm

is also unable to track transitions zone which are full-dimensional (in this case of space dimension 1) since we
choose to place only one point as the transition zone within an element whose vertices have velocities around
the threshold speed.

To avoid unnecessary loops due to the chosen accuracy, numerical experiments showed that a good value
of 𝜖Ω is comparable with the mesh size given at the outset of the problem. Also, the value of 𝜖Γ is set quite
small to determine the transition zones with high precision. Numerical examples when the transition zone
inverse permeability jump is non-positive indicated convergence of the proposed scheme, independently from
the starting configuration, thus suggesting that the problem has a unique solution.

Remark 5.1. Since the law on the transition zone is not defined, we can simply assume conservation of fluxes
and continuity of pressure across Γ.
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Algorithm 1: Transition zone tracking algorithm.

Data: For 𝑖 = 1: the configuration 𝒞(𝑖−1)
ℎ and the tolerances (𝜖Γ, 𝜖Ω);

Result: For 𝑖 = end: the configuration 𝒞(𝑖)ℎ ;
do (︁

𝑢(𝑖), 𝑝(𝑖)
)︁
← PDE(𝒞(𝑖−1)

ℎ );

for 𝐸 = (𝑒1, 𝑒2) ∈ Ω
(𝑖−1)
ℎ do

(𝑐1, 𝑐2) ←
(︁
‖𝑢(𝑖)(𝑒1)‖ < 1, ‖𝑢(𝑖)(𝑒2)‖ < 1

)︁
;

if 𝑐1 ̸= 𝑐2 then

𝒞(𝑖)ℎ in 𝐸 ← Transition zone(𝑢(𝑖));
end

end

𝑑 ← Distance(Γ
(𝑖)
ℎ , Γ

(𝑖−1)
ℎ );

𝑖 ← 𝑖 + 1;

while 𝑑 > 𝜖Ω;

5.2. Discretization in space

Following the algorithm discussed before, we assume that a configuration 𝒞(𝑖)
ℎ is given. In the case of non-

linear constitutive relations Λ, an iterative scheme can be used, e.g., fixed-point or Newton or L-scheme; for
the last one, see [23, 28, 29] applied to Richards’ equation and two-phase flow in porous media. The solution is
computed up to a tolerance 𝜖nl. In our implementation we have considered the fixed-point iteration scheme. For
this, to discuss the numerical approximation, we assume thus a linear constitutive relation Λ.

Following [15], to solve the problem we consider the mixed finite element approximation of lowest-order
degree. For a given mesh Ωℎ we have (𝑢ℎ, 𝑝ℎ) ∈ (P0(Ωℎ),RT0(Ωℎ)), where the first is the space of constant
piecewise polynomial and the second the Raviart–Thomas space; see [30, 31]. This pair of discrete spaces is
stable and gives a good approximation for the velocity field, essential for our purposes. The resulting discrete
problem is well-posed, see also [10,15], and the discrete solution converges to the exact one as ℎ goes to zero.

6. Numerical examples

In this part, we present numerical evidence for the quality and effectiveness of the previously introduced
framework. Particularly for increasing geometrical and physical complexity. We consider four cases, starting
from a realistic example comparing the proposed model with a fixed flow regime in Section 6.1. Then we study
the cases of a single domain in Section 6.2.1, two crossing domains in Section 6.2.2, and the fracture network of
Benchmark 1 from [14] in Section 6.2.3.

These examples were developed with the open source library PorePy [20]. The associated scripts are freely
accessible. PorePy uses Gmsh [17] to construct the grids.

6.1. Comparison with a fixed flow regime model

We consider a realistic setting and compare the proposed approach with an a-priori choice of the flow regimes
based on physical considerations. The problem design is a rather simple one, where we need to guess the position
of the transition zone. Nevertheless, we will see in the next examples that, for a general problem, this might be
a challenging question, thus supporting the need of an adaptive strategy.

First, we rewrite the Darcy and Darcy–Forchheimer equations as

𝜇𝑘−1𝑢 = −∇𝑝 and 𝜇𝑘−1𝑢 + 𝜌𝛽‖𝑢‖𝑢 = −∇𝑝,
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where 𝜇 is the viscosity of the liquid in [Pa s], 𝑘 the scalar intrinsic rock permeability in [m2], 𝜌 the liquid density
[kg m−3] and 𝛽 the so-called Forchheimer coefficient in [m−1]. We consider water as liquid so 𝜇 = 10−3[Pa s]
and 𝜌 = 103[kg m−3].

Following [36], we can define the Forchheimer number 𝐹𝑜 to discriminate when non-Darcy effects should be
included in the model or not, namely,

𝐹𝑜 =
𝑘𝛽𝜌‖𝑢‖

𝜇
;

for 𝐹𝑜 < 0.1 a pure Darcy model can be considered, while for 𝐹𝑜 > 0.1, because of inertial effects, the Darcy–
Forchheimer model should be used instead. The domain is of length 100[m] with permeability given by

𝑘(𝑥) =

{︃
5 · 10−11[m−2] for 𝑥 6 50,
5 · 10−12[m−2] for 𝑥 > 50.

A pressure gradient is set on the boundary with 𝑝(𝑥 = 0[m]) = 106[Pa] and 𝑝(𝑥 = 100[m]) = 2 · 106[Pa], a
scalar source term 𝑞 = 10−6[s−1] is set in the interval (30[m], 70[m]) and the Forchheimer coefficient is taken as
𝛽 = 108[m−1]. We can estimate a fluid velocity to be in the order of 10−4 and with this value the Forchheimer
number is estimated as

𝐹𝑜(𝑥) =
{︂

0.5 for 𝑥 6 50[m],
0.05 for 𝑥 > 50[m].

Thus the Darcy–Forchheimer model should be assumed in the first part of the domain and the Darcy model in
the second. This is of course an estimate since 𝐹𝑜 depends on the fluid velocity which is an unknown, so that
we cannot guarantee that this choice correspond to the actual position of the transition zone.

We apply the proposed model and compare the result with the a-priori set flow regime. For the latter the
transition is at 𝑥 = 50[m] while for the former we set 𝑢 = 10−4[m s−1]. Figure 1 compares the two solutions
obtained.

We notice that, even if the difference are not macroscopic, the transition zone between the two regimes is
located at 𝑥 ≈ 48.2[m−1], showing that the actual Darcy model should be considered before what is assumed in
the fixed flow regime setting. We have about 4% relative error in the determination of the transition zone. Also,
the relative errors for the pressure and velocity show a difference mostly located at the centre of the domain.

Even in this simple setting, we see the importance of accurately choosing the appropriate regions for each
flow regime. For more complex cases, their a-priori dislocation can be even more challenging.

6.2. The adaptive model

In all remaining cases, linear and non-linear velocity-pressure relations are considered as well as the impact
of a possible vector source term 𝑓 . The threshold on the velocity norm is set as 𝑢 = 0.15, so that we have

Ω1 = {𝑥 ∈ Ω | ‖𝑢(𝑥)‖ < 𝑢}, Ω2 = {𝑥 ∈ Ω | ‖𝑢(𝑥)‖ > 𝑢}, Γ = {𝑥 ∈ Ω | ‖𝑢(𝑥)‖ = 𝑢}.

If not otherwise specified, we consider a mesh size equal to ℎ = 5 ·10−2 as well as 𝜖Ω = ℎ; the maximum number
of iterations to reach a stable configuration with Algorithm 1 is set to 50; and to track the transition zone we set
𝜖Γ = 10−10. In all the cases, the initial configuration is chosen to be Ω(0)

1 = Ω, i.e., the whole domain coincides
with the low-speed region.

Our simulations, unless mentioned otherwise, are based on the following combinations of laws. In the linear
case, we consider a combination of classical Darcy laws between the velocity and pressure, namely 𝐾−1𝑢 =
−∇𝑝+ 𝑓 with 𝐾 = 𝑘𝐼, where 𝐼 is the identity matrix and

𝑘 =
{︂
𝑘1 = 1 in Ω1,
𝑘2 = 10 in Ω2.

(6.1)
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Figure 1. Solutions for the problem of Section 6.1. On the left, using the proposed adaptive
model; in the center, with the fixed flow regime; on the right, the error between them.

(With the notation used previously, 𝑘𝑖 = 1/𝜆𝑖, 𝑖 ∈ {1, 2}.) Specifically, we have

Λ(𝑢) =
{︂

𝑢 in Ω1,
0.1𝑢 in Ω2.

(6.2)

When the non-linear case is studied, a non-linear and heterogeneous relationship between the velocity and the
pressure is set. We assume a linear Darcy flow in Ω1 and a Darcy–Forchheimer flow in Ω2. Specifically, we have

Λ(𝑢) =
{︂

𝑢 in Ω1,
(0.01 + 3‖𝑢‖)𝑢 in Ω2.

(6.3)

If not specified, we consider 50 as maximum for the number of iterations of the non-linear solver with tolerance
𝜖nl equal to 10−4.

6.2.1. Single domain

In this first case, we consider Ω = (0, 1). Boundary conditions are set to zero for the pressure. In the sequel,
we consider a linear and non-linear law relationship between 𝑢 and 𝑝. The scalar and vector source terms are
set equal to

𝑞(𝑥) =

⎧⎪⎨⎪⎩
1 if 𝑥1 6 0.3,
−1 if 0.3 < 𝑥1 < 0.7,
1 if 𝑥1 > 0.7,

and 𝑓 = [5 · 10−2, 0, 0]⊤.

Linear case. In this part, we consider the linear case with Λ as in (6.2). The numerical solution is reported
in Figure 2 along with some snapshots of the tentative solutions from Algorithm 1. What the “if Ω1” legend
represents is a binary outcome saying if the region is Ω1 or not. The “condition” legend represents the config-
uration at the previous algorithm iteration. The first figure gives the initial condition imposed, the second the
configuration after 3 steps and the third the final solution (at iteration 6). We notice the creation of multiple
transitions zone Γ, which might change during the determination of the final configuration. By changing the
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Figure 2. Solution for different iterations for the linear problem of Section 6.2.1. From the
left, at iterations 0, 2 and 6. The green line represents if the portion of Ω that belongs to Ω1

or not. The pressure profile is amplified by a factor of 10.

Figure 3. Number of iterations of Algorithm 1 for different values of the inverse of 𝑘2 (that is,
𝜆2) for the linear example in Section 6.2.1. The red asterisks mean that the maximum number
of iterations is reached.

initial condition we get to the same stationary solution, and by refining the grid we obtain a stable outcome
similar to the one presented in Figure 2.

In Figures 3 and 4 we study a case different from (6.2), where we test our algorithm for various permeabilities
𝑘2 while fixing 𝑘1 = 1. By increasing the maximum number of iterations to 1000, Figure 3 on the left shows the
impact of changing 𝑘2 on the number of iterations for the Algorithm 1. We see that for 𝑘2 > 𝑘1 the solution is
always computable while we cannot draw the same conclusion for 𝑘2 < 𝑘1.

An example for 𝑘2 = 0.25 is shown in Figure 4, where we notice that “if Ω1” and “condition” are perfectly
flipped between any two successive iterations. The algorithm “jumps” between two states and thus does not
converge.
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Figure 4. The two solutions computed by the algorithm for 𝑘2 = 0.25; see the linear case in
Section 6.2.1.

By setting 𝑓 = 0 and 𝑝(1) = 0.2, the latter to avoid that the algorithm converges in 1 iteration for each value
of 𝑘2, we can do the same analysis and obtain the plot in Figure 3 on the right. We deduce that the presence of
the vector source has an impact on the computability of the solution when 𝑘2 > 𝑘1, that is, when the transition
zone permeability jump is positive.

We can conclude that, even in this simple setting, the obtained numerical evidence is interesting and gives a
valid support to the developed theory, at least when 𝑘2 > 𝑘1.

Non-linear case. In this part, we consider the non-linear case with Λ as in (6.3). Figure 5 shows the numerical
solution obtained at different iteration steps of Algorithm 1. The stable solution is reached very quickly and only
two iterations of the outer scheme are needed. We see the effect on the pressure of the non-linear law, which
changes shape between the initial configuration and iteration 1. By changing the parameters, it is possible
to show that the obtained solution is independent from the initial condition and stable with respect the grid
refinement, once the mesh size is small enough to separate close transition zones. In this case 2 iterations are
needed to reach the stable solution, the first requires only 1 iteration and the second 6 iterations.

We consider now the effect of the tolerance 𝜖nl imposed in the non-linear solver, in particular its effect on
the number of iterations and resulting error. By keeping fixed the spatial discretization, we compute a reference
solution (𝑢ref , 𝑝ref) with tolerance 𝜖nl = 10−12. We report in Table 1 the comparison with higher tolerances. In
all cases the first iteration requires only two non-linear cycles, since the initial configuration has only a linear
problem. At the second iteration the non-linear steps depend on the chosen tolerance, this value is reported in
the table. In particular, we notice that both errors errp for 𝑝 and erru for 𝑢 computed as

errp =
‖𝑝ref − 𝑝‖
‖𝑝ref‖

and erru =
‖𝑢ref − 𝑢‖
‖𝑢ref‖

have a monotone decay. The norms in the previous expression are the Euclidean norms of the solution vector.
The error is rather small and decays very quickly, reaching zero for the non-linear tolerance equal to 10−3. The
outer iterations are not influenced by this parameters, probably due to the small errors obtained in all the cases.

Also in this case we can conclude that, even in this simple setting, the obtained numerical evidence is
interesting and gives a valid support to the developed theory.
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Figure 5. Solution for different iterations for the non-linear problem of Section 6.2.1. From
the left, at iterations 0 and 1. The green line represents if the portion of the Ω that belongs to
Ω1 or not. The pressure profile is amplified by a factor of 100.

Table 1. Numbers of iterations and errors computed for the example in Section 6.2.1, non-
linear case.

𝜖nl itout itin errp erru

10−1 2 3 1.2 · 10−5 8.7 · 10−6

10−2 2 4 1.8 · 10−7 1.3 · 10−7

10−3 2 5 2.8 · 10−9 2.2 · 10−9

10−4 2 6 4.4 · 10−11 2.1 · 10−11

10−5 2 7 2.4 · 10−12 1.0 · 10−11

10−8 2 11 0 0
10−12 2 15 − −

6.2.2. Crossing domains

In this second case, we consider the domain made of two crossing mono-dimensional domains, e.g., crossing
fractures. We set Ω = Ωhoriz ∪ Ωvert where Ωhoriz = (0, 1) × {0.5} and Ωvert = {0.5} × (0, 1); both Ωhoriz and
Ωvert are identifiable with (0, 1). We consider a zero vector source term 𝑓 and a scalar source term given on
Ωhoriz and Ωvert respectively by

𝑞horiz(𝑥) =

⎧⎪⎨⎪⎩
1 if 𝑥1 6 0.3
−1 if 0.3 < 𝑥1 < 0.7
1 if 𝑥1 > 0.7

and 𝑞vert(𝑥) =

⎧⎪⎨⎪⎩
1 if 𝑥2 6 0.3
−1 if 0.3 < 𝑥2 < 0.7
1 if 𝑥2 > 0.7

.

On the boundary we set 𝑝(0, 0.5) = 0 and 𝑝(0.5, 0) = 𝑝(1, 0.5) = 𝑝(0.5, 1) = 0.1.

Linear case. In this part, we consider the linear case with Λ as in (6.2). Figure 6 shows the graphical repre-
sentation of the solution for both the horizontal and vertical part of Ω for all the iterations of Algorithm 1. We
notice the influence of the crossing through a velocity jump in Ωhoriz, while the pressure profile is continuous as
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Figure 6. Solution for different iterations for the linear problem of Section 6.2.2. The pressure
profile is amplified by a factor of 4. On the top for the horizontal part of Ω, while on the bottom
for the vertical one.

condition (2.7) imposes. Also in this case, by changing the initial condition we obtain the same final outcome,
where all the domain becomes Ω2,ℎ.

Also with this more complex case, the obtained numerical evidence is insightful and shows good properties
for the developed approximation framework which is apparently applicable to this case.

Non-linear case. In this part, we consider the non-linear case with Λ as in (6.3). The obtained numerical
solution is reported in Figure 7. The scheme takes 5 iterations to converge with increasing number of non-linear
solver iterations as (1, 6, 8, 9). The obtained solution shows that the high-speed model, being Darcy–Forchheimer,
is more proper to describe most of the problem leaving the slow Darcian regime in the vicinity of the boundary
where the non-zero pressure condition is imposed. It is important to note that the plots show the norm of
𝑢 which presents a jump only in Ωhoriz. Nevertheless, condition (2.7) is respected at the intersection since a
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Figure 7. Solution for different iterations for the non-linear problem of Section 6.2.2. The
pressure profile is amplified by a factor of 8. On the top for the horizontal part of Ω, while on
the bottom for the vertical one.

velocity jump is also present in Ωvert. The representation of only ‖𝑢‖ hides this details. By changing the initial
condition or refining the mesh, we obtain again the same final outcome.

We can conclude that also in presence of a non-linear and heterogeneous law the proposed framework works
properly on this case.

6.2.3. Multiple fracture network

We consider now a complex fracture network, with geometry taken from Benchmark 1 of [14]. It is composed
of 6 intersecting fractures as Figure 8 shows, along with the set of boundary conditions.

We denote by Ω𝑠 the set of smaller fracture branches, which will be useful in the following. Null and unitary
vector and scalar sources are considered, respectively. As done with the previous examples, we will consider
the linear and non-linear case in the next Sections.
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Figure 8. Representation of the fracture network for the examples in Section 6.2.3. We have
reported the boundary conditions as well as the portion of the network with small branches in
red Ω𝑠.

Linear case. We consider here the same linear relations as in Section 6.2.1; see (6.2). The obtained solution is
represented in Figure 9. The scheme converges after 4 iterations of Algorithm 1. We see an interesting result:
Ω2,ℎ, which is the high-velocity region, is automatically positioned on the main pathways between the inflow and
outflow parts of the network. Again, the algorithm showed robustness when changing the initial configuration
and refining the grid.

Even for this complex configuration, the proposed algorithm is capable to compute a reasonable solution
with a limited cost.

Non-linear case. We consider in this part the non-linear case, where the constitutive law combination is given
as

Λ(𝑢) =
{︂

𝑢 in Ω1,
(0.01 + 0.25‖𝑢‖)𝑢 in Ω2.

Algorithm 1 takes 4 steps to reach the final configuration with an average of 18 iterations of the non-linear solver
for each step. Figure 10 shows the obtained numerical solution for different iterations. The obtained solution
is again insightful, positioning the high-speed region, given by Ω2,ℎ, in the longest fracture branches and the
low-speed region Ω1,ℎ mainly in the fracture branches at the outflow. There is a transition zone from Ω2,ℎ to
Ω1,ℎ that mainly takes place in Ω𝑠.

A zoom-in is reported in Figure 11 to better clarify the evolution of Ω2,ℎ and Ω1,ℎ at the small fracture
branches.

This final example shows a very interesting and physically sound final configuration, which might have been
hard to predict without the framework introduced in this work. All these examples showed the applicability
and importance of the model adaptation and support the presented Algorithm 1 to be a valid approach for its
solution.

7. Conclusion

In this work we introduced a new model for a porous medium that is able to adapt the constitutive relation
between velocity and pressure depending on the local magnitude of the fluid velocity, which is part of the
unknowns.

We presented a mathematical formulation for it, and with an energy argument we were able to show that
under reasonable hypotheses on the constitutive law the problem has a solution. When the transition zone
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Figure 9. Solution for different iterations, respectively (0, 1, 4), for the linear problem of
Section 6.2.3. On the top the condition “if Ω1” is represented with red indicating “true” and
blue “false”. On the bottom the norm of the velocity.

Figure 10. Solution for different iterations, respectively (1, 3, 4), for the problem of
Section 6.2.3, non-linear case. On the top the condition “if Ω1” is represented with red indicating
“true” and blue “false”. On the bottom the norm of the velocity.
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Figure 11. Zoom around the short fracture branches Ω𝑠 of the “if Ω1” condition for different
iterations, respectively (1, 3, 4), for the problem of Section 6.2.3.

Table 2. Summary of results according to the transition zone inverse permeability jump 𝜆21 :=
𝜆2 − 𝜆1.

𝜆21 > 0 𝜆21 = 0 𝜆21 < 0

Existence of solutions Yes Yes Yes if 𝑑 = 1
Convexity of energy Yes Yes No*

Convergence of algorithm (𝑑 = 1) No Yes Yes

Notes. (*)Unless in trivial case 𝑑 = 1 and Σv ̸= ∅.

inverse permeability jump is non-negative, the problem is convex and we could show existence in any space
dimension; when it is negative, however, the problem becomes non-convex and we had to restrict our proof of
existence to one space dimension. We also introduced a discrete algorithm that, for a given problem, tracks the
low- and high-speed regions as well at the transition zone separating them. We considered various constitutive
relations for distinct parts of the network, such as the classical Darcy law and the non-linear Darcy–Forchheimer
law. Several numerical examples showed the validity of the proposed approach by increasing the geometrical
and physical complexity of the problem. We noticed that when the transition zone inverse permeability jump
is positive, the algorithm seems not to converge and oscillate indefinitely between two configurations. In the
complementary non-positive case, the algorithm seems to behave and converge nicely. We summarize these
results in Table 2.

From a modeling point of view, as mentioned in the introduction, future extensions will be the inclusion of
transmission conditions with the rock matrix and the possibility of having more than two constitutive laws for
the problem. Additionally, derivative-dependent laws such as Stokes’ and Brinkman’s will be considered.

From an analytical point of view, open questions include the existence of solutions when 𝑑 > 1 and the
transition zone inverse permeability jump is negative, and the extension of the existence results to tensor
permeabilities when 𝑑 > 1; see Remark 3.1. In addition, characterizing admissible constitutive laws on the
transition zone (rather than leaving the choice as a free parameter of the model, as we did here) as well as
determining the Hausdorff dimension of the transition zone are interesting questions that would help us study
uniqueness of solutions; recall Remarks 2.3 and 3.6.

From a numerical point of view, further extensions will be the the development of the tracking algorithm for
𝑑 > 1 and the proof of its convergence when the transition zone inverse permeability jump is non-positive, and
the development of an alternative algorithm when the jump is positive.
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